
On the influence of rounding errors in the C++ implementation of

simple iteration algorithm

George Daniel Mateescu1

Abstract. Rounding errors can completely change the outcome of an algorithm.

Moreover, mathematical equivalent implementations may generate different results. We

analyze this assertion, in C++ implementation, by using the algorithm for determining

the maximum eigenvalue. We proved that certain statements in the bibliography are not

true. It can happen that instead of the maximum eigenvalue, one other eigenvalue to be

determined. It is also possible that the algorithm for determining all eigenvalues to

generate the eigenvalues in a different order.

AMS Classification: 65F15, 03-04

I. Introduction

Let ()
, 1..ij i j m

A a
=

= be a real, symmetrical matrix. The simple vector iteration

algorithm consists into the following iterative sequence:

0
mx ∈R , 1 ,n

n
n

Axx n
x+ = 0≥ , (1)

thus nx λ→ , where
()

max
Aλ σ

λ λ
∈

=

This is because 0
1

0

n

n n

A xx
A x−

= , and if we consider the orthonormal basis

1u , , … , , 2u mu , , , 1i j iju u i j mδ= = ..

, (2)

1 University of Civil Engineering, Department of Mathematics and Computer Science

e-mail: dan@mateescu.ro

Galaxy
Text Box
29

consisting of eigenvectors of the A matrix, it follows:

1 1 1 2 2 2

1 1 1
1 1 1 2 2 2

...

...

n n n
m m m

n n n n
m m m

u u u
x

u u

λ α λ α λ α

λ α λ α λ α− − −

+ + +
=

+ + + u
 (3)

where 0 1 1 2 2 ... m mx u u uα α α= + + +

If we consider

1 2 3 ... mλ λ λ λ> ≥ ≥ ≥

it results

2
1 1 1 2 2

1 1

11 1
1 2

1 1 1 2 2
1 1

...

...

n n
n m

m m

n n n
n m

m m

u u u

x

u u u

λλλ α α α
λ λ

λ
λλλ α α α

λ λ

− −

−

⎛ ⎞ ⎛ ⎞
+ + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= →
⎛ ⎞ ⎛ ⎞

+ + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (4)

Moreover, if 1 0λ > then

2
1 1 1 2 2

1 1 1 1
1 11 1

1 11 2
1 1 1 2 2

1 1

...

...

n n
n m

m m

n n n
n m

m m

u u u

x u u
u

u u u

λλλ α α α
λ λ λα

αλλλ α α α
λ λ

− −

−

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟+ + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠= →

⎛ ⎞ ⎛ ⎞
+ + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

R∈ ,

i.e. nx converges to an eigenvector which corresponds to the eigenvalue 1λ .

We observe that if 1 2λ λ= , the algorithm is still convergent.

The above result has many demonstrations, as it can be seen in [1], [2], [3].

But, we prefer this demonstration (see [2]) because it reveals a particular situation, in

that concern the initial vector, 0x

II. C++ implementation of the algorithm

It is clear that we cannot use formula (3) because the eigenvectors of the

matrix are not known; thus, we have to use formula (1). On the other hand, formula

Galaxy
Text Box
30

(3) holds if 1α is nonzero, otherwise the formula (4) is false. Because the eigenvectors

are unknown, there is no way to be sure that the initial vector is orthogonal (or not) to

. Some authors suggest that in such a case, the rounding errors will generate a

nonzero component for and the algorithm still determines

1u

1u 1λ ([1], [2], [3]).

This assertion may be false, as we can see in the following. Moreover, the

result may depend on the implementation, as it can be seen from the following two

sequences. We used the matrix , implemented by a[][]; the sequence A
⎛ ⎞
⎜=
⎜
⎝ ⎠

12 -2 4

-2 8 5

4 5 9

⎟
⎟

nx is implemented by x[]. The eigenvalues are 1λ = 15.1311783 , 2λ = 12.1245619 ,

3λ = 1.7442598 and the corresponding eigenvectors are:

()1u = -0.6820291 -0.2818689 -0.6748231

()2u = 0.6229796 -0.7072428 -0.3342215

()3u = -0.3830572 -0.6483498 0.6579588

I)
{ norm=0;

 for(i=1;i<=m;i++)

 norm=norm+x[i]*x[i];

 norm=sqrt(norm);

 for(i=1;i<=m;i++)

 x[i]=x[i]/norm;

 for(i=1;i<=m;i++)

 {s=0;

 for(j=1;j<=m;j++)

 s=s+a[i][j]*x[j];

 y[i]=s;}

 for(i=1;i<=m;i++)x[i]=y[i];

}

II)
{ norm=0;

 for(i=1;i<=m;i++)

 norm=norm+x[i]*x[i];

 norm=sqrt(norm);

 for(i=1;i<=m;i++)

 {s=0;

 for(j=1;j<=m;j++)

 s=s+a[i][j]*x[j];

 y[i]=s/norm;}

 for(i=1;i<=m;i++)x[i]=y[i];

}

Galaxy
Text Box
31

We used the starting vector 0 2 3x u u= + , which is orthogonal to . Both

sequences are executed repeatedly, until the 7-digit accuracy is achieved, i.e. until

norm keeps the first 7 digits unchanged. The first block corresponds to the iteration:

1u

1
n

n
n

xx A
x+

⎛ ⎞
= ⎜⎜

⎝ ⎠
⎟⎟ , while the second corresponds to the iteration 1

n
n

n

Axx
x+ = . Because A

is a linear operator (matrix) the two formulas are equivalent. But, due to rounding

errors, with the first block we found the eigenvalue 1λ = 15.1311783 and with the

second block, we found the eigenvalue 2λ = 12.1245619 . The results differ, even we

used the same starting vector, implemented by:
x[1]=0.2399224; x[2]=-1.3555927; x[3]=0.3237372;

which is orthogonal to . 1u

We conclude that the rounding errors cannot assure the convergence of the

algorithm, in the second implementation, unlike [1]. In the first sequence, the rounding

errors will generate a nonzero coefficient 1α having as result the determination of 1λ .

III. Determine all the eigenvalues

If we have determined the maximum eigenvalue and the corresponding

eigenvector, we examine the possibility of finding other eigenvalues. More

specifically, we assume that the eigenvalues are:

1 2... 0mλ λ λ≥ ≥ >

We suppose that 1λ and are known, and let 1u x be the vector

0 0 1, 1x x x u u= − , which is orthogonal to . Using the initial vector 1u 1x x= , the

sequence 1
n

n
n

Axx
x+ = will be also orthogonal to . Indeed, while 1u x is orthogonal to

, by using the orthonormal basis (2) it results that: 1u

2 2 3 3 ... m mx x u x u x u= + + + ,

Galaxy
Text Box
32

and consequently 2 2 2 3 3 3 ... m m mAx x u x u x uλ λ λ= + + + thus Ax
x

 is also orthogonal to 1u

Apparently, the algorithm consist into the initialization x x← and the

execution of the following block, until a suitable condition of convergence is fulfilled.

Repeat:

{ Axy
x

←

 x y← }

But, as in the previous, the rounding errors will introduce a perturbation such

that the coefficient of will be nonzero. There is no way to avoid rounding errors

thus the algorithm will fail. In fact, we will obtain the maximum eigenvalue

1u

1λ

instead of 2λ ! The right solution, in order to correct the errors, is to ortogonalize the

vector at each step, i.e. to implement the repeatedly execution of the block:

 { Axy
x

←

1 1,y y y u u← −

x y← }

Next, assuming that we determined the eigenvalues 1λ , 2λ , …, 1kλ − and the

eigenvectors , , …, it is possible to find the next eigenvalue and the next

eigenvector by using the following algorithm:

1u 2u 1ku −

0 0 1 1 0 2 2 0 1, , ... , k k 1x x x u u x u u x u u− −= − − −

 Repeat:

 { Axy
x

← ,

1 1 2 2 1 1, , ... , k ky y y u u y u u y u u− −← − − − (5)

x y← }

Galaxy
Text Box
33

Formula (5) is designed to restore orthogonality at every step, because the

orthogonality may be lost due to rounding errors. Mathematically speaking, the

formula (5) is not necessary because other assignments of algorithm does not change

the orthogonality. But, if we do not use the formula (5), then each step will generate

the maximum eigenvalue, because of rounding errors can lead to nonzero components,

corresponding to . 1u

The C++ implementation will contain the following sequence:

// normalise the vector x

 norm=0;

for(i=1;i<=m;i++)norm=norm+x[i]*x[i];

norm=sqrt(norm);

 for(i=1;i<=m;i++)x[i]=x[i]/norm;

// orthogonalise the vector x, with respect to the eigenvectors

// allready found

// vec index reprezent the numer of eigenvectors allready found

// the matrix u[][] implements the colum reprezentation of

// the eigenvectors

 for(j=1;j<=m;j++){

 s=0;

 for(i=1;i<vec;i++)

 {s1=0;

for(l=1;l<=m;l++)s1=s1+x[l]*u[i][l];

 s=s+s1*u[i][j];}

 y[j]=x[j]-s;}

 for(i=1;i<=m;i++)x[i]=y[i];

// calculate the new iteration

 for(i=1;i<=m;i++){

 s=0;

 for(j=1;j<=m;j++)s=s+a[i][j]*x[j];

 y[i]=s;}

 for(i=1;i<=m;i++)x[i]=y[i];

Galaxy
Text Box
34

Although the first eigenvalue may not be found at the first step, however,

the first step will determine one eigenvalue. Next, every step will determine one

eigenvalue and one eigenvector, orthogonal to all the previous. Finally we will get m

vectors, so m eigenvalues, even if the order of determination will not be decreasing.

We used the matrix , implemented by a[][]; the sequence A
⎛ ⎞
⎜=
⎜
⎝ ⎠

12 -2 3

-2 8 5

3 5 9

⎟
⎟ nx

is implemented by x[]. The eigenvalues are 1λ = 14.2339683 , 2λ = 12.5490733 ,

3λ = 2.2169583 and the corresponding eigenvectors are:

()1u = -0.6138071 -0.3646656 -0.7001856

()2u = 0.7132033 -0.6364342 -0.2937558

()3u = -0.3384994 -0.6796841 0.6507285

By using the starting vector x[1]=0.3747039; x[2]=-1.3161183;

x[3]=0.3569727; we found 2λ = 12.5490733 . This result is obtained independent of

the implementation style, I or II. But, the algorithm will bring all the eigenvalues, in

order: 2λ = 12.5490733 , 1λ = 14.2339683 , 3λ = 2.2169583 .

IV. The non symmetric case

This case may be analyzed in the same way ([1]) and we used the matrix

, implemented by a[][]; and the sequence A
⎛ ⎞
⎜=
⎜
⎝ ⎠

12 -3 12

-3 18 5

4 5 9

⎟
⎟ nx implemented by x[].

The eigenvalues are 1λ = 19.290752 , 2λ = 18.4173239 , 3λ = 1.2919241 and the

corresponding eigenvectors are:

()1u = 0.6242935 0.5792752 0.5241162

()2u = 0.8022669 0.3142054 0.5075852

Galaxy
Text Box
35

()3u = 0.7465349 0.3101901 -0.5886151

By using x[1]=1.5488015; x[2]=0.6243958; x[3]=-0.081025; which is

orthogonal, with 7 digits, to we have found the first eigenvalue 1u 2λ = 18.4173239 ,

instead of 1λ = 19.290752 .

V. Bibliography

1. Arbenz, P., “Lecture Notes on Solving Large Scale Eigenvalue Problems”,

http://people.inf.ethz.ch/arbenz/ewp/Lnotes/, 2010

2. Bakhvalov, N., “Methodes Numeriques”, Editions Mir, 1976

3. Stoer, J., Bulirsch, R., “Introduction to Numerical Analysis”, Springer Verlag, 1992

http://people.inf.ethz.ch/arbenz/ewp/Lnotes/
Galaxy
Text Box
36

	I. Introduction
	II. C++ implementation of the algorithm
	III. Determine all the eigenvalues
	V. Bibliography

	Text2: ROMANIAN JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2011, VOLUME 1, p.29-36

