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Abstract. Rounding errors can completely change the outcome of an algorithm. 

Moreover, mathematical equivalent implementations may generate different results. We 

analyze this assertion, in C++ implementation, by using the algorithm for determining 

the maximum eigenvalue. We proved that certain statements in the bibliography are not 

true. It can happen that instead of the maximum eigenvalue, one other eigenvalue to be 

determined. It is also possible that the algorithm for determining all eigenvalues to 

generate the eigenvalues in a different order. 
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I. Introduction 

Let ( )
, 1..ij i j m

A a
=

=  be a real, symmetrical matrix. The simple vector iteration 

algorithm consists into the following iterative sequence: 
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1u , , … , , 2u mu , , , 1i j iju u i j mδ= = ..
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consisting of eigenvectors of the A matrix, it follows: 
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where 0 1 1 2 2 ... m mx u u uα α α= + + +  
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Moreover, if 1 0λ >  then 
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R∈ ,  

i.e. nx  converges to an eigenvector which corresponds to the eigenvalue 1λ . 

We observe that if 1 2λ λ= , the algorithm is still convergent. 

The above result has many demonstrations, as it can be seen in [1], [2], [3]. 

But, we prefer this demonstration (see [2]) because it reveals a particular situation, in 

that concern the initial vector, 0x  

 

II. C++ implementation of the algorithm 

It is clear that we cannot use formula (3) because the eigenvectors of the 

matrix are not known; thus, we have to use formula (1). On the other hand, formula 

Galaxy
Text Box
30



(3) holds if 1α  is nonzero, otherwise the formula (4) is false. Because the eigenvectors 

are unknown, there is no way to be sure that the initial vector is orthogonal (or not) to 

. Some authors suggest that in such a case, the rounding errors will generate a 

nonzero component for  and the algorithm still determines 

1u

1u 1λ  ([1], [2], [3]).  

This assertion may be false, as we can see in the following. Moreover, the 

result may depend on the implementation, as it can be seen from the following two 

sequences. We used the matrix , implemented by a[][]; the sequence A
⎛ ⎞
⎜=
⎜
⎝ ⎠

12 -2 4

-2 8 5

4 5 9

⎟
⎟

nx  is implemented by x[]. The eigenvalues are 1λ = 15.1311783 , 2λ = 12.1245619 , 

3λ = 1.7442598  and the corresponding eigenvectors are: 

( )1u = -0.6820291 -0.2818689 -0.6748231  

( )2u = 0.6229796 -0.7072428 -0.3342215  

( )3u = -0.3830572 -0.6483498 0.6579588  

 

I) 
{ norm=0; 

 for(i=1;i<=m;i++) 

     norm=norm+x[i]*x[i]; 

 norm=sqrt(norm); 

 for(i=1;i<=m;i++) 

     x[i]=x[i]/norm; 

 for(i=1;i<=m;i++) 

    {s=0; 

     for(j=1;j<=m;j++) 

        s=s+a[i][j]*x[j]; 

     y[i]=s;} 

 for(i=1;i<=m;i++)x[i]=y[i]; 

} 

II) 
{ norm=0; 

 for(i=1;i<=m;i++) 

     norm=norm+x[i]*x[i]; 

 norm=sqrt(norm); 

 for(i=1;i<=m;i++) 

    {s=0; 

     for(j=1;j<=m;j++) 

        s=s+a[i][j]*x[j]; 

     y[i]=s/norm;} 

 for(i=1;i<=m;i++)x[i]=y[i]; 

} 
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We used the starting vector 0 2 3x u u= + , which is orthogonal to . Both 

sequences are executed repeatedly, until the 7-digit accuracy is achieved, i.e. until 

norm keeps the first 7 digits unchanged. The first block corresponds to the iteration: 

1u

1
n

n
n

xx A
x+

⎛ ⎞
= ⎜⎜

⎝ ⎠
⎟⎟ , while the second corresponds to the iteration 1

n
n

n

Axx
x+ = . Because A 

is a linear operator (matrix) the two formulas are equivalent. But, due to rounding 

errors, with the first block we found the eigenvalue 1λ = 15.1311783  and with the 

second block, we found the eigenvalue 2λ = 12.1245619 . The results differ, even we 

used the same starting vector, implemented by:  
x[1]=0.2399224; x[2]=-1.3555927; x[3]=0.3237372; 

which is orthogonal to . 1u

We conclude that the rounding errors cannot assure the convergence of the 

algorithm, in the second implementation, unlike [1]. In the first sequence, the rounding 

errors will generate a nonzero coefficient 1α  having as result the determination of 1λ . 

 

III. Determine all the eigenvalues 

If we have determined the maximum eigenvalue and the corresponding 

eigenvector, we examine the possibility of finding other eigenvalues. More 

specifically, we assume that the eigenvalues are:  

1 2... 0mλ λ λ≥ ≥ >   

We suppose that 1λ  and  are known, and let 1u x  be the vector 

0 0 1, 1x x x u u= − , which is orthogonal to . Using the initial vector 1u 1x x= , the 

sequence 1
n

n
n

Axx
x+ =  will be also orthogonal to . Indeed, while 1u x  is orthogonal to 

, by using the orthonormal basis (2) it results that: 1u

2 2 3 3 ... m mx x u x u x u= + + +  ,  
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and consequently 2 2 2 3 3 3 ... m m mAx x u x u x uλ λ λ= + + +  thus Ax
x

 is also orthogonal to  1u

Apparently, the algorithm consist into the initialization x x←  and the 

execution of the following block, until a suitable condition of convergence is fulfilled. 

Repeat: 

{ Axy
x

←  

  x y←  } 

But, as in the previous, the rounding errors will introduce a perturbation such 

that the coefficient of  will be nonzero. There is no way to avoid rounding errors 

thus the algorithm will fail. In fact, we will obtain the maximum eigenvalue 

1u

1λ  

instead of 2λ ! The right solution, in order to correct the errors, is to ortogonalize the 

vector at each step, i.e. to implement the repeatedly execution of the block: 

  { Axy
x

←  

1 1,y y y u u← −  

x y←  } 

Next, assuming that we determined the eigenvalues 1λ , 2λ , …, 1kλ −  and the 

eigenvectors , , …,  it is possible to find the next eigenvalue and the next 

eigenvector by using the following algorithm: 

1u 2u 1ku −

0 0 1 1 0 2 2 0 1, , ... , k k 1x x x u u x u u x u u− −= − − −  

  Repeat:  

   { Axy
x

← , 

1 1 2 2 1 1, , ... , k ky y y u u y u u y u u− −← − − −      (5) 

x y←  } 
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Formula (5) is designed to restore orthogonality at every step, because the 

orthogonality may be lost due to rounding errors. Mathematically speaking, the 

formula (5) is not necessary because other assignments of algorithm does not change 

the orthogonality. But, if we do not use the formula (5), then each step will generate 

the maximum eigenvalue, because of rounding errors can lead to nonzero components, 

corresponding to . 1u

The C++ implementation will contain the following sequence: 
 

// normalise the vector x 

 norm=0; 

for(i=1;i<=m;i++)norm=norm+x[i]*x[i]; 

norm=sqrt(norm); 

    for(i=1;i<=m;i++)x[i]=x[i]/norm; 

// orthogonalise the vector x, with respect to the eigenvectors 

// allready found 

// vec index reprezent the numer of eigenvectors allready found 

// the matrix u[ ][ ] implements the colum reprezentation of  

// the eigenvectors 

    for(j=1;j<=m;j++){ 

     s=0; 

          for(i=1;i<vec;i++) 

             {s1=0; 

for(l=1;l<=m;l++)s1=s1+x[l]*u[i][l]; 

              s=s+s1*u[i][j];} 

          y[j]=x[j]-s;} 

     for(i=1;i<=m;i++)x[i]=y[i]; 

// calculate the new iteration 

    for(i=1;i<=m;i++){ 

     s=0; 

          for(j=1;j<=m;j++)s=s+a[i][j]*x[j]; 

          y[i]=s;} 

    for(i=1;i<=m;i++)x[i]=y[i]; 

 

Galaxy
Text Box
34



Although the first eigenvalue may not be found at the first step, however, 

the first step will determine one eigenvalue. Next, every step will determine one 

eigenvalue and one eigenvector, orthogonal to all the previous. Finally we will get m 

vectors, so m eigenvalues, even if the order of determination will not be decreasing. 

We used the matrix , implemented by a[][]; the sequence A
⎛ ⎞
⎜=
⎜
⎝ ⎠

12 -2 3

-2 8 5

3 5 9

⎟
⎟ nx  

is implemented by x[]. The eigenvalues are 1λ = 14.2339683 , 2λ = 12.5490733 , 

3λ = 2.2169583  and the corresponding eigenvectors are: 

( )1u = -0.6138071 -0.3646656 -0.7001856  

( )2u = 0.7132033 -0.6364342 -0.2937558  

( )3u = -0.3384994 -0.6796841 0.6507285  

By using the starting vector x[1]=0.3747039; x[2]=-1.3161183; 

x[3]=0.3569727; we found 2λ = 12.5490733 . This result is obtained independent of 

the implementation style, I or II. But, the algorithm will bring all the eigenvalues, in 

order: 2λ = 12.5490733 , 1λ = 14.2339683 , 3λ = 2.2169583 . 

 

IV. The non symmetric case 

This case may be analyzed in the same way ([1]) and we used the matrix 

, implemented by a[][]; and the sequence A
⎛ ⎞
⎜=
⎜
⎝ ⎠

12 -3 12

-3 18 5

4 5 9

⎟
⎟ nx  implemented by x[]. 

The eigenvalues are 1λ = 19.290752 , 2λ = 18.4173239 , 3λ = 1.2919241  and the 

corresponding eigenvectors are: 

( )1u = 0.6242935 0.5792752 0.5241162  

( )2u = 0.8022669 0.3142054 0.5075852  
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( )3u = 0.7465349 0.3101901 -0.5886151  

By using x[1]=1.5488015; x[2]=0.6243958; x[3]=-0.081025; which is 

orthogonal, with 7 digits, to  we have found the first eigenvalue 1u 2λ = 18.4173239 , 

instead of 1λ = 19.290752 . 
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