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Abstract

In this paper we will check the homogeneity/heterogeneity of Lévy pro-
cesses using some non-parametric homogeneity tests. First we create two
samples from two Lévy processes starting from the definition of the Lévy
process, and next we test if the two samples have the same distribution.

Using the Lévy—Itô decomposition we will perform the homogeneity
tests for given parts of the Lévi processes.

The study of the homogeneity of stock markets shocks is usefull be-
cause the eventualy homogeneity can produce a phenomenon analogue to
the resonance that can be observed in mechanics. This resonance increase
the idiosyncratic risk.
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1 Introduction

For studying of the jump processes, an essential role is played by the Poisson
process, whose definition is given in the following (see [10, 2]).

Definition 1 A Poisson process is a homogeneous Markov process X with the
set of states S = N and the time set T = [0,∞) such that the transition

probabilities are Pt (n+ k, n) = e−λ·t · (λ·t)k

k! for any t > 0, n ≥ 0 and k ≥ 0,
and the other transition probabilities are equal to zero.

Definition 2 ([10, 2]) Let Nt be a Poisson process having the intensity λ.
The stochastic process given by Ñt = Nt−λ·t is called compensated (or centered)
Poisson process.

From given measures and from Poisson/compensated Poisson process we
build Poisson/ compensated Poisson random measures (see [10, 2]).

Definition 3 Let Nt be a Poisson process having the intensity λ, and the cor-
responding compensated Poisson process Ñt in the probability space (Ω,F ,P).
Consider also the set E ∈ Rd and µ a given positive Radon measure µ on
(E, E).

A Poisson random measure on E with the intensity measure µ is an integer
valued random measure M : Ω× E → N, (ω,A) 7→M (ω,A) such that:

1. For almost all ω ∈ Ω, M (ω, ·) is an integer-valued Radon measure on
E: for any bounded measurable A ⊂ E, M (A) <∞ is an integer-valued
random variable.

item For each measurable set A ⊂ E, M (·, A) = M (A) is a Poisson
random variable with parameter µ (A): ∀k ∈ N, P (M (A) = k) = e−µ(A) ·
(µ(A))k

k! .

2. For any disjoint measurable sets A1, ..., An ∈ E, the random variables
M (A1),...,M (An) are independent

The compensated Poisson random measure is M̃ (A) = M (A)− µ (A).

2

Galaxy
Text Box
38



Definition 4 ([10, 2]) The jump measure of a Poisson process (Nt)t≥0 is de-
fined by JN =

∑
n≥1

δ(Tn,1):

JN ([0, t]×A) =
{
] {i ≥ 1, Ti ∈ [0, t]} , if 1 ∈ A
0, if 1 /∈ A .

Definition 5 ([10, 2]) The function f : [0, T ] → Rd is called cadlag1 if it is
right-continuous with left limits: for each t ∈ [0, T ] the limits

f (t−) = lim
s↗t

f (s) and f (t+) = lim
s↘t

f (s)

exist and f (t) = f (t+).

We denote by ∆f (t) = f (t) − f (t−) the discontinuity (or the ”jump”) of
f at t.

An analogue definition is for caglad functions, which are left-continuous
with right limits. Considering now a stochastic process Xt, cadlag means that
the jump occurs before, and caglad mans that the jump occurs after the given
moment t. Because the jumps can be observed only after they have occured,
in financial modeling there are prefered the cadlag stochastic processes (see
[10, 2]).

Definition 6 ([10, 2]) A cadlag stochastic process (Xt)t≥0 on the probability
space (Ω,F ,P) with values in Rd such that X0 = 0 is called Lévy process if it
has the following properties

1. Independent increments: for any increasing sequence of time moments
t0, t1,...,tn, the random variables Xt0, Xt1 −Xt0,...,Xtn −Xtn−1 are in-
dependent.

2. Stationary increments: the distribution law of Xt+h−Xt does not depend
on t.

3. Stochastic continuity: ∀ε > 0, lim
h→0

P (|Xt+h −Xt| ≥ ε) = 0.

Because it is proved (see [10, 2]) that the Poisson process is a particular
case of Lévy process with piecewise constant sample paths, the third condition
in the above definition does not imply that the sample paths are continuous.

1From French “continu à droite, limite à gauche”
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Definition 7 ([10, 2]) A compound Poisson process with the intensity λ and
the jump size f is a stochastic process

Xt =
Nt∑
i=1

Yi,

where Nt is a Poisson process with the intensity λ, and the random variables
Yi, i ≥ 1 are independent and they have the same distribution f .

If the distribution f is such that Yi = 1 with the probability 1, we have Xt =
Nt. Therefore the Poisson process is a particular case of compound Poisson
process. We have the following property of compound Poisson processes.

Proposition 1 ([10, 2]) The stochastic process (Xt)t≥0 is a compound Pois-
son process if and only if it is a Lévy process and its sample paths are piecewise
constant functions.

Proposition 2 ([10, 2]) The characteristic function of a compound Poisson
process Xt (i.e. the characteristic function of the random variable Xt) is

E
[
eiu·Xt

]
= exp

tλ ·
∫
Rd

(
eiu·x

)
f (dx)

 ,

where λ is the jump intensity and f is the jump size distribution.

Definition 8 ([10, 2]) Let (Xt)t≥0 be a Lévy process. The Lévy measure on
X is defined by

ν (A) = E {] { t ∈ [0, 1]|∆Xt 6= 0, ∆Xt ∈ A}} , A ∈ B
(
Rd
)
.

Therefore, according to the above definition, ν (A) is the expected number
of jumps whose sizes belong to A, per unit time.

Definition 9 ([10, 2]) A Brownian motion is a stochastic process (Bt)t≥0

with independent stationary increments, that follow a Gaussian distribution.
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Proposition 3 (The Lévy—Itô decomposition: see [10, 2]) Let (Xt)t≥0

be a Lévy process on Rd and ν its Lévy measure, given by Definition 8. Then

1. ν is a Radon measure on Rd such that

(a)
∫

|x|≤1

|x|2ν (dx) <∞.

(b)
∫

|x|≥1

ν (dx) <∞.

2. The jump measure of X, denoted by JX , is a Poisson random measure
on [0,∞)× Rd with the intensity measure ν (dx) dt.

3. There exist a vector γ ∈ Rd and a d-dimensional Brownian motion Bt
such that

(a) Xt = tγ +Bt +X1
t + lim

ε↘0
X̃ε
t , where

(b) X1
t =

∫
|x|≥1,s∈[0,t]

xJx (ds× dx) and

(c) X̃ε
t =

∫
ε≤|x|≤1,s∈[0,t]

xJx (ds× dx)− ν (dx) ds =
∫

ε≤|x|≤1,s∈[0,t]

xJ̃x (ds× dx).

The terms in the above decomposition are independent, and the conver-
gence of the last term is almost sure and uniform in t on [0, T ].

From the Lévy—Itô decomposition we obtain the characteristic triplet (A, ν, γ),
where A is the varianc-covariance matrix of the increments of Bt, ν is the Lévy
measure, and γ is the constant vector from above. Computing the characteris-
tic function for a Lévy process we obtain the following reprezentation, tacking
into account the above Lévy—Itô decomposition.

Proposition 4 (The Lévy—Khinchin reprezentation: see [10, 2]) Let (Xt)t≥0

a Lévy process on Rd with the characteristic triplet (A, ν, γ). Then the charac-
teristic function is

E
[
eiz·Xt

]
= etψ(z), z ∈ Rd, and
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ψ (z) = −1
2
z ·Az + iγ · z +

∫
Rd

(
eiz·x − 1− iz · x1|x|≤1

)
ν (dx).

If d = 1 we obtain

ψ (z) = −Az
2

2
+ iγz +

∞∫
−∞

(
eizx − 1− izx1|x|≤1

)
ν (dx) (1)

The moments of a Lévy process are computed from the Lévy—Khincin
representation (see [10, 2]). We obtain

E (Xt) = t

(
γ +

∫
|x|≥1

xν (dx)

)

V ar (Xt) = t

(
σ2 +

∞∫
−∞

x2ν (dx)

)

Cn (Xt) = t

(
∞∫
−∞

xnν (dx)

)
for n > 2

. (2)

Consider now a discrete time series X1, X2,..., Xn. In the general case
it can be decomposed in three parts (see [7, 15, 18]): the trend, the sesonal
component and the stationary component. If ther is no sesonnal component,
a method to remove the trend is the moving average. The moving average of
order q is

m̂t =

q∑
j=−q

Xt+j

2 · q + 1
. (3)

In [7] there are considered Xt = X1 for t < 1, and Xt = Xn for t > n, and
in [15, 18] there are computed only the values for which q < t ≤ n−q, hence all
the terms in the above relation exist in the time series. A criterion to choose q
used in [15] is the minimum variance of Xt − m̂t.
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2 Testing the homogeneity of two Lévy processes
and the decomposition Lévy—Itô

Consider two Lévy processes X∆, X2·∆,..., Xn·∆, respectively Y∆, Y2·∆,...,
Yn·∆, observed at the same time intervals, ∆. According to the definition of
the Lévy processes, the random variables X2·∆ −X∆, X3·∆ −X2·∆,..., Xn·∆ −
X(n−1)·∆ are independent and identicaly distributed. The same thing we can
say about Y2·∆−Y∆, Y3·∆−Y2·∆,..., Yn·∆−Y(n−1)·∆. Therefore the problem of
testing homogeneity of the Lévy processes can be reduced to test if two random
variables have the same distribution.

The Kolmogorov—Smirnov goodness-of-fit test (see [9, 17]) tests the null
hypothesis H0: the random variable X has the cumulative distribution function
F against the alternative hypothessis H1: the random variable X has not the
cumulative distribution function F , with a given first degree error ε. We have
a sample of the size n from a population characterized by the random variable
X. Denote by F ∗ the empirical cdf. The following theorem (see [9, 17]) is the
theoretical basis of this test.

Theorem 5 Let X be a random variable having the cdf F , and a sample
X1, ..., Xn from a population characterized by the random variable X. Denote
by D = max

x
|F ∗ (x)− F (x)|. Then for any λ > 0 we have

lim
n→∞

P

(
D ≤ λ√

n

)
= K (λ) =

∞∑
k=−∞

(−1)k · e−2k2λ2
.

We can notice that, due to the shape of the empirical cdf, the maximum
in the above theorem is obtained in one of the sample values. The centils for
D can be found in tables in any book of statistics. Denoting this centil by
Dn (1− ε) (n is the size of the sample), we accept the null hypothesis H0 if
D < Dn (1− ε).

We can use this test for testing homogeneity if both cdfs are empirical,
considering two samples of sizes m, respectively n. In this case D is the max-
imum distance between the empirical cdfs, and the relation from the theorem
becomes (see [9, 17])
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lim
n→∞

P

(
D ≤ λ ·

√
m+ n

m · n

)
= K (λ) =

∞∑
k=−∞

(−1)k · e−2k2λ2
. (4)

Therefore we replace the value of n in the case of one sample by n1 = m·n
m+n

for the case of two samples. As a computational technique (in our C + +
program) we estimate the above function K by sumation of k between −1000
and 1000, and we accept the homogeneity if K

(√
n1 ·D

)
< 1−ε. The problem

can arise only in the case n1 < 35 (this is not our case, as we will see in Section
3, because if m = n we have n1 = n

2 , and in the considered application we have
n = 149). For this case we need the table of centils, and we accept the null
hypothesis H0 if D < Dn (1− ε) for n being the integer part of n1 plus one,
and we reject it if D ≥ Dn (1− ε) for n being the integer part of n1. If D is
between these values we need an interpolation technique to compute Dn (1− ε)
for n = n1.

Another homogeneity test used in statistics is the Mann—Whitney—Wilcoxon
test (known also as the ranks’ sum test). We test the null hypotheses H0: the
two samples have the same distribution against the alternative hypothesis H1:
the two samples have not the same distribution. If the first sample has the size
m, and the second one the size n, we order first the m+ n values in increasing
order (see [9, 17]). If there are common values in the two samples we remove
them, and m and n decrease according to the removed values.

Denoting by RX and Ry the sum of the obtained ranks of the values from
X, respectively from Y , we compute first

WX = m · n+ m(m+1)
2 −RX

WY = m · n+ n(n+1)
2 −RY

W = max (WX ,WY )
. (5)

The expectation and the variance of W are{
E (W ) = m·n

2

V ar (W ) = m·n·(m+n+1)
12

. (6)

If m,n > 8 the distribution of W can be approximated by a normal distri-
bution (see [9, 17]). Therefore
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Z =
W − E (W )√
V ar (W )

∼ N (0, 1) , (7)

and we accept the null hypothesis of homogeneity with the first degree error ε
if Z < Z1−ε (Z1−ε is the centil of level 1− ε, or of the error ε for the standard
normal distribution).

If m = n (as in our case, where the values of the two Lévy processes are
observed in the same moments of time) we can use the signed Wilcoxon ranks
test. We order first each sample in increasing order, and we remove each pair
(Xi, Yi) with Xi = Yi (and n decrease by one for every such pair). Next we
multiply the ranks with the signs of the corresponding differences between the
values of the first sample and those of the second one (see [9, 17]): if Xi−Yi > 0
we consider the signed rank i, and if Xi − Yi < 0 we consider the signed rank
−i.

Denoting by TX the sum of positive ranks, and by TY the sum ov the
negative ones, we obtain the expectations and the variances of these random
variables in the case of homogeneity{

E (TX) = E (−TY ) = n(n+1)
4

V ar (TX) = V ar (−TY ) = n(n+1)(2·n+1)
24

. (8)

We consider now T = TX or T = −TY , and, in the same conditions as for the
Mann—Whitney—Wilcoxon test (n > 8) we can approximate the distribution
of T with a normal one. Therefore

Z =
T − E (T )√
V ar (T )

∼ N (0, 1) , (7’)

and we accept the null hypothesis of homogeneity with the first degree error ε
if Z < Z1−ε.

To implement the Lévy—Itô decomposition we take into account the ap-
pearance of σ2 at the denominator of the skewness S in (2). Therefore, analogue
to the moving average technique to extract the trend from a time series and
the criterion used in [15] of minimum variance of the residues, we consider the
same technique of moving average to extract the Brownian motion, but we use
as criterion the maximum absolute value of the skewness.

9

Galaxy
Text Box
45



3 Application

Example 1 Consider the daily data from January 3 to August 1 on the Bucharest
Stock Exchange indices BET-C and BET-FI2. We except from the above period,
due to the lack of data, the Saturdays, Sundays and other legal/ religious holl-
idays.

The data were downloaded from The Statistical Section of Bucharest Stock
Exchange (see [23]).

The results of the homogeneity tests for ε = 5% in the case of the whole
Lévy processes are in Table 1. We find by all the three tests that the two
financial indices are homogeneous.

Table 1: The results in the case of whole BET-C and BET-FI.
Test Involved statistics S Centil/ involved cdf (S)

Kolmogorov—Smirnov D = 0.14865 K (λ) = 0.92401 < 0.95
Mann—Whitney—Wilcoxon Z = 1.67353 Φ (Z) = 0.9476 < 0.95

Wilcoxon signed ranks Z = 1.69466 Φ (Z) = 0.9499 < 0.95
For the Lévy—Itô decomposition, we extract first the Brownian motion.

The skewness with the maximum absolute value for the log-BET-C case is
0.23993 obtained for q = 43. The drift is γ = 0.00013, and the average am-
plitude of shocks is 0.00741. For the log-BET-FI case we obtain the skewness
with the maximum absolute value 0.19678 obtained for q = 2. The drift is
γ = −0.00014, and the average amplitude of shocks is 0.01049.

The results for shocks for ε = 5% are in Table 2. We find by all the three
tests that the shocks in the two financial indices are homogeneous.

Table 2: The results in the case of shocks in BET-C, and in BET-FI.
Test Involved statistics S Centil/ involved cdf (S)

Kolmogorov—Smirnov D = 0.11486 K (λ) = 0.71703 < 0.95
Mann—Whitney—Wilcoxon Z = 0.75595 Φ (Z) = 0.781 < 0.95

Wilcoxon signed ranks Z = 1.16454 Φ (Z) = 0.9499 < 0.95
We present in the following the graphics for BET-C and BET-FI when we compute

2BET is the main Bucharest Stock Exchange index, and it means Bucharest Exchange
Trading. It contains the most liquide 10 companies.

BET-C means BET-Composite, and it contains all the listed companies, except the finan-
cial ones, i.e banks and societies for mass privatization—SIF=Societate de Investiţii Finan-
ciare=Society for Financial Investment (engl).

BET-FI means BET-FInancial, and it contains the financial institutions excepted by BET-
C.
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the differencesXn−X1 and Yn−Y1 for log-values (fig. 1), respectively when we compute
the ratios Xn

X1
and Yn

Y1
for the initial values (fig. 2).

Fig. 1: BET-C and BET-FI in the case of the differences between logarithms.

Fig. 2: BET-C and BET-FI in the case of the ratios between values.
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4 Conclusions

Because in our application we have considered logarithms for both Bucharest Stock
Exchange indices, and the homogeneity test are nonparametric, we have replaced in
our C++ program for these tests the differences between logarithms the ratio between
initial data. Of course, for Lévy—Itô decomposition we have applied in the end of the
corresponding C + + program the exponential to the parts of the Lévy processes. If
we consider logarithms for no indices, we have to use obviously the differences. The
problem is if we use only one logarithm, and in this case we have indeed to compute
the corresponding logarithm data, and next to test the homogeneity.

In [10, 2] a parametric approach is provided. In [6] there are presented some non-
parametric models, namely the normal variance-mean mixture models, the hyperbolic
models and the NIG model. In the case of the normal variance-mean mixture models
with self-decomposable mixing distribution there are two parts that we need to esti-
mate: the parametric part (µ,Σ), for which standard parametric methods suffice, and
the nonparametric part g for which we need non-parametric estimation techniques.

In our paper the techniques analogues to those for extracting the trend in the time
series (and we mean the moving average method) is used for extracting the drift and
the Brownian motion from the Lévy processes. An open problem is if we can use
techniques analogues to other trend extracting methods, as the exponential smooth
(see [15, 18, 7]), or elimination of the components with high frequences (see [7]).

All the tests used for testing the homogeneity are non-parametric ones. Of course,
for the Brownian motions we can use some parametric tests, like the Tuckey test for
equal expectations, or Hartley test for equal variances. But the goal of this paper is to
provide some non-parametric techniques that can be applied for all parametric models
as the Kou or the Merton model (see [10, 2]).

Open problems are to test the homogeneity for more then two models, and to test
other proprieties for the distributions of X(k+1)∆ − Xk∆, as the independence (the
Wald—Wolfowitz independence test: see [21, 9, 17]).
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