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1. Introduction

Consider the second order neutral differential equation with piecewise constant argument of the form

(1.1)
d

dt
(r(t)

d

dt
(y(t) + p(t)y(t− 1))) + q(t)y([t− 1]) = 0

or

(1.2)
d

dt
(r(t)

d

dt
(y(t) + p(t)y(t− 1))) + q(t)y([t− 1]) = f(t),

where r ∈ C((0,∞),R+); q, p, f ∈ C((0,∞),R\{0}) and [ ] denotes the greatest integer function.
The objective of this work is to study the oscillatory and nonoscillatory behaviour of solutions of (1.1)

and (1.2) for any |p(t)| <∞.
A function y : R→ R is a solution of (1.1)/(1.2), if the following conditions hold:

i): y is continuous on R;
ii): r(t) ddt (y(t) + p(t)y(t− 1)) there exists and it is also continuous on R;

iii): d
dt (r(t)

d
dt (y(t) + p(t)y(t − 1))) exists on R, except possibly at the points t = n, n ∈ Z =

{...,−1, 0, 1, ...}, where one sided second derivative exist;
iv): y satisfies (1.1)/(1.2) on every interval (n, n+ 1), for all n ∈ Z.

As is customary, a solution of (1.1)/ (1.2) is oscillatory if it has arbitrarily large zeros. Otherwise, it
is called nonoscillatory.

If an initial function y0 ∈ C([−1, 0],R)
⋂
C2((−1, 0),R) is given, then the existence and uniqueness of

the solution of (1.1) follows by the method of steps. Let

y(t) = y0(t),−1 ≤ t ≤ 0,
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where y(t) is the unique solution of (1.1). If y(n) = Cn, n = 0, 1, 2, ...., then for t ∈ (n, n+ 1)

(1.3)
d

dt
(r(t)

d

dt
(y(t) + p(t)y(t− 1))) + q(t)Cn−1 = 0.

Integrating (1.3) from n to t, we obtain

(1.4) r(t)
d

dt
(y(t) + p(t)y(t− 1))−Bn + Cn−1

∫ t

n

q(s)ds = 0,

where Bn = [r(t) ddt (y(t) + p(t)y(t− 1))]t=n, n ∈ Z. By using the continuity at t = n+ 1, (1.4) becomes

(1.5) Bn+1 −Bn + Cn−1

∫ n+1

n

q(s)ds = 0.

Integrating (1.4) from n to t,we get

(1.6) y(t) + p(t)y(t− 1)−Bn
∫ t

n

ds

r(s)
+ Cn−1

∫ t

n

1

r(s)

∫ s

n

q(u)duds− y(n)− p(n)y(n− 1) = 0.

Using the continuity at t = n+ 1, (1.6) becomes

(1.7) Cn+1 + pn+1Cn − Cn − pnCn−1 −Bnv(1)n + Cn−1v
(2)
n = 0,

where p(n) = pn, v
(1)
n =

∫ n+1

n
ds
r(s) and v

(2)
n =

∫ n+1

n
1
r(s)

∫ s
n
q(u)duds. Consequently, (1.7) simplifies as

Bn =
1

v
(1)
n

[Cn+1 + (pn+1 − 1)Cn − (pn − v(2)n )Cn−1], n ∈ Z

and hence (1.5) resolves as

Cn+2 + [pn+2 − 1−
v
(1)
n+1

v
(1)
n

]Cn+1 − [pn+1 − v(2)n+1 +
pn+1 − 1

v
(1)
n

v
(1)
n+1]Cn+v

(1)
n+1[

pn − v(2)n
v
(1)
n

+

+

∫ n+1

n

q(s)ds]Cn−1 = 0,

for n ∈ Z. In general the above equation takes the form

(1.8) Cn+3 + FnCn+2 +GnCn+1 +HnCn = 0, n ∈ Z,

where

Fn = pn+3 − 1−
v
(1)
n+2

v
(1)
n+1

, n ∈ Z,

Gn = −pn+2 + v
(2)
n+2 −

pn+2 − 1

v
(1)
n+1

v
(1)
n+2, n ∈ Z

and

Hn = v
(1)
n+2[

pn+1 − v(2)n+1

v
(1)
n+1

+

∫ n+2

n+1

q(s)ds], n ∈ Z.

Similarly for (1.2), we have the following difference equation

(1.9) Cn+3 + FnCn+2 +GnCn+1 +HnCn = Kn, n ∈ Z,

where

Kn = −
v
(1)
n+2

v
(1)
n+1

F
(2)
n+1 + v

(1)
n+2F

(1)
n+1 + F

(2)
n+2,

F (1)
n =

∫ n+1

n

f(s)ds, F (2)
n =

∫ n+1

n

1

r(s)

∫ s

n

f(u)duds.
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If r(t) ≡ 1, p(t) = p and q(t) = q, then (1.8) becomes

(1.10) Cn+3 + (p− 2)Cn+2 + (1− 2p+
q

2
)Cn+1 + (p+

q

2
)Cn = 0,

for n ∈ Z. (1.8) is a resulting equation of (1.1), which is a third order difference equation. Hence to
study (1.1), it is enough to study (1.8).

Differential equations with piecewise constant arguments (DEPCA) describe hybrid dynamical sys-
tems (a combination of continuous and discrete systems) and, therefore contains the properties of both
differential and difference equations. DEPCA may also have applications in certain biomedical models
[1]. In [2], [3] and the references cited therein there have been a lot of results concerning differential
equations with piecewise constant arguments. The purpose of this work is to investigate the oscillatory
and nonoscillatory behaviour of solutions of (1.1)/(1.2) with the help of (1.8) and (1.9). It is known
that there is no such work deal with (1.1)/(1.2). However, the works associated with the characteristic
equations of difference equations are available in the literature (see for e.g [4], [5], [8]-[12]).

2. Preliminaries

In [6] and [7], Parhi and Tripathy have discussed the oscillation and nonoscillation of third order
difference equations of the form

(2.1) yn+3 + αnyn+2 + βnyn+1 + γnyn = 0

and

(2.2) yn+3 + αyn+2 + βyn+1 + γyn = 0,

where α, β, γ ∈ R such that γ 6= 0 and {αn}, {βn}, {γn} are real valued sequences defined on N(n0) =
{n0, n0 + 1, n0 + 2, ....}, n0 ≥ 0.

A nontrivial solution {yn} of (2.1) is said to be oscillatory, if for every positive integer N there exists
n ≥ N such that ynyn+1 ≤ 0. Otherwise, the solution is nonoscillatory. In other words, a solution
{yn} is oscillatory if it is neither eventually positive nor eventually negative. Equation (2.1) is said
to be oscillatory if all its solutions are oscillatory and strongly nonoscillatory if all its solutions are
nonoscillatory. A solution {yn}, n ≥ n0 ≥ 0 of (2.1) has a generalized zero at r > n0 if either yr = 0 or
yr−1yr < 0. In other words, a generalized zero of a solution is either an actual zero or where the solution
changes its sign.

In the following, we state some of the main results of [6] and [7] which will be useful for our next
discussion.

Proposition 2.1. Let γ > 0. If G2 + 4H3 > 0 or G = 0 and H = 0, then (2.2) is oscillatory. If
G2 + 4H3 ≤ 0, then (2.2) admits an oscillatory solution, where

G = γ − αβ

3
+

2α3

27
, H =

1

3
(β − α2

3
).

Corollary 2.2. Let γ > 0. If one of the following cases

(i): 3β > α2;

(ii): β ≤ 0, α ≥ 0, γ − αβ
3 + 2α3

27 −
2

3
√
3 (α

2

3 − β)
3
2 > 0;

(iii): β ≥ 0, α ≤ 0, 3β ≤ α2, γ − αβ
3 + 2α3

27 −
2

3
√
3 (α

2

3 − β)
3
2 > 0;

(iv): 3β = α2, γ = αβ
3 −

2α3

27

holds, then (2.2) is oscillatory.

Remark 2.3. We may notice that γ > 0, 3β = α2 and γ = αβ
3 −

2α3

27 imply that γ > 0 and β > 0. If
α ≥ 0, β ≥ 0 and γ ≥ 0 such that α+ β + γ > 0, then (2.2) is oscillatory.

Theorem 2.4. Let γ < 0 and α > 0. Assume that one of the following conditions
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(i): γ − αβ
3 + 2α3

27 < 2
3
√
3 (α

2

3 − β)
3
2 , β < α2

3 ;

(ii): 0 < γ − αβ
3 + 2α3

27 < 2
3
√
3 (α

2

3 − β)
3
2 , 0 ≤ β < α2

3 ;

(iii): γ − αβ
3 + 2α3

27 = 0, 0 ≤ β < 2α2

9

holds. Then (2.2) admits one nonoscillatory solution.

Theorem 2.5. Let γ < 0, α > 0 and β < α2

3 . If

2

3
√

3
(
α2

3
− β)

3
2 = γ − αβ

3
+

2α3

27
> 0,

then (2.2) admits two nonoscillatory solutions.

Theorem 2.6. Let γ < 0 and α < 0. If one of the following conditions

(i): 0 < αβ
3 − γ −

2α3

27 < 2
3
√
3 (α

2

3 − β)
3
2 , γ

α ≤ β <
α2

3 ;

(ii): 0 < αβ
3 − γ −

2α3

27 = 2
3
√
3 (α

2

3 − β)
3
2 , γ

α ≤ β <
α2

3

holds, then (2.2) is strongly nonoscillatory.

Theorem 2.7. Let γ < 0, α < 0 and 0 < αβ
3 − γ −

2α3

27 < 2
3
√
3 (α

2

3 − β)
3
2 . If β < γ

α <
α2

3 or β < α2

3 ≤
γ
α

holds, then (2.2) admits two oscillatory solutions.

Theorem 2.8. Suppose that γ < 0, α < 0 and

0 <
αβ

3
− γ − 2α3

27
=

2

3
√

3

(
α2

3
− β

) 3
2

hold. If β < γ
α <

α2

3 or β < α2

3 ≤
γ
α holds, then (2.2) admits two oscillatory solutions.

Theorem 2.9. Let γn > 0, βn < 0, and αn < 0, for n ≥ 0. If

αn+1(αn−1γn − γn − βnβn−1) ≥ βn−1(βn+1 − γn+1 − αnαn+1)

and

γn+1βn−1 ≤ αn+1(βnβn−1 − γnαn−1)

holds for large n, then (2.1) is oscillatory.

Theorem 2.10. Suppose that γn > 0, βn > 0, and αn < 0, for n ≥ 0. If inf
n≥0

αn = l < 0, lim inf
n−→∞

βn =

m > 0 and lim inf
n−→∞

γn = s > 0 such that

2m3

27s2
− ml

3s2
+

1

s
− 2

3
√

3

(
m2

3s2
− l

s

) 3
2

> 0,

then (2.1) is oscillatory.

Theorem 2.11. If γn < 0, βn < 0, and αn < 0, for n ≥ 0, then (2.1) admits two oscillatory solutions.

Theorem 2.12. Let γn < 0, βn > 0, and αn > 0, for n ≥ 0. Then (2.1) admits a nonoscillatory
solution.

Theorem 2.13. Let γn ≥ 0, βn ≥ 0, and αn < 0, for n ≥ 0. If lim inf
n−→∞

βn = m ≥ 0 and

lim sup
n−→∞

βn > lim sup
n−→∞

αn−1

(
αn −

m

αn+1

)
hold, then (2.1) is oscillatory.
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Theorem 2.14. Let γn ≥ 0, βn < 0, and αn > 0, for n ≥ 0. If lim inf
n−→∞

γn = s ≥ 0 and

lim sup
n−→∞

γn > lim sup
n−→∞

βn−1
αn−1

(
βn −

sαn
βn+1

)
hold, then (2.1) is oscillatory.

Theorem 2.15. Assume that γn ≥ 0, βn > 0, and αn ≤ 0, for n ≥ 0. If 4m > l2, then (2.1) is
oscillatory, where m = lim inf

n−→∞
βn and l = lim inf

n−→∞
αn.

Theorem 2.16. Suppose that γn ≥ 0, βn > 0, and αn ≤ 0, for n ≥ 0. If l2 > 3m and

s− lm

3
+

2l3

27
− 2

3
√

3

(
l2

3
−m

) 3
2

> 0

hold, then (2.1) is oscillatory, where s = lim inf
n−→∞

γn, m = lim inf
n−→∞

βn and l = lim inf
n−→∞

αn.

Theorem 2.17. Let γn > 0, βn < 0, and αn > 0, for n ≥ 0. Assume that l, m, and s hold as in
Theorem 2.16. If

s− lm

3
+

2l3

27
− 2

3
√

3

(
l2

3
−m

) 3
2

> 0,

then (2.1) is oscillatory.

Theorem 2.18. If αn ≥ 0, βn ≥ 0, and γn ≥ 0, for n ≥ 0 such that αn + βn + γn > 0, than (2.1) is
oscillatory.

Theorem 2.19. If γn ≥ 0, βn ≥ 0, αn < 0, and

γn+1

αn+1αn−1
>
βn+1

αn+1
+

βn
αn−1

− αn

hold for large n, then (2.1) is oscillatory.

Theorem 2.20. If γn ≥ 0, βn < 0, αn ≥ 0 and

βn >
αnγn+1

βn+1
+
γnαn−1
βn−1

hold for large n, then (2.1) is oscillatory.

Theorem 2.21. Let γn ≥ 0, −1 ≤ βn < 0 and αn ≥ 1. Let fn = gn+2 − gn+1, where for each n ≥ 1
there exists m > n such that gngm < 0. If

∞∑
n=1

[g+n+3 + (αn − 1)g+n+2 + (1 + βn)g+n+1 + γng
+
n ] =∞

and
∞∑
n=1

[g−n+3 + (αn − 1)g−n+2 + (1 + βn)g−n+1 + γng
−
n ] =∞,

then every solution of the equation

(2.3) yn+3 + αnyn+2 + βnyn+1 + γnyn = fn

oscillates, where fn is a sequence of real numbers, g+n = max{gn, 0} and g−n = max{0,−gn}.

Theorem 2.22. Let γn ≥ 0, βn ≥ 0 and −1 ≤ αn < 0. Let fn = gn+3 − gn+2, where for each n ≥ 1
there exists m > n such that gngm < 0. If

∞∑
n=1

[(1 + αn)g+n+2 + βng
+
n+1 + γng

+
n ] =∞
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and
∞∑
n=1

[(1 + αn)g−n+2 + βng
−
n+1 + γng

−
n ] =∞,

then (2.3) is oscillatory.

Theorem 2.23. Let −1 ≤ γn < 0, βn ≥ 1 and αn ≥ 0. Let fn = gn+1 − gn, where for each n ≥ 1, there
exists m > n such that gngm < 0. If

∞∑
n=1

[g+n+3 + αng
+
n+2 + (βn − 1)g+n+1 + (1 + γn)g+n ] =∞

and
∞∑
n=1

[g−n+3 + αng
−
n+2 + (βn − 1)g−n+1 + (1 + γn)g−n ] =∞,

then (2.3) is oscillatory.

Theorem 2.24. If
∞∑
n=1

n[|αn + 2|+ |βn − 1|+ |γn|] <∞,

then (2.1) admits a bounded nonoscillatory solution.

3. Main Results

In the section, we investigate the oscillation and nonoscillation of (1.1) through (2.1) and (2.2). For
r(t) ≡ 1, p(t) = p and q(t) = q, (1.1) reduces to

(3.1) (y(t) + py(t− 1))′′ + qy([t− 1]) = 0

which then converts to (1.10) in the interval (n, n+ 1), for n ∈ N. We may note that a solution {Cn} of
(1.10) is said to be oscillatory if the terms Cn of the sequence {Cn} are not eventually of a fixed sign.
Otherwise, the solution {Cn} is called nonoscillatory. It is easy to see that the characteristic equation of
(1.10) is given by

(3.2) λ3 + (p− 2)λ2 + (1− 2p+
q

2
)λ+ (p+

q

2
) = 0.

It is easy to verify the following result;

Lemma 3.1. Every solution of (1.10) is oscillatory if and only if (3.2) has no positive real roots.

Proposition 3.2. Let 2p+ q > 0. Then (1.10) is oscillatory if and only if G2 + 4H3 > 0 or G = 0 and
H = 0, where

G =
1

54
(4p3 + 12p2 + 12p+ 45q − 9pq + 4), H =

1

18
(3q − 2p2 − 4p− 2).

Proof The proof follows from Proposition 2.1.

Corollary 3.3. Every solution of (1.10) is oscillatory if and only if one of the following sets of conditions
is satisfied:

(i): 2p+ q > 0, 3q > 2p2 + 4p+ 2;

(ii): 2p+ q > 0, 4p ≥ max{8, 2 + q}, 4p3 + 12p2 + 12p+ 45q− 9pq+ 4−
√

2(2p2 + 4p+ 2− 3q)
3
2 > 0;

(iii): 2p+ q > 0, 4p ≤ min{8, 2 + q}, p2 + 5p+ 1 ≥ 0, 4p3 + 12p2 + 12p+ 45q− 9pq+ 4−
√

2(2p2 +

4p+ 2− 3q)
3
2 > 0;

(iv): 2p2 + 4p+ 2 = 3q, p3 − 15p2 − 33p− 17 = 0.
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Proof By Lemma 3.1, (1.10) is oscillatory if and only if (3.2) has no positive real roots. Upon the
choice of negative and complex roots, we have the four possibilities due to Cor. 2.2. Hence, the corollary
is proved.

Corollary 3.4. Assume that Cor.3.3 (iv) holds. If p ≥ 2 and q ≥ 6, then (1.10) is oscillatory.

Proof When Cor.3.3 (iv) holds, and because of Remark 2.3, it follows that

p− 2 ≥ 0, 1− 2p+
q

2
≥ 0, p+

q

2
≥ 0,

that is, if and only if

p ≥ 2, q ≥ 6, p+
q

2
≥ 5,

and also,

p− 2 + 1− 2p+
q

2
+ p+

q

2
≥ 5.

Hence by Remark 2.3, (1.10) is oscillatory.

Proposition 3.5. If y(n) is an oscillatory solution of (1.10)/ (1.8)/ (1.9), then y(t) is an oscillatory
solution of (1.1)/ (1.2).

Proof Let {Cn} be an oscillatory solution of (1.10). Then {Cn} has either generalized zeros or zeros,
for n ∈ N. Since Cn = y(n), n = 0, 1, 2, 3.... and because of continuity of the solution, then y(t) is an
oscillatory solution of (3.1), where we consider the infinite number of zeros associated with y(n). Hence,
the proposition is proved.

Theorem 3.6. Assume that Proposition 3.2 holds. Then (3.1) admits three oscillatory solutions.

Proof The proof of the theorem follows from Lemma 3.1 and Proposition 3.5. Hence the details are
omitted.

Theorem 3.7. Assume that any one of four sets of conditions given in Corollary 3.3 or conditions of
Corollary 3.4 holds. Then (3.1) admits three oscillatory solutions.

Proof Due to Corollary 3.3, (1.10) is oscillatory upon the choice of negative and complex roots of (3.2)
and hence by Proposition 3.5, (3.1) admits three oscillatory solutions. A similar conclusion by Corollary
3.4.

Proposition 3.8. If y(t) is a nonoscillatory solution of (3.1), then y(n) is a nonoscillatoty solution of
(1.10).

Proof Let y(t) be a nonoscillatory solution of (3.1) on [T,∞), that is, y(t) > 0 or < 0, for t ≥ T .
Then using the same type of arguments as in (1.4) to (1.8), we find that C(n) = y(n) is a solution of
(1.10), and because of continuity y(n) > 0 or < 0. This completes the proof of the proposition.

Proposition 3.9. Let y(t) be a nontrivial solution of (3.1) and y(n) be a nontrivial solution of (1.10).
If y(n) is nonoscillatory, then y(t) is either nonoscillatory or bounded nonoscillatory.

Proof Let y(t) be a nontrivial solution of (3.1) on [Ny,∞), where Ny ≥ 1 is an integer. Suppose
there exists n1 > Ny such that y(n) > 0, for n ≥ n1. Hence y(t) > 0 for t ∈ [n1, n1 + 1). Let y(n1) > 0.
Setting for z(t) = y(t) + py(t− 1), it follows from (3.1) that

z′′(t) = −qy(n1) ≤ 0, t ∈ [n1 + 1, n1 + 2),

where we consider case p ≥ 0 and q < 0. Thus z′(t) is nonincreasing on [n1 + 1, n1 + 2). If z′(t) < 0,for
t ∈ [n1 + 1, n1 + 2), then z(t) < z(n1 + 1). Because of continuity z(n1 + 2) ≤ z(n1 + 1) implies that z(t) is
nonincreasing on [n1 + 1, n1 + 2). There for z(t) is nonoscillatory on [n1 + 1, n1 + 2) and hence z(t) > 0
or < 0. Ultimately, because of continuity z(n1 + 1) > 0 or < 0 if and only if

y(n1 + 1) + py(n1) > 0 or y(n1 + 1) + py(n1) < 0,
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that is, if and only if y(n1 + 1) > 0. As a result, z(n1 + 2) > 0 if and only if y(n1 + 2) > 0 and y(t) is
nonoscillatory for t ∈ [n1 + 1, n1 + 2).

Next, we suppose that z′(t) > 0, for t ∈ [n1 + 1, n1 + 2). Then z(t) is nondecreasing and using the
preceding argument, we can show that y(t) is nonoscillatory on [n1 +1, n1 +2). Continuing in this way, it
follows that y(t) is nonoscillatory on the intervals of the form [n1 +2, n1 +3), [n1 +3, n1 +4),... Therefore,
y(t) is nonoscillatory on [Ny,∞). The argument is similar when y(n1) < 0.

Assume that p < 0 and q > 0. Using the same type of reasoning as above, we have that z(t) > 0 or
< 0, for t ∈ [n1 + 1, n1 + 2). If z(t) > 0, for t ∈ [n1 + 1, n1 + 2), then because of continuity z(n1 + 1) > 0
if and only if y(n1 + 1) + py(n1) > 0, that is, if and only if y(n1 + 1) > −py(n1) > 0. Consequently,
z(n1 + 2) > 0 implies that y(n1 + 2) > 0. Hance, y(t) is nonoscillatory on [n1 + 1, n1 + 2). If z(t) < 0,
for t ∈ [n1 + 1, n1 + 2), then because of continuity z(n1 + 1) < 0 and z(n1 + 2) < 0. As a result,
y(n1 + 1) < −py(n1) < ∞ and y(n1 + 2) < −py(n1+1) < ∞. So y(t) is nonoscillatory or bounded on
[n1 + 1, n1 + 2). We can use the above fact for intervals of the form [n1 + 2, n1 + 3), [n1 + 3, n1 + 4),...
and to conclude that y(t) is nonoscillatory or bounded on [Ny,∞). The following two cases

(i)p ≥ 0, q < 0; (ii)p < 0, q < 0

can similarly be dealt with. This completes the proof of the proposition.

Theorem 3.10. Let 2p+ q < 0 and p > 2. Assume that one of the following three sets of conditions

(i): 1
2 (2p+q)− 1

6 (p−2)(2−4p+q)+ 2
27 (p−2)3 < 2

3
√
3 [ 13 (p−2)2− 1

2
√
2 (2−4p+q)

3
2 ], 3q < 2p2+4p+2;

(ii): 0 < 1
2 (2p+ q)− 1

6 (p− 2)(2− 4p+ q) + 2
27 (p− 2)3 < 2

3
√
3 [ 13 (p− 2)2 − 1

2
√
2 (2− 4p+ q)

3
2 ], 0 ≤

3(2− 4p+ q) < 2(p− 2)2;
(iii): 1

2 (2p+ q)− 1
6 (p− 2)(2− 4p+ q) + 2

27 (p− 2)3 = 0, 9(2− 4p+ q) < 4(p− 2)2,

holds. Then (3.1) admits a solution which is either nonoscillatory or bounded nonoscillatory.

Proof (1.10) admits a nonoscillatory if and only if (3.2) has a positive root, that is, if and only if
p + q

2 < 0. Consequently, (1.10) has a nonoscillatory solution due to Theorem 2.4. Hence y(t) is either
nonoscillatory or bounded by Proposition 3.9.

Theorem 3.11. Let 2p+ q < 0, p > 2 and 3q < 2p2 + 4p+ 2. If

0 <
1

2
(2p+ q)− 1

6
(p− 2)(2− 4p+ q) +

2

27
(p− 2)3 =

2

3
√

3
[
1

3
(p− 2)2 − 1

2
√

2
(2− 4p+ q)

3
2 ]

holds, then (3.1) admits two nonoscillatory solutions.

Proof By Theorem 2.5, it follows that (1.10) admits two nonoscillatory solutions if and only if (3.2)
has two positive roots. Hence, (3.1) has two nonoscillatory solutions due to Proposition 3.9.

Theorem 3.12. Let 2p+ q < 0 and p < 2. Assume that one of the following set of conditions

(i) (2p2 + 4p− 3q + 2)
3
2 ≥ − 1

3
√

2
(4p3 + 12p2 + 12p+ 45q − 9pq + 4) > 0,

(ii) 6p+ 3q ≥ 3(p− 2)(2− 4p+ q) > 2(p− 2)3

is true. Then (3.1) is strongly nonoscillatory.

Proof By Theorem 2.6, it follows that (1.8) admits three nonoscillatory solutions if and only if (3.2)
has three positive roots. Consequently, (3.1) is strongly nonoscillatory due to Proposition 3.9.

Theorem 3.13. Let 2p+ q < 0 and p < 2. Assume that

(2p2 + 4p− 3q + 2)
3
2 ≥ − 1

3
√

2
(4p3 + 12p2 + 12p+ 45q − 9pq + 4) > 0,

holds. If 3(p− 2)(2− 4p+ q) > 6p+ 3q > 2(p− 2)3 or 3(p− 2)(2− 4p+ q) > 2(p− 2)3 ≥ 6p+ 3q holds
true, then (3.1) admits two oscillatory solutions.
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Proof By Theorems 2.7 and 2.8, it follows that (1.10) admits two oscillatory solutions if and only if
(3.2) has two imaginary roots. Hence (3.1) has two oscillatory solutions due to Proposition 3.5.

Proposition 3.14. Let |p(t)| < ∞, t ∈ [0,∞). Let y(t) be a nontrivial solution of (1.1) and y(n) be
a nontrivial solution of (1.8). If y(n) is nonoscillatory, then y(t) is either nonoscillatory or bounded
nonoscillatory.

Proof The proof of the proposition can be followed from Proposition 3.9. Hence the details are
omitted.

Theorem 3.15. Assume that Fn < 0, Gn < 0 and Hn > 0, for all n ≥ 0. If

Fn+1(Fn−1Hn −Hn −GnGn−1) ≥ Gn−1(Gn+1 −Hn+1 − FnFn+1)

and

Hn+1Gn−1 ≤ Fn+1(GnGn−1 −HnFn−1)

hold for large n, then (1.1) admits three oscillatory solutions.

Proof Using the conditions, it follows that (1.8) is oscillatory due to Theorem 2.9. Hence by Propo-
sition 3.5, (1.1) admits three oscillatory solutions.

Theorem 3.16. Suppose that Fn < 0, Gn > 0 and Hn > 0, for all n ≥ 0. If infn≥0 Fn = α <
0, lim inf

n−→∞
Gn = β > 0 and lim inf

n−→∞
Hn = γ > 0 such that

2β3

27γ3
− αβ

3γ2
+

1

γ
− 2

3
√

3

(
β2

3γ2
− α

γ

) 3
2

> 0,

then (1.1) admits three oscillatory solutions.

Proof The proof of the theorem follows from the proof of the Theorem 2.10. and Proposition 3.5.
Hence the details are omitted.

Theorem 3.17. Let Fn < 0, Gn ≥ 0 and Hn ≥ 0, for all n ≥ 0. If

lim inf
n−→∞

Gn = β ≥ 0

and

lim sup
n−→∞

Gn > lim sup
n−→∞

Fn−1

(
Fn −

β

Fn+1

)
holds for large n, then (1.1) admits three oscillatory solutions.

Proof The proof of the theorem can be followed from Theorem 2.13 and Proposition 3.5. Hence the
details are omitted.

Theorem 3.18. Let Fn > 0, Gn < 0 and Hn ≥ 0, for all n ≥ 0. If

lim inf
n−→∞

Hn = γ ≥ 0

and

lim sup
n−→∞

Hn > lim sup
n−→∞

Gn−1
Fn−1

(
Gn −

γFn
Gn+1

)
,

holds for large n, then (1.1) admits three oscillatory solutions.

Proof The proof of the theorem follows from the proof of Theorem 2.14 and Proposition 3.5. Hence
the details are omitted.

Theorem 3.19. Assume that Fn ≤ 0, Gn > 0 and Hn ≥ 0, for all n ≥ 0. Let β = lim inf
n−→∞

Gn and

α = lim inf
n−→∞

Fn be such that 4β > α2. Then (1.1) admits three oscillatory solutions.
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Proof The proof of the theorem can be followed from Theorem 2.15 and Proposition 3.5. This
completes the proof of the theorem.

Theorem 3.20. Suppose that Fn ≤ 0, Gn > 0 and Hn ≥ 0, for all n ≥ 0. Let α = lim inf
n−→∞

Fn, β =

lim inf
n−→∞

Gn and γ = lim inf
n−→∞

Hn be such that α2 > 3β and

γ − αβ

3
+

2α3

27
− 2

3
√

3

(
α2

3
− β

) 3
2

> 0

holds, then (1.1) admits three oscillatory solutions.

Proof The proof of the theorem follows from the proof of Theorem 2.16 and Proposition 3.5. Hence,
the theorem is proved.

Theorem 3.21. Let Fn > 0, Gn < 0 and Hn > 0, for all n ≥ 0. If all conditions of Theorem 3.21 hold,
then (1.1) admits three oscillatory solutions.

Proof The proof of the theorem follows from Theorem 2.17 and Proposition 3.5. Hence the proof of
the theorem is complete.

Theorem 3.22. Assume that any one of the following conditions:

(i): Fn ≥ 0, Gn < 0 and Hn ≥ 0, for all n ≥ 0 such that

Gn >
FnHn+1

Gn+1
+
HnFn−1
Gn−1

, for large n;

(ii): Fn < 0, Gn ≥ 0 and Hn ≥ 0, for all n ≥ 0 such that

Hn+1

Fn+1Fn−1
>
Gn+1

Fn+1
+

Gn
Fn−1

− Fn, for large n

holds, then (1.1) admits three oscillatory solutions.

Proof The proof of the theorem can be followed from Theorems 2.19, 2.20 and Proposition 3.5. Hence,
the proof of the theorem is complete.

Theorem 3.23. If Fn ≥ 0, Gn ≥ 0 and Hn ≥ 0, for all n ≥ 0 such that Fn +Gn +Hn > 0, (1.1) admits
three oscillatory solutions.

Proof The proof of the theorem can be followed from Theorem 2.18, and Proposition 3.5. Thus the
proof of the theorem is complete.

Theorem 3.24. If Fn < 0, Gn < 0 and Hn < 0, for all n ≥ 0. Then (1.1) admits two oscillatory
solutions.

Proof The proof of the theorem follows from Theorem 2.11 and Proposition 3.5. Therefore, the
theorem is proved.

Theorem 3.25. Let Hn ≥ 0, −1 ≤ Gn < 0 and Fn ≥ 1. Let Kn = gn+2 − gn+1, where for each n ≥ 1
there exists m > n such that gngm < 0. If

∞∑
n=1

[g+n+3 + (Fn − 1)g+n+2 + (1 +Gn)g+n+1 +Hng
+
n ] =∞

and
∞∑
n=1

[g−n+3 + (Fn − 1)g−n+2 + (1 +Gn)g−n+1 +Hng
−
n ] =∞,

then (1.2) admits three oscillatory solutions.
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Proof Using the given conditions, it follows from Theorem 2.21 that (1.9) is oscillatory. Hence, by
Proposition 3.5, (1.2) admits three oscillatory solutions. Thus the proof of the theorem is complete.

Theorem 3.26. Let Hn ≥ 0, Gn ≥ 0 and −1 ≤ Fn < 0. Let Kn = gn+3 − gn+2, where for each n ≥ 1
there exists m > n such that gngm < 0. If

∞∑
n=1

[(1 + Fn)g+n+2 +Gng
+
n+1 +Hng

+
n ] =∞

and
∞∑
n=1

[(1 + Fn)g−n+2 + (1 +Gn)g−n+1 +Hng
−
n ] =∞,

then (1.2) admits three oscillatory solutions.

Proof Using the given conditions, it follows from Theorem 2.22 that (1.9) is oscillatory. Therefore,
by Proposition 3.5, (1.2) admits three oscillatory solutions. This completes the proof of the theorem.

Theorem 3.27. Let −1 ≤ Hn < 0, Gn ≥ 1 and Fn ≥ 0. Let Kn = gn+1 − gn, where for each n ≥ 1
there exists m > n such that gngm < 0. If

∞∑
n=1

[g+n+3 + Fng
+
n+2 + (Gn − 1)g+n+1 + (1 +Hn)g+n ] =∞

and
∞∑
n=1

[g−n+3 + Fng
−
n+2 + (Gn − 1)g−n+1 + (1 +Hn)g−n ] =∞,

then (1.2) admits three oscillatory solutions.

Proof Because of given conditions, (1.9) is oscillatory due to Theorem 2.23. Hence by Proposition
3.5, (1.2) admits three oscillatory solutions. So the proof of the theorem is complete.

Theorem 3.28. Let Fn > 0, Gn > 0 and Hn < 0, for all n ≥ 0. Then (1.1) admits a nontrivial solution,
which is either nonoscillatory or bounded nonoscillatory.

Proof The proof of the theorem follows from Theorem 2.12 and Proposition 3.14. Hence the proof of
the theorem is complete.

Theorem 3.29. If
∞∑
n=1

n[|Fn + 2|+ |Gn − 1|+ |Hn|] <∞,

then (1.1) has a bounded nonoscillatory solution.

Proof Due to Theorem 2.24, (1.8) admits a bounded nonoscillatory solution. Hence by Proposition
3.14, (1.1) has a bounded nonoscillatory solution. This completes the proof of the theorem.

4. Discussion and Examples

The study of (1.1)/ (1.2) depends on the behaviour of solutions of (1.8)/ (1.9). Hence, we are able to
predict the oscillatory and nonoscillatory characters of (1.1)/ (1.2) subject to its corresponding discrete
equations (1.8)/ (1.9) due to Propositions 3.5, 3.9 and 3.14. Because the solutions of DEPCA are hybrid
in nature, then it is important to know the number of linearly independent solutions of (3.1) but, we
could partially succeed to keep our view subject to the linearly independent solutions of (1.10) only. We
note that it is very difficult to predict the linearly independent solutions of any kind of neutral delay
differential equations without piecewise constant arguments. In case of (1.1) and (1.2), we have discussed
the existence of oscillatory and nonoscillatory solutions with respect to the difference equations (1.8) and
(1.9) respectively. We conclude this section with the following examples to illustrate our main results:
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Example 4.1. Consider

(y(t) + y(t− 1))′′ + 5y([t− 1]) = 0, t > 1.(4.1)

The corresponding difference equation of (4.1) is given by

Cn+3 − Cn+2 +
3

2
Cn+1 +

7

2
Cn = 0.(4.2)

Clearly, G > 0 and H > 0. Hence by Proposition 3.2, the solution space of (4.2) becomes

{{(−1)n}, {(3.5)
n
2 cosnθ}, {(3.5)

n
2 sinnθ}},

where θ = tan−1(
√
10
2 ). Therefore, Theorem 3.6 implies that (4.1) admits three oscillatory solutions, viz.,

{{(−1)[t]}, {(3.5)
[t]
2 cos[t]θ}, {(3.5)

[t]
2 sin[t]θ}}.

Example 4.2. Consider

(y(t)− 4y(t− 1))′′ + 2y([t− 1]) = 0, t > 1.(4.3)

The corresponding difference equation of (4.3) is given by

Cn+3 − 6Cn+2 + 10Cn+1 − 3Cn = 0.(4.4)

By Theorem 3.2, (4.4) is strongly nonoscillatory and the solution space of (4.4) becomes{
{3n},

{(
3 +
√

5

2

)n}
,

{(
3−
√

5

2

)n}}
.

Therefore, Proposition 3.9 implies that (4.3) admits three nonoscillatory solutions, viz.,3[t],

(
3 +
√

5

2

)[t]

,

(
3−
√

5

2

)[t]
 .

Example 4.3. Consider

(e−t(y(t) + e−ty(t− 1))′)′ + e−ty([t− 1]) = 0, t > 1.(4.5)

The corresponding difference equation of (4.5) is given by (1.8), where Fn = (e−(n+3) − 1 − e), Gn =
(2e − 2 − e−(n+2) − e−(n+1)) and Hn = (1 + e−(n+2)), and it is easy to verify that Fn < 0, Gn > 0 and
Hn > 0, for n ∈ Z+. Clearly, limn→∞Hn = 1, limn→∞Gn = 2e− 2 and infn>1 Fn = −1− e. It is easy to
see that all conditions of Theorem 3.16 are satisfied and hence (4.5) admits three oscillatory solutions.

Acknowledgement: The author is thankful to the referee for his helpful suggestions and necessary
corrections in the completion of this paper.
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