OSCILLATION THEOREMS FOR SECOND ORDER NONLINEAR NEUTRAL TYPE DIFFERENCE EQUATIONS WITH POSITIVE AND NEGATIVE COEFFICIENTS

S.SELVARANGAM ${ }^{1}$, M.MADHAN ${ }^{2}$ AND E.THANDAPANI ${ }^{3}$

Abstract

In this paper, the authors using two inequalities and Ricatti type transformation obtained some new oscillation results for the second order nonlinear neutral type difference equations of the form

$$
\Delta\left(a_{n} \Delta\left(x_{n}+c_{n} x_{n-k}\right)\right)+p_{n} f\left(x_{n+1-l}\right)-q_{n} g\left(x_{n+1-m}\right)=0,
$$

and

$$
\Delta\left(a_{n} \Delta\left(x_{n}-c_{n} x_{n-k}\right)\right)+p_{n} f\left(x_{n+1-l}\right)-q_{n} g\left(x_{n+1-m}\right)=0 .
$$

The obtained results improve, extend and generalize some of the known results. Further examples are provided to illustrate the importance of the main results.

Mathematics Subject Classification (2010): 39A10, 39A21.
Key words: Oscillation, neutral, difference equation, positive and negative coefficients.

Article history:

Received 20 August 2016
Received in revised form 17 January 2017
Accepted 24 January 2017

1. Introduction

Neutral type difference and differential equations arise in many areas of applied mathematics, such as population dynamics [5], bifurcation analysis [2], circuit theory [3], dynamic behavior of delayed network systems [20], and so on. Hence these equations have attracted a great interest during last few decades. Therefore, in this paper we study the oscillation of solution of the neutral type difference equations of the form

$$
\begin{equation*}
\Delta\left(a_{n} \Delta\left(x_{n}+c_{n} x_{n-k}\right)\right)+p_{n} f\left(x_{n+1-l}\right)-q_{n} g\left(x_{n+1-m}\right)=0 \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta\left(a_{n} \Delta\left(x_{n}-c_{n} x_{n-k}\right)\right)+p_{n} f\left(x_{n+1-l}\right)-q_{n} g\left(x_{n+1-m}\right)=0 \tag{1.2}
\end{equation*}
$$

where $n \in \mathbb{N}\left(n_{0}\right)=\left\{n_{0}, n_{0}+1, \ldots\right\}, n_{0}$ is a nonnegative integer k, l, m are nonnegative integers, $\left\{a_{n}\right\},\left\{c_{n}\right\},\left\{p_{n}\right\},\left\{q_{n}\right\}$ are real sequences, f and $g: \mathbb{R} \rightarrow \mathbb{R}$ are continuous and nondecreasing functions with $u f(u)>0$, and $u g(u)>0$ for $u \neq 0$.

Let $\theta=\max \{k, l, m\}$. By a solution of equation $(1.1)((1.2))$, we mean a real sequence $\left\{x_{n}\right\}$ which is defined for all $n \geq n_{0}-\theta$, and satisfies equation (1.1)((1.2)) for all $n \in \mathbb{N}\left(n_{0}\right)$. It is well known that equation $(1.1)((1.2))$ has a unique solution $\left\{x_{n}\right\}$ if an initial sequence $\left\{x_{0}(n)\right\}$ is given to hold for $x_{n}=x_{0}(n), n=n_{0}-\theta, n_{0}-\theta+1, \ldots, n_{0}$. A nontrivial solution $\left\{x_{n}\right\}$ of equation (1.1)((1.2)) is said to be oscillatory if it is neither eventually positive nor eventually negative, and it is nonoscillatory otherwise.

In $[4,6,7,10,11,8,9,18,17,19]$, the authors obtained some sufficient conditions for the existence of nonoscillatory solutions and oscillation of all solutions of equations (1.1) and (1.2) when $f(u)=g(u)=u$, and $a_{n} \equiv 1$. In [15], the authors established some sufficient conditions for the oscillation of equations
(1.1) and (1.2) with $f \equiv g$, and $\frac{f(u)}{u} \geq M_{1}>0$ for $u \neq 0$, and in [13], the authors discussed oscillatory behavior of solutions of equations (1.1) and (1.2) with $a_{n} \equiv 1$.

Motivated by these results, in this paper we established sufficient conditions for the oscillation of all solutions of equations (1.1) and (1.2) without these types of restrictions. Our results extend and generalize some of the results in $[1,4,7,8,9,10,11,13,15,17]$, and the references cited therein.

In Section 2, we present our main results for equations (1.1) and (1.2), and in Section 3, we present some examples to illustrate our theorems.

2. Oscillation Results

In this section, we obtain some oscillation criteria for equations (1.1) and (1.2), subject to the following conditions:
$\left(H_{1}\right)\left\{a_{n}\right\}$ is a positive real sequence such that $\sum_{n=n_{0}}^{\infty} \frac{1}{a_{n}}=\infty$;
$\left(H_{2}\right)\left\{c_{n}\right\},\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ are nonnegative real sequences;
$\left(H_{3}\right)$ there exists β, ratio of odd positive integers, and a positive constant M_{1} such that $\frac{f(u)}{u^{\beta}} \geq M_{1}$ for $u \neq 0$;
$\left(H_{4}\right)$ there are positive constants M and M_{2} such that $0 \leq \frac{g(u)}{u} \leq M_{2}$, and $0<\frac{g(u)}{f(u)} \leq M$ for $u \neq 0$;
$\left(H_{5}\right)$ there is a constant M_{3} such that $p_{n}-M q_{n-m+l} \geq M_{3}>0$ for all $n \in \mathbb{N}\left(n_{0}\right)$.
Lemma 2.1. If b_{1} and b_{2} are nonnegative, then $\left(b_{1}+b_{2}\right)^{\beta} \leq 2^{\beta-1}\left(b_{1}^{\beta}+b_{2}^{\beta}\right)$ for $\beta \geq 1$, and $\left(b_{1}+b_{2}\right)^{\beta} \leq$ $\left(b_{1}^{\beta}+b_{2}^{\beta}\right)$ for $0<\beta<1$.
Proof. The proof can be found in [16].
Theorem 2.2. Let assumptions $\left(H_{1}\right)-\left(H_{5}\right)$ hold. Further assume that there are constants α_{1} and α_{2} such that $0 \leq \alpha_{1} \leq c_{n} \leq \alpha_{2}$ for all $n \in \mathbb{N}\left(n_{0}\right)$. If $l \geq m+1 \geq k$, and

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} \frac{1}{a_{n}}\left(\sum_{s=n-l+m}^{n-1} q_{s}\right)<\infty \tag{2.1}
\end{equation*}
$$

then every solution of equation (1.1) is oscillatory.
Proof. Assume that $\left\{x_{n}\right\}$ is a nonoscillatory solution of equation (1.1). Without loss of generality, we may assume that $x_{n}>0$ and $x_{n-\theta}>0$ for all $n \geq n_{1} \in \mathbb{N}\left(n_{0}\right)$. The proof for the case $x_{n}<0$ is similar and is omitted. Choose an integer $N>n_{1}$ so that

$$
\begin{equation*}
\sum_{n=N}^{\infty} \frac{1}{a_{n}}\left(\sum_{s=n-l+m}^{n-1} q_{s}\right)<\frac{\alpha_{1}}{M_{2}} . \tag{2.2}
\end{equation*}
$$

Set

$$
\begin{equation*}
z_{n}=x_{n}+c_{n} x_{n-k}-\sum_{s=N}^{n-1} \frac{1}{a_{s}} \sum_{t=s-l+m}^{s-1} q_{t} g\left(x_{t+1-m}\right) \tag{2.3}
\end{equation*}
$$

for all $n \geq N$. Then from equation (1.1) and conditions $\left(H_{3}\right)$ and $\left(H_{4}\right)$, we have

$$
\begin{align*}
\Delta\left(a_{n} \Delta z_{n}\right) & =\Delta\left(a_{n} \Delta\left(x_{n}+c_{n} x_{n-k}\right)\right)-p_{n} f\left(x_{n+1-m}\right)+q_{n-l+m} g\left(x_{n+1-l}\right) \\
& =-p_{n} f\left(x_{n+1-l}\right)+q_{n-l+m} g\left(x_{n+1-l}\right) \\
& \leq-M_{1}\left[p_{n}-M q_{n-l+m}\right] x_{n+1-l}^{\beta} \\
& \leq-M_{3} M_{1} x_{n+1-l}^{\beta} \leq 0 \tag{2.4}
\end{align*}
$$

for all $n \geq N$. Hence $\left\{a_{n} \Delta z_{n}\right\}$ is eventually nondecreasing. So either $\Delta z_{n}<0$ or $\Delta z_{n} \geq 0$ for all $n \geq N_{1}$ for some integer $N_{1} \geq N$.

If $\Delta z_{n}<0$ for all $n \geq N_{1}$, then (2.4) and $\left(H_{1}\right)$ imply $\lim _{n \rightarrow \infty} z_{n}=-\infty$. We claim that $\left\{x_{n}\right\}$ is bounded from above. If this is not the case, then there is an integer $N_{2} \geq N_{1}+k$ such that

$$
\begin{equation*}
z_{N_{2}}<0, \text { and } \max _{N_{1} \leq n \leq N_{2}} x_{n}=x_{N_{2}} \tag{2.5}
\end{equation*}
$$

Then, we have

$$
\begin{aligned}
0>z_{N_{2}} & =x_{N_{2}}+c_{N_{2}} x_{N_{2}-k}-\sum_{s=N}^{N_{2}-1} \frac{1}{a_{s}} \sum_{t=s-l+m}^{s-1} q_{t} g\left(x_{t+1-m}\right) \\
& \geq \alpha_{1} x_{N_{2}-k}-M_{2} x_{N_{2}-k} \sum_{s=N}^{N_{2}-1} \frac{1}{a_{s}} \sum_{t=s-l+m}^{s-1} q_{t} \\
& \geq\left[\alpha_{1}-M_{2} \sum_{n=N}^{\infty} \frac{1}{a_{n}} \sum_{t=n-l+m}^{n-1} q_{s}\right] x_{N_{2}-k} \geq 0 .
\end{aligned}
$$

This contradiction shows that $\left\{x_{n}\right\}$ must be bounded so there exists a constant $L>0$ such that $x_{n} \leq L$ for all $n \geq N_{1}$. It follows from (2.3) that

$$
z_{n} \geq-L M_{2} \sum_{s=N_{1}}^{n-1} \frac{1}{a_{s}} \sum_{t=s-l+m}^{s-1} q_{t} \geq-L \alpha_{1}>-\infty
$$

which contradicts the fact that $\lim _{n \rightarrow \infty} z_{n}=-\infty$. Therefore, we have $\Delta z_{n} \geq 0$ for all $n \geq N_{1}$. Now, summing (2.3) from N_{1} to $n-1$, we obtain

$$
\infty>a_{N_{1}} \Delta z_{N_{1}} \geq-a_{n+1} \Delta z_{n+1}+a_{N} \Delta z_{N} \geq M_{3} M_{1} \sum_{s=N_{1}}^{n-1} x_{s+1-l}^{\beta}
$$

and therefore $\left\{x_{n}^{\beta}\right\}$ is summable for $n \in \mathbb{N}\left(N_{1}\right)$. Then, by Lemma 2.1, we have

$$
y_{n}^{\beta}=\left(x_{n}+c_{n} x_{n-k}\right)^{\beta} \leq 2^{\beta-1}\left(x_{n}^{\beta}+\alpha_{2}^{\beta} x_{n-k}^{\beta}\right) \text { for } \beta \geq 1,
$$

and

$$
y_{n}^{\beta}=\left(x_{n}+c_{n} x_{n-k}\right)^{\beta} \leq\left(x_{n}^{\beta}+\alpha_{2}^{\beta} x_{n-k}^{\beta}\right) \text { for } 0<\beta<1,
$$

so $\left\{y_{n}^{\beta}\right\}$ is also summable. On the other hand, from equation (2.3), we obtain

$$
\Delta y_{n}=\Delta z_{n}+\frac{1}{a_{n}} \sum_{s=n-l+m}^{n-1} q_{s} g\left(x_{s+1-m}\right) \geq 0
$$

so that Δy_{n} is nondecreasing for all $n \geq N_{1}$. But then $y_{n}^{\beta} \geq y_{N_{1}}^{\beta}$ for all $n \geq N_{1}$ implies that $\left\{y_{n}^{\beta}\right\}$ is not summable, a contradiction. This completes the proof of the theorem.

Remark 2.3. If $f(u)=g(u)$, then Theorem 2.2 reduced to Theorem 2.1 of [15].
Next, we establish an oscillation result for equation (1.1) when $l=m$, and for this case the condition $0<\frac{g(u)}{u} \leq M_{2}$ is not required.
Theorem 2.4. Let assumptions $\left(H_{1}\right)-\left(H_{4}\right)$ hold. Further assume that $\beta \geq 1$, and $l=m$,

$$
\begin{equation*}
1-c_{n+1-l}>0 \text { for all } n \in \mathbb{N}\left(n_{0}\right) \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{n}=p_{n}-M q_{n}>0 \text { for all } n \in \mathbb{N}\left(n_{o}\right) \tag{2.7}
\end{equation*}
$$

If there exists a positive and nondecreasing sequence $\left\{\rho_{n}\right\}$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \sum_{s=N}^{n-1}\left[M_{1} \rho_{s} Q_{s}\left(1-c_{s+1-l}\right)^{\beta}-\frac{\left(\Delta \rho_{s}\right)^{2} a_{s-l}}{4 L \beta \rho_{s}}\right]=\infty \tag{2.8}
\end{equation*}
$$

for any $L>0$, then every solution of equation (1.1) is oscillatory.
Proof. Assume that $\left\{x_{n}\right\}$ is a nonoscillatory solution of equation (1.1). Without loss of generality, we may assume that $x_{n}>0$ for all $n \geq n_{0}+\theta$. The proof for the case $x_{n}<0$ is similar and is omitted. Define

$$
z_{n}=x_{n}+c_{n} x_{n-k}, n \geq N \in \mathbb{N}\left(n_{0}\right),
$$

then $z_{n}>0$, and from equation (1.1), and conditions $\left(H_{3}\right)$ and $\left(H_{4}\right)$, we have

$$
\begin{equation*}
\Delta\left(a_{n} \Delta z_{n}\right)+M_{1} Q_{n} x_{n+1-l}^{\beta} \leq 0, n \geq N \tag{2.9}
\end{equation*}
$$

From (2.7) and (2.9), we obtain $\Delta\left(a_{n} \Delta z_{n}\right) \leq 0$ for all $n \geq N_{1}$. Therefore $\Delta z_{n} \leq 0$ or $\Delta z_{n}>0$ for all $n \geq N$.

If $\Delta z_{n} \leq 0$ for all $n \geq N_{1} \geq N$ then by $\left(H_{1}\right)$, we obtain $z_{n} \rightarrow-\infty$ as $n \rightarrow \infty$, which is a contradiction. Hence $\Delta z_{n}>0$ for all $n \geq N$. From the definition z_{n}, we obtain $x_{n} \geq\left(1-c_{n}\right) z_{n}$, and using this in (2.9) we have

$$
\begin{equation*}
\Delta\left(a_{n} \Delta z_{n}\right)+M_{1} Q_{n}\left(1-c_{n+1-l}\right)^{\beta} z_{n+1-l}^{\beta} \leq 0, n \geq N \tag{2.10}
\end{equation*}
$$

Define

$$
w_{n}=\frac{\rho_{n} a_{n} \Delta z_{n}}{z_{n-l}^{\beta}}, n \geq N
$$

then $w_{n}>0$, and from (2.10), we obtain

$$
\begin{equation*}
\Delta w_{n} \leq-M_{1} \rho_{n} Q_{n}\left(1-c_{n+1-l}\right)^{\beta}+\frac{\Delta \rho_{n}}{\rho_{n+1}} w_{n+1}-L \beta \frac{\rho_{n}}{\rho_{n+1}^{2} a_{n-l}} w_{n+1}^{2}, n \geq N \tag{2.11}
\end{equation*}
$$

where we have used $\left\{a_{n} \Delta z_{n}\right\}$ is positive and nonincreasing and $L=z_{N-l}^{\beta-1}$. Summing the inequality (2.11) from N to $n-1$ and using completing the square, we have

$$
\sum_{s=N}^{n-1}\left[M_{1} \rho_{s} Q_{s}\left(1-c_{s+1-l}\right)^{\beta}-\frac{\left(\Delta \rho_{s}\right)^{2} a_{s-l}}{4 L \beta \rho_{s}}\right] \leq w_{N}-w_{n} \leq w_{N}
$$

Taking limsup in the last inequality, we obtain a contradiction with (2.8), and the proof of the theorem is complete.

Remark 2.5. Let $q_{n} \equiv 0$ in equation (1.1). Then Theorem 2.2 reduced to the known oscillation criterion for the equation

$$
\Delta\left(a_{n} \Delta\left(x_{n}+c_{n} x_{n-k}\right)\right)+p_{n} f\left(x_{n+1-l}\right)=0
$$

given in [1], and the references cited therein.
In the following we establish oscillation results for equation (1.2).
Theorem 2.6. Let assumptions $\left(H_{1}\right)-\left(H_{5}\right)$ hold. Further assume that there is a constant α_{3} such that $0 \leq c_{n} \leq \alpha_{3}<1$, for all $n \in \mathbb{N}\left(n_{0}\right)$. If $l \geq m+1$, and

$$
\begin{equation*}
\alpha_{3}+M_{2} \sum_{n=N}^{\infty} \frac{1}{a_{n}} \sum_{s=n-l+m}^{n-1} q_{s} \leq 1 \tag{2.12}
\end{equation*}
$$

then any solution $\left\{x_{n}\right\}$ of equation (1.2) is either oscillatory or satisfies $\lim _{n \rightarrow \infty} x_{n}=0$.

Proof. Suppose that $\left\{x_{n}\right\}$ is a nonoscillatory solution of equation (1.2), say $x_{n}>0$ for $n \geq N \geq n_{0}+\theta$. Define

$$
\begin{equation*}
w_{n}=x_{n}-c_{n} x_{n-k}-\sum_{s=N}^{n-1} \frac{1}{a_{s}} \sum_{t=s-l+m}^{s-1} q_{t} g\left(x_{t+1-m}\right) . \tag{2.13}
\end{equation*}
$$

Then as in the proof of Theorem 2.2, we have

$$
\begin{equation*}
\Delta\left(a_{n} \Delta w_{n}\right) \leq-M_{3} M_{1} x_{n+1-l}^{\beta} \leq 0 \tag{2.14}
\end{equation*}
$$

for all $n \geq N$, and conclude that $\left\{a_{n} \Delta w_{n}\right\}$ is eventually nonincreasing. Therefore $\Delta w_{n}<0$ or $\Delta w_{n} \geq 0$ for all $n \geq N_{1} \geq N$.

Assume that $\Delta w_{n}<0$ for all $n \geq N_{1}$, then by $\left(H_{1}\right)$ we have $\lim _{n \rightarrow \infty} w_{n}=-\infty$. We claim that $\left\{x_{n}\right\}$ is bounded from above. If not, there exists an integer $N_{2} \geq N_{1}+k$ such that

$$
\begin{equation*}
w_{N_{2}}<0, \text { and } \max _{N_{1} \leq n \leq N_{2}-k} x_{n}=x_{N_{2}-k} \tag{2.15}
\end{equation*}
$$

and we have

$$
\begin{aligned}
0>w_{N_{2}} & =x_{N_{2}}-c_{N_{2}} x_{N_{2}-k}-\sum_{s=N}^{N_{2}-1} \frac{1}{a_{s}} \sum_{t=s-l+m}^{s-1} q_{t} g\left(x_{s+1-m}\right) \\
& \geq\left[1-\alpha_{3}-M_{2} \sum_{s=N}^{N_{2}-1} \frac{1}{a_{s}} \sum_{t=s-l+m}^{s-1} q_{t}\right] x_{N_{2}-k} \geq 0 .
\end{aligned}
$$

This contradiction shows that $\left\{x_{n}\right\}$ must be bounded from above, so there exists a constant $L>0$ such that $x_{n} \leq L$ for all $n \geq N_{1}$. It follows from (2.12) and (2.13) that

$$
w_{n} \geq-L\left[\alpha_{3}+M_{2} \sum_{s=N}^{N_{2}-1} \frac{1}{a_{s}} \sum_{t=s-l+m}^{s-1} q_{t}\right] \geq-L>-\infty
$$

which contradicts the fact that $\lim _{n \rightarrow \infty} w_{n}=-\infty$. Hence $\Delta w>0$ for $n \geq N_{1}$.
In this case, we see that L is a nonnegative constant, where $L=\lim _{n \rightarrow \infty} a_{n} \Delta w_{n}$. Summing (2.14) from N_{1} to ∞, we obtain

$$
\infty>a_{N_{1}} \Delta w_{N_{1}}-L \geq M_{3} M_{1} \sum_{n=N_{1}}^{\infty} x_{n+1-l}^{\beta}
$$

which implies that $\left\{x_{n}^{\beta}\right\}$ is summable, and thus $\lim _{n \rightarrow \infty} x_{n}=0$. This completes the proof.
Finally we obtain oscillation results for equation (1.2) when $l=m$, and for this case the condition $0<\frac{g(u)}{u} \leq M_{2}$, is not needed.
Theorem 2.7. Let assumptions $\left(H_{1}\right)-\left(H_{4}\right)$ hold. Further assume that $l \geq k+1$,

$$
\begin{gather*}
0 \leq c_{n} \leq \alpha_{3}<1 \text { for } n \in \mathbb{N}\left(N_{0}\right), \tag{2.16}\\
0<\beta \leq 1, \tag{2.17}\\
\sum_{n=N}^{\infty} Q_{n}=\infty \tag{2.18}
\end{gather*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \sum_{s=n-l+k}^{n-1} \frac{1}{a_{s}} \sum_{t=s}^{n-1} Q_{t}=\infty \tag{2.19}
\end{equation*}
$$

Then every solution of equation (1.2) is oscillatory.

Proof. Let $\left\{x_{n}\right\}$ be a nonoscillatory solution of equation (1.2). Without loss of generality, we may assume that $x_{n}>0$ and $x_{n-\theta}>0$ for all $n \geq n_{1} \in \mathbb{N}\left(n_{0}\right)$. The proof for the case $x_{n}<0$ is similar and is omitted. Define

$$
z_{n}=x_{n}-c_{n} x_{n-k}, n \geq n_{1}
$$

From equation (1.2), and conditions $\left(H_{3}\right)$ and $\left(H_{4}\right)$ we have

$$
\begin{equation*}
\Delta\left(a_{n} \Delta z_{n}\right) \leq-M_{1} Q_{n} x_{n+1-l}^{\beta} \leq 0, n \geq N \geq n_{1} \tag{2.20}
\end{equation*}
$$

Hence $\left\{z_{n}\right\}$ and $\left\{a_{n} \Delta z_{n}\right\}$ are eventually of one sign for all $n \geq N$. Then by Lemma 2.1 of [12], and (H_{1}) the sequence $\left\{z_{n}\right\}$ satisfies one of the following two cases for all $n \geq N$:
(i) $z_{n}>0, a_{n} \Delta z_{n}>0, \Delta\left(a_{n} \Delta z_{n}\right) \leq 0$;
(ii) $z_{n}<0, a_{n} \Delta z_{n}>0, \Delta\left(a_{n} \Delta z_{n}\right) \leq 0$.

Case (i): From the definition of z_{n}, we have $x_{n} \geq z_{n}$, and using this in (2.20), we obtain

$$
\begin{equation*}
\Delta\left(a_{n} \Delta z_{n}\right)+M_{1} Q_{n} z_{n+1-l}^{\beta} \leq 0, n \geq N \tag{2.21}
\end{equation*}
$$

Define

$$
w_{n}=\frac{a_{n} \Delta z_{n}}{z_{n-l}^{\beta}}, n \geq N
$$

then $w_{n}>0$ for $n \geq N$, and from (2.21), we obtain

$$
\begin{aligned}
\Delta w_{n} & =-M_{1} Q_{n}-\frac{a_{n} \Delta z_{n}}{z_{n+1-l}^{\beta} z_{n-l}^{\beta}} \Delta z_{n-l}^{\beta} \\
& \leq-M_{1} Q_{n}-\frac{-\beta a_{n} \Delta z_{n}}{z_{n-l}^{\beta} z_{n+1-l}^{\beta}} \Delta z_{n-l} \\
& \leq-M_{1} Q_{n}, n \geq N .
\end{aligned}
$$

Summing the last inequality from N to $n-1$, we have

$$
M_{1} \sum_{s=N}^{n-1} Q_{s} \leq w_{N}-w_{n} \leq w_{N}
$$

Letting $n \rightarrow \infty$, we obtain a contradiction with (2.18).
Case(ii): From the definition of z_{n} and (2.16), we have

$$
\begin{equation*}
x_{n-k} \geq\left(\frac{-z_{n}}{\alpha_{3}}\right) \tag{2.22}
\end{equation*}
$$

Using (2.22) in (2.20), we obtain

$$
\Delta\left(a_{n} \Delta z_{n}\right)-\frac{M_{1} Q_{n}}{\alpha_{3}^{\beta}} z_{n+1-l+k}^{\beta} \leq 0, n \geq N
$$

Summing the last inequality from s to $n-1$ for $n>s+1$, we have

$$
\begin{equation*}
a_{n} \Delta z_{n}-a_{s} \Delta z_{s}-\frac{M_{1}}{\alpha_{3}^{\beta}} \sum_{t=s}^{n-1} Q_{t} z_{t+1-l+k}^{\beta} \leq 0 . \tag{2.23}
\end{equation*}
$$

Summing again the last inequality from $n-l+k$ to $n-1$ for s, we have

$$
z_{n-l+k}-z_{n} \leq \frac{M_{1}}{\alpha_{3}^{\beta}} z_{n-l+k}^{\beta} \sum_{s=n-l+k}^{n-1} \frac{1}{a_{s}} \sum_{t=s}^{n-1} Q_{t}
$$

or

$$
\frac{z_{n-l+k}}{z_{n-l+k}^{\beta}} \geq \frac{M_{1}}{\alpha_{3}^{\beta}} \sum_{s=n-l+k}^{n-1} \frac{1}{a_{s}} \sum_{t=s}^{n-1} Q_{t} .
$$

If $\beta=1$, then from the last inequality, we obtain

$$
\frac{\alpha_{3}}{M_{1}} \geq \lim _{n \rightarrow \infty} \sup \sum_{s=n-l+k}^{n-1} \frac{1}{a_{s}} \sum_{t=s}^{n-1} Q_{t}
$$

which is a contradiction with (2.19). Next, assume $0<\beta<1$. Since z_{n} is negative and increasing, we have $\lim _{n \rightarrow \infty} z_{n}=\delta \leq 0$. If $\delta=0$, then from (2.23), we obtain

$$
\lim _{n \rightarrow \infty} \sup \sum_{s=n-l+k}^{n-1} \frac{1}{a_{s}} \sum_{t=s}^{n-1} Q_{t} \leq 0
$$

since $1-\beta>0$, which is a contradiction with (2.19). Now assume that $\delta<0$. From (2.23) we have

$$
\Delta z_{s}+\frac{M_{1} z_{n}^{\beta}}{\alpha_{3}^{\beta} a_{s}} \sum_{t=s}^{n-1} Q_{t} \geq 0
$$

Summing the last inequality from N to $n-1$, and rearranging we obtain

$$
\frac{\alpha_{3}^{\beta} z_{N}}{M_{1} z_{n}^{\beta}} \geq \sum_{s=N}^{n-1} \frac{1}{a_{s}} \sum_{t=s}^{n-1} Q_{t} .
$$

In view of $\delta<0, \frac{\alpha_{3}^{\beta} z_{N}}{M_{1} z_{n}^{\beta}}$ has an upper bound, so

$$
\lim _{n \rightarrow \infty} \sum_{s=N}^{n-1} \frac{1}{a_{s}} \sum_{t=s}^{n-1} Q_{t}<\infty
$$

which again contradicts (2.19). This completes the proof of the theorem.
Remark 2.8. Let $q_{n} \equiv 0$ in equation (1.2), then Theorem 2.5 reduced to the known oscillation criteria for the equation

$$
\Delta\left(a_{n} \Delta\left(x_{n}-c_{n} x_{n-h}\right)\right)+p_{n} f\left(x_{n+1-l}\right)=0
$$

given in $[1,14]$, and the references cited therein.

3. Examples

In this section, we present some examples to illustrate the main results.
Example 3.1. Consider the second order nonlinear neutral difference equation of the form

$$
\begin{equation*}
\Delta\left(n \Delta\left(x_{n}+2 x_{n-1}\right)\right)+\left(2 n+1+\frac{1}{3^{n}}\right) x_{n-2}^{3}\left(1+x_{n-2}^{2}\right)-\frac{4}{3^{n}} \frac{x_{n}^{3}}{\left(1+x_{n}^{2}\right)}=0, n \geq 2 \tag{3.1}
\end{equation*}
$$

Here $a_{n}=n, c_{n}=2, p_{n}=2 n+1+\frac{1}{3^{n}}, q_{n}=\frac{4}{3^{n}}, k=1, l=3, m=1, f(u)=u^{3}\left(1+u^{2}\right)$, and $g(u)=\frac{u^{3}}{1+u^{2}}$. By taking $\beta=3$, and $M_{1}=M_{2}=M=1$, we see that conditions $\left(H_{1}\right)-\left(H_{4}\right)$ hold. Further,

$$
p_{n}-q_{n-m+l}=2 n+1+\frac{1}{3^{n}}-\frac{4}{3^{n+2}}>1
$$

and

$$
\sum_{n=2}^{\infty} \frac{1}{n} \sum_{s=n-2}^{n-1} \frac{4}{3^{s}}=\sum_{n=2}^{\infty} \frac{4}{n}\left(\frac{1}{3^{n-2}}+\frac{1}{3^{n-1}}\right)<\infty
$$

Therefore all the conditions of Theorem 2.2 are satisfied, and hence every solution of equation (3.1) is oscillatory. In fact, $\left\{x_{n}\right\}=\left\{(-1)^{n}\right\}$ is one such oscillatory solution of equation (3.1).

Example 3.2. Consider the second order nonlinear neutral difference equation of the form

$$
\begin{equation*}
\Delta\left(n\left(\Delta\left(x_{n}+\frac{1}{2} x_{n-1}\right)\right)\right)+\left(n+\frac{1}{2}+\frac{1}{2^{n+2}}\right) x_{n-1}^{5 / 3}\left(1+x_{n-1}^{4}\right)-\frac{1}{2^{n}} \frac{x_{n-1}^{5 / 3}}{\left(1+x_{n-1}^{2}\right)}=0, n \geq 1 . \tag{3.2}
\end{equation*}
$$

Here $a_{n}=n, c_{n}=\frac{1}{2}, p_{n}=n+\frac{1}{2}+\frac{1}{2^{n+2}}, q_{n}=\frac{1}{2^{n}}, f(u)=u^{5 / 3}\left(1+u^{4}\right), g(u)=\frac{u^{5 / 3}}{1+u^{4}}, \quad k=1$, and $l=2$. With $\beta=\frac{5}{3}, M=1$, and $M_{1}=1$ we see that the conditions $\left(H_{1}\right)-\left(H_{4}\right)$ are satisfied. Further we see that

$$
1-c_{n+1-l}=\frac{1}{2}>0
$$

and

$$
Q_{n}=p_{n}-M q_{n}=n+\frac{1}{2}-\frac{3}{2^{n+2}} \geq \frac{9}{8}>0
$$

By taking $\rho_{n} \equiv 1$, we see that the condition (2.8) becomes

$$
\lim _{n \rightarrow \infty} \sup \sum_{s=1}^{n-1}\left[Q_{s}\left(1-c_{s+1-l}\right)^{\beta}\right]=\sum_{1}^{\infty}\left(\frac{1}{2}\right)^{5 / 3}\left(n+\frac{1}{2}-\frac{3}{2^{n+2}}\right)=\infty .
$$

Hence all conditions of Theorem 2.4 are satisfied, and therefore every solution of equation (3.2) is oscillatory. In fact, $\left\{x_{n}\right\}=\left\{(-1)^{n}\right\}$ is one such oscillatory solution of equation (3.2).
Example 3.3. Consider the second order nonlinear neutral difference equation of the form

$$
\begin{equation*}
\Delta\left(n \Delta\left(x_{n}-\frac{1}{2} x_{n-2}\right)\right)+\frac{1}{3}\left(4 n+2-\frac{1}{4^{n+3}}\right) \frac{x_{n-1}^{3}\left(2+x_{n-1}^{2}\right)}{\left(1+x_{n-1}^{2}\right)}-\frac{1}{4^{n+3}} \frac{x_{n}^{3}}{\left(1+x_{n}^{2}\right)}=0, n \geq 1 \tag{3.3}
\end{equation*}
$$

Here $a_{n}=n, c_{n}=\frac{1}{2}, p_{n}=\frac{1}{3}\left(4 n+2-\frac{1}{4^{n+3}}\right), q_{n}=\frac{1}{4^{n+3}}, f(u)=\frac{u^{3}\left(2+u^{2}\right)}{\left(1+u^{2}\right)}, g(u)=\frac{u^{3}}{\left(1+u^{2}\right)}, k=2, l=$ 2 , $m=1$. With $\beta=3, M_{1}=1, M_{2}=1$, and $M=1$, we see that the conditions $\left(H_{1}\right)-\left(H_{5}\right)$ hold. Further we see that

$$
\sum_{1}^{\infty} \frac{1}{a_{n}}=\sum_{1}^{\infty} \frac{1}{n}=\infty
$$

and

$$
\begin{aligned}
\alpha_{3}+M_{2} \sum_{n=1}^{\infty} \frac{1}{a_{n}} \sum_{s=n-l+m}^{n-1} q_{s} & =\frac{1}{2}+\sum_{1}^{\infty} \frac{1}{n}\left(\frac{1}{4^{n+2}}\right) \\
& <\frac{1}{2}+\frac{1}{48}<1 .
\end{aligned}
$$

Hence by Theorem 2.4, every solution of equation (3.3) is either oscillatory or tends to zero as $n \rightarrow \infty$. In fact $\left\{x_{n}\right\}=\left\{(-1)^{n}\right\}$ is one such oscillatory solution of equation (3.3).
Example 3.4. Consider the second order nonlinear neutral difference equation of the form

$$
\begin{equation*}
\Delta\left(n \Delta\left(x_{n}-\frac{1}{2} x_{n-1}\right)\right)+\left(2+2^{n}\right)\left(\frac{15}{8}(3 n+2) 2^{\frac{2 n+1}{3}}+\frac{1}{4^{\frac{n}{3}}}\right) \frac{x_{n-1}^{\frac{1}{3}}}{\left(1+\left|x_{n-1}\right|\right)}-\frac{2}{4^{\frac{n}{3}}} x_{n-1}^{\frac{1}{3}}=0 \tag{3.4}
\end{equation*}
$$

Here $a_{n}=n, c_{n}=\frac{1}{2}, p_{n}=\left(2+2^{n}\right)\left[\frac{15}{8}(3 n+2) 2^{\frac{2 n+1}{3}}+\frac{1}{4^{\frac{n}{3}}}\right], q_{n}=\frac{2}{4^{n / 3}}, k=1, l=2$, and $Q_{n}=$ $\left(2+2^{n}\right)\left(\frac{15}{8}(3 n+2) 2^{\frac{2 n+1}{3}}+\frac{1}{4^{n / 3}}\right)-\frac{2}{4^{\frac{n}{3}}}>0$. Further, we see that

$$
\sum_{n=1}^{\infty} Q_{n}=\sum_{n=1}^{\infty}\left[\frac{15}{8}\left(2+2^{n}\right)(3 n+2) 2^{\frac{2 n+1}{3}}+2^{\frac{n}{3}}\right]=\infty
$$

and

$$
\lim _{n \rightarrow \infty} \sup \sum_{s=n-l+k}^{n-1} \frac{1}{a_{s}} \sum_{t=s}^{n-1} Q_{t}=\lim _{n \rightarrow \infty} \sup \left(\frac{1}{n-1}\right)\left[\frac{15}{8}\left(2+2^{n-1}\right)(3 n-1) 2^{\frac{2 n-1}{3}}+2^{\frac{n-1}{3}}\right]=\infty
$$

Hence all conditions of Theorem 2.7 are satisfied, and therefore every solution of equation (3.4) is oscillatory. In fact $\left\{x_{n}\right\}=\left\{(-1)^{n} 2^{n}\right\}$ is one such oscillatory solution of equation (3.4).

4. Conclusion

In this study, we have obtained new sufficient conditions for the oscillation of all solutions of equations (1.1) and (1.2) via Ricatti transformation and inequalities. Further the oscillation criteria obtained here are applicable to deduce oscillation results for the equations (3.1) to (3.4). The same cannot be deducible for equations (3.1) to (3.4) from any previously known oscillation criteria given in $[4,7,8,9,10,11,13$, $15,17]$, since $a_{n} \not \equiv 1$, and $f \neq g$. Therefore the results obtained here improve, extend and generalize the existing results.

References

[1] R.P.Agarwal, M. Bohner, S.R. Grace and D.O'Regan, Discrete Oscillation Theory, Hindawi Publ. Corp., New York, 2005.
[2] A.G.Balanov, N.B.Janson, P.V.E.McClintock, R.W.Tucks and C.H.T.Wang, Bifurcation analysis of a neutral delay differential equation modelling the torsional motion of a driven drill-string, Chaos, Solitons and Fractals, 15(2003), 381-394.
[3] A.Bellen, N.Guglielmi and A.E.Ruchli, Methods for linear systems of circuit delay differential equations of neutral type, IEEE Trans, Circ. Syst-I, 46(1999), 212-216.
[4] H.A.El-Morshedy, New oscillation criteria for second oreder linear difference equations with positive and negative coefficients, Comput.Math.Appl., 58(2009), 1988-1997.
[5] K.Gopalsamy, Stability and Oscillations in Population Dynamics, Kluwer Acad.Pub.Boston, 1992.
[6] C.Jinfa, Existence of a nonoscillatory solutions of a second order linear neutral difference equation, Appl.Math.Lett., 20(2007), 892-899.
[7] B.Karpuz, Some oscillation and nonoscillation criteria for neutral delay difference equations with positive and negative coefficients, Comp.Math.Appl., 57(2009), 633-642.
[8] B.Karpuz, O.Ocalan and M.K.Yildiz, Oscillation of a class of difference equations of second order, Math.Comput.Model., 49(2009), 912-917.
[9] H.A.Mohamad, H.M.Mohi, Oscillations of neutral difference equations of second order with positive and negative coefficients, Pure Appl.Math.J., 5(1)(2016), 9-14.
[10] O.Ocalan, Oscillation for a class of nonlinear neutral difference equations, Dynamics Cont. Discrete Impul.Syst.Sries A, 16(2009), 93-100.
[11] O.Ocalan and O.Duman, Oscillation analysis of neutral difference equations with delays, Chaos, Solitons and Fractals., 39(2009), 261-270.
[12] D.Seghar, E.Thandapani and S.Pinelas, Oscillation theorems for second order difference equations with negative neutral terms, Tamkang J.Math., 46(2015), 441-451.
[13] A.K.Thipathy and S.Panigrahi, Oscillation in nonlinear neutral difference equations with positive and negative coefficients, Inter.J.Diff.Eqns., 5(2010), 251-265.
[14] E.Thandapani and P.Mohankumar, Oscillation and nonoscillation of nonlinear neutral delay difference equations, Tamkang J.Math., 38(2007), 323-333.
[15] E.Thandapani, K.Thangavelu and E.Chandrasekaran, Oscillatory behavior of second order neutral difference equations with positive and negative coefficients, Elec.J.Diff. Eqns, 2009(2009), 145, 1-8.
[16] E.Thandapani, M.Vijaya and T.Li, Os the oscillation of third order half-linear neutral type difference equations, Elec.J.Qual.Theo.Diff.Equ., 76(2011), PP1-13.
[17] C.J.Tian and S.S.Cheng, Oscillation criteria for delay neutral difference equations with positive and negative coefficients, Bul.Soc.Parana Math., 21(2003), 1-12.
[18] Y.Zhou and Y.Q.Huang, Existence for nonoscillatory solutions of higher order nonlinear neutral difference equations, J.Math.Anal.Appl., 280(2003), 63-76.
[19] Y.Zhou and B.G.Zhang, Existence of nonoscillatory solutions of higher order neutral delay difference equations with variable coefficients, Comput.Math.Appl., 45(2003), 991-1000.
[20] J.Zhou, T.Chen and L.Xiang, Robust synchronization, Chaos, Solitons and Fractals, 26(2006), 905-913.

1,2 Department of Mathematics, Presidency College, Chennai - 600 005, India. E-mail address: selvarangam.9962@gmail.com
E-mail address: mcmadhan24@gmail.com
${ }^{3}$ Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai - 600 005, India.

E-mail address: ethandapani@yahoo.co.in

