BOUNDED INTEGRO COMPOSITION OPERATORS ON ORLICZ SPACES

Nidhi Suri

Department of Mathematics University of Jammu,India nidhi_ju31@yahoo.com

B.S. Komal Department of Engineering Mathematics M.I.E.T,Jammu, India bskomal2 @yahoo.co.in

Abstract

In this paper we study bounded integro composition operators on Orlicz spaces.

Mathematics Subject Classification: Primary 47B38; Secondary 47B99 Keywords: Integro composition operator, Radon Nikodym derivative, Expectation operator.

1 Introduction

Let (X, s, μ) be a σ -finite measure space. A measurable transformation $T : (X, s) \to (X, s)$ is called non singular, if $\mu(T^{-1}(E)) = 0$, whenever $\mu(E) = 0$ for each measurable subset E of X. If T is non-singular, then the measure μT^{-1} is absolutely continuous with respect to the measure μ . Therefore by the Radon Nikodym theorem, there exists a positive measurable function f_0 such that $\mu(T^{-1}(E)) = \int_E f_0 d\mu$. The function f_0 is called the Radon Nikodym derivative of the measure μT^{-1} with respect to the measure μ . A bounded projection operator $E : L_p(X, s, \mu) \to L_p(X, T^{-1}(s), \mu)$ is known as the expectation operator or the conditional expectation. The properties of the expectation operator can be found in Parthasarathy [9]. If T is non singular measurable transformation and if f_0 is an essentially bounded measurable function, then the operator $C_T : L_p(\mu) \to L_p(\mu)$ defined by $C_T f = f \circ T$, $\forall f \in L_p(\mu)$ is a bounded operator (see Singh [13]). The operator C_T is called a composition operator induced by T. A measurable function $K : X \times X \to \mathbb{R}$ is called a kernel function.

A convex function $\Phi : \mathbb{R} \to \mathbb{R}^+$ is called a Young function if it satisfies the following properties: (i) $\Phi(x) = \Phi(-x)$ for every $x \in \mathbb{R}$, (ii) $\Phi(0) = 0$,

(iii) $\lim_{x \to \infty} \Phi(x) = \infty.$

With each Young function Φ we can associate another Young function $\Psi : \mathbb{R} \to \mathbb{R}^+$ which is defined by $\Psi(y) = \sup\{x|y| - \Phi(x) : x \ge 0\}$ for each $y \in \mathbb{R}$. The function Ψ is called the complementary function of Φ . Suppose $X \subset \mathbb{R}$. Define $L_{\Phi}(\mu) = \{f|f : X \to \mathbb{R} \text{ is measurable function}$ and $\int_X \Phi(\alpha|f|)d\mu < \infty$ for some $\alpha > 0\}$. For $f \in L_{\Phi}(\mu)$, if we define

$$||f||_{\Phi} = \inf \left\{ \epsilon > 0 : \int_X \Phi\left(\frac{|f|}{\epsilon}\right) d\mu \le 1 \right\},$$

then $L_{\Phi}(\mu)$ is a Banach space under the norm $||.||_{\Phi}$. If $\Phi(x) = |x|^p$ for every $x \in \mathbb{R}$, then $L_{\Phi}(\mu) = L_p(\mu)$, the well known Banach space of p^{th} integrable functions defined on X. The Holder's inequality for Orlicz spaces is stated as follows:

If $f \in L_{\Phi}(\mu)$ and $g \in L_{\Psi}(\mu)$, with (Φ, Ψ) as a normalized complementary Young pair, then

$$\int_{X} |fg|d(\mu) \le 2||f||_{\Phi}||g||_{\Psi}$$

Let $\{\mu_n\}$ be a sequence of strictly positive real numbers. Suppose $X = \mathbb{N}$, the set of natural numbers. Let μ be the measure on $P(\mathbb{N})$, the power set of \mathbb{N} , defined by $\mu(E) = \sum_{n \in E} \mu_n$. Then

$$L_{\Phi}(\mathbb{N}) = \ell_{\Phi}^{\mu}(\mathbb{N}) = \left\{ f | f : \mathbb{N} \to \mathbb{C} \text{ and } \sum_{n=1}^{\infty} \Phi(\frac{|f_n|}{\alpha}) \mu_n < \infty \text{ for some } \alpha > 0 \right\}$$

The space $\ell^{\mu}_{\Phi}(\mathbb{N})$ is known as weighted Orlicz sequence space.

If $T: X \to X$ is a measurable transformation and $K: X \times X \to \mathbb{R}$ is the kernel function, then the bounded linear operators $R_T^K: L_{\Phi}(\mu) \to L_{\Phi}(\mu)$ and $L_T^K: L_{\Phi}(\mu) \to L_{\Phi}(\mu)$ defined by

$$(R_T^K f)(x) = \int K(x, y) f(T(y)) d\mu(y) \text{ for every } f \in L_{\Phi}(\mu)$$

and

$$(L_T^K f)(x) = \int K(T(x), y) f(y) d\mu(y) \text{ for every } f \in L_{\Phi}(\mu)$$

are known as integro composition operators.

For literature concerning Orlicz spaces, composition operators, integral operators, integro composition operators we refer to Rao [10], Gupta, Komal and Suri [6], Kuffner [7], Cowen [2], Singh and Komal [11], Singh and Manhas [12], Bloom and Kerman [1], Gupta and Komal ([3],[4],[5]), Lyubic [8], Stepanov [14] and Whitley [15].

Bounded Integro Composition Operators on Weighted Or- $\mathbf{2}$ licz Sequence Spaces

In this section we obtain a sufficient condition for an integro composition operator to be bounded. Let $K : \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ and $T : \mathbb{N} \to \mathbb{N}$ be two mappings. Set

$$K_0(m,n) = \begin{cases} \sum_{p \in T^{-1}(n)} \frac{K(m,p)\mu_p}{\mu_n}, & \text{if } T^{-1}(n) \neq \phi \\ 0, & \text{if } T^{-1}(n) = \phi \end{cases}$$

For each $m \in \mathbb{N}$, let $K_0^m : \mathbb{N} \to \mathbb{N}$ be defined by $K_0^m(n) = K_0(m, n)$ and $\beta : \mathbb{N} \to \mathbb{R}$ be defined by $\beta(m) = ||K_0^m||_{\Psi}.$

Theorem 2.1 Let $\beta \in \ell^{\mu}_{\Phi}(\mathbb{N})$. Then the integro composition operator $R^{K}_{T} : \ell^{\mu}_{\Phi}(\mathbb{N}) \to \ell^{\mu}_{\Phi}(\mathbb{N})$ is a bounded operator.

 $/ \infty$

Proof: Take $f \in \ell^{\mu}_{\Phi}(\mathbb{N})$. Consider

$$\begin{split} \int_{\mathbb{N}} \Phi\left(\frac{|(R_T^K f))(m)|}{2||\beta||_{\Phi}||f||_{\Phi}}\right) \mu_m &= \int_{\mathbb{N}} \Phi\left(\frac{|\sum_{n=1}^{\infty} K_0(m,n)f(T(n))\mu_n|}{2||\beta||_{\Phi}||f||_{\Phi}}\right) \mu_m \\ &\leq \int_{\mathbb{N}} \Phi\left(\frac{\sum_{n=1}^{\infty} \sum_{p \in T^{-1}(n)} |K(m,p)f(T(p))|\mu_p}{2||\beta||_{\Phi}||f||_{\Phi}}\right) \mu_m \\ &= \int_{\mathbb{N}} \Phi\left(\frac{\sum_{n=1}^{\infty} \sum_{p \in T^{-1}(n)} |K(m,p)f(n)|\mu_p}{2||\beta||_{\Phi}||f||_{\Phi}}\right) \mu_m \\ &= \int_{\mathbb{N}} \Phi\left(\frac{\sum_{n=1}^{\infty} |K_0(m,n)f(n)|\mu_n}{2||\beta||_{\Phi}||f||_{\Phi}}\right) \mu_m \\ &\leq \int_{\mathbb{N}} \Phi\left(\frac{2||K_0^m||_{\Psi}}{2||\beta||_{\Phi}} \frac{||f||_{\Phi}}{||f||_{\Phi}}\right) \mu_m \\ &\leq \int_{\mathbb{N}} \Phi\left(\frac{||K_0^m||_{\Psi}}{||\beta||_{\Phi}}\right) \mu_m \\ &= \int_{\mathbb{N}} \Phi\left(\frac{||K_0^m||_{\Psi}}{||\beta||_{\Phi}}\right) \mu_m \end{aligned}$$

Hence $||R_T^K f||_{\Phi} \leq 2||\beta||_{\Phi}||f||_{\Phi}$ for every $f \in \ell_{\Phi}^{\mu}(\mathbb{N})$. This proves that R_T^K is a bounded operator. \Box

Example 2.2 Let $T : \mathbb{N} \to \mathbb{N}$ be defined by T(n) = n + 2 for all $n \in \mathbb{N}$. Let $\Phi : \mathbb{N} \to \mathbb{R}$ be defined by $\Phi(n) = \frac{n^2}{2}$. Then its complementary function $\Psi(n)$ is given by $\Psi(n) = \frac{n^2}{2}$. Suppose $K : \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ is defined by $K(m, n) = \frac{1}{2^{m+n}}$. Then, for $\mu_n = \frac{1}{2^n}$, we get

$$\begin{split} ||K_{0}^{m}||_{\Psi} &= \inf\left\{\epsilon > 0: \sum_{n=1}^{\infty} \Psi\left(\frac{K_{0}^{m}(n)}{\epsilon}\right) \mu_{n} \leq 1\right\} \\ &= \inf\left\{\epsilon > 0: \sum_{n=3}^{\infty} \Psi\left(\frac{\sum_{p \in T^{-1}(n)} K(m, p) \mu_{p}}{\epsilon \mu_{n}}\right) \mu_{n} \leq 1\right\} \\ &= \inf\left\{\epsilon > 0: \sum_{n=3}^{\infty} \Psi\left(\frac{K(m, n-2) \mu_{n-2}}{\epsilon \mu_{n}}\right) \mu_{n} \leq 1\right\} \\ &= \inf\left\{\epsilon > 0: \sum_{n=1}^{\infty} \Psi\left(\frac{K(m, n) \mu_{n}}{\epsilon \mu_{n+2}}\right) \mu_{n+2} \leq 1\right\} \\ &= \inf\left\{\epsilon > 0: \sum_{n=1}^{\infty} \Psi\left(\frac{\frac{1}{2^{m+n}}}{\epsilon \cdot \frac{1}{2^{n+2}}} \cdot \frac{1}{2^{n}}\right) \frac{1}{2^{n+2}} \leq 1\right\} \\ &= \inf\left\{\epsilon > 0: \sum_{n=1}^{\infty} \Psi\left(\frac{4}{\epsilon 2^{m+n}}\right) \cdot \frac{1}{2^{n+2}} \leq 1\right\} \\ &= \inf\left\{\epsilon > 0: \sum_{n=1}^{\infty} \frac{16}{2\epsilon^{2}2^{2m+2n}} \cdot \frac{1}{2^{n+2}} \leq 1\right\} \\ &= \inf\left\{\epsilon > 0: \frac{2}{\epsilon^{2}2^{2m}} \sum_{n=1}^{\infty} \frac{1}{2^{3n}} \leq 1\right\} \\ &= \inf\left\{\epsilon > 0: \frac{2}{\epsilon^{2}2^{2m}} \cdot \frac{1}{7} \leq 1\right\} \\ &= \frac{1}{\sqrt{7.2^{2m-1}}} \end{split}$$

Also

$$\begin{split} ||\beta||_{\Phi} &= \inf\{\epsilon > 0: \sum_{m=1}^{\infty} \Phi(\frac{|\beta(m)|}{\epsilon}) \le 1\} \\ &= \inf\{\epsilon > 0: \sum_{m=1}^{\infty} \frac{\beta^2(m)}{2\epsilon^2} \le 1\} \\ &= \inf\{\epsilon > 0: \frac{1}{7\epsilon^2} \sum_{m=1}^{\infty} \frac{1}{2^{2m}} \le 1\} \\ &= \frac{1}{\sqrt{2}1} < \infty. \end{split}$$

Hence R_T^K is a bounded operator in view of Theorem 2.1.

Bounded Integro Composition Operators on Orlicz Spaces 3

In this section we shall discuss the boundedness of various types of integro composition operators acting on Orlicz spaces. Let μ be any measure on s. Suppose Φ_1, Φ_2 are two Young functions on X. For $x \in X$, let $K^x : X \to \mathbb{R}$ be defined by $K^x(y) = K(x,y)$. Suppose $\beta : X \to \mathbb{R}$ is defined by $\beta(x) = ||K^x||_{\Psi_1}$

Theorem 3.1 Suppose $\beta \in L_{\Phi_2}(\mu_2 T^{-1})$. Then $L_T^K : L_{\Phi_1}(\mu_1) \to L_{\Phi_2}(\mu_2)$ is a bounded operator. **Proof:** Take $f \in L_{\Phi_1}(\mu_1)$. Write $t_1 = ||f||_{\Phi_1}$, $t_2 = ||\beta||_{\Phi_2}, \mu_2 T^{-1}$. Consider

$$\begin{split} \int \Phi_2 \left(\frac{|(L_T^K f)(x)|}{2t_1 t_2} \right) d\mu_2(x) &= \int \Phi_2 \left(\frac{|\int K(T(x), y) f(y) d\mu_1(y)|}{2t_1 t_2} \right) d\mu_2(x) \\ &\leq \int \Phi_2 \left(\frac{||2K^{T(x)}||_{\Psi_1}}{2t_2} \frac{||f||_{\Phi_1}}{t_1} \right) d\mu_2(x) \\ &\quad (\text{ by using Hölder's inequality}) \\ &\leq \int \Phi_2 \left(\frac{\beta(T(x))}{t_2} \right) d\mu_2(x) \\ &= \int \Phi_2 \left(\frac{\beta(x)}{t_2} \right) d\mu_2 T^{-1}(x) \\ &\leq 1. \end{split}$$

Hence $||L_T^K f||_{\Phi_2} \leq 2||\beta||_{\Phi_2,\mu_2T^{-1}}||f||_{\Phi_1}$ for every $f \in L_{\Phi_1}(\mu_1)$. This proves that L_T^K is a bounded operator. \Box

Example 3.2 Let $T : \mathbb{R} \to \mathbb{R}$ be defined by $T(x) = \frac{\pi}{2}x$. Then $\frac{d\mu T^{-1}(x)}{d\mu(x)} = \frac{2}{\pi}$. Take $\mu_1 = \mu_2 = \mu$, the Lebesgue measure and $\Phi_1(x) = \Phi_2(x) = \frac{x^2}{2} = \Phi(x)$. Then $\Psi(x) = \frac{x^2}{2}$. Suppose $K : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be defined by $K(x, y) = e^{\frac{-(x^2+y^2)}{4}}$. Now

$$\begin{split} \beta(x) &= ||K^x||_{\Psi} \\ &= \inf\left\{\epsilon > 0 : \int \Psi\left(\frac{K(x,y)}{\epsilon}\right) d\mu(y) \le 1\right\} \\ &= \inf\left\{\epsilon > 0 : \int \Psi\left(\frac{e^{-\frac{(x^2+y^2)}{4}}}{\epsilon}\right) d\mu(y) \le 1\right\} \\ &= \inf\left\{\epsilon > 0 : \int \frac{e^{-\frac{(x^2+y^2)}{2}}}{2\epsilon^2} d\mu(y) \le 1\right\} \\ &= \inf\left\{\epsilon > 0 : \frac{e^{-\frac{x^2}{2}}}{2\epsilon^2} \cdot \sqrt{2\pi} \le 1\right\} \\ &= \sqrt{\sqrt{\frac{\pi}{2}}} e^{-\frac{x^2}{2}} \end{split}$$

Therefore,

$$\begin{aligned} ||\beta||_{\Phi,d\mu T^{-1}} &= \inf\left\{\epsilon > 0: \int \Phi\left(\frac{\beta(x)}{\epsilon}\right) d\mu T^{-1}(x) \le 1\right\} \\ &= \inf\left\{\epsilon > 0: \int \frac{\beta^2(x)}{2\epsilon^2} d\mu T^{-1}(x) \le 1\right\} \\ &= \inf\left\{\epsilon > 0: \frac{1}{2\epsilon^2} \times \sqrt{\frac{\pi}{2}} \times \frac{2}{\pi} \times \sqrt{2\pi} \le 1\right\} \\ &= 1 \end{aligned}$$

Hence L_T^k is a bounded operator in view of Theorem 3.1.

For each $x \in X$, define $K_T^x : X \to \mathbb{R}$ by $K_T^x(y) = E(K^x)oT^{-1}(y)f_o(y)$ and $\beta(x) = ||K_T^x||_{\Psi_1}$, where Ψ_1 is the complementary function of Φ_1 .

Theorem 3.3 Suppose $\beta \in L_{\Phi_2}(\mu_2)$. Then the integro composition operator $R_T^K : L_{\Phi_1}(\mu_1) \to L_{\Phi_2}(\mu_2)$ is a bounded operator. **Proof:** For $f \in L_{\Phi_1}(\mu_1)$. Write $t_1 = ||f||_{\Phi_1}$ and $t_2 = ||\beta||_{\Phi_2}$. Consider

$$\int \Phi_2\left(\frac{|(R_T^K f)(x)|}{2t_1 t_2}\right) d\mu_2(x)$$

$$= \int \Phi_{2} \left(\frac{|\int K(x,y)f(T(y)d\mu_{1}(y)|}{2t_{1}t_{2}} \right) d\mu_{2}(x)$$

$$\leq \int \Phi_{2} \left(\frac{\int |K(x,y)||f(T(y))|d\mu_{1}(y)}{2t_{1}t_{2}} \right) d\mu_{2}(x)$$

$$= \int \Phi_{2} \left(\frac{|E(K^{x})oT^{-1}(y)f_{o}(y)|}{2t_{2}} \frac{|f(y)|}{t_{1}} d\mu_{1}(y) \right) d\mu_{2}(x)$$

$$\leq \int \Phi_{2} \left(\frac{2||E(K^{x})oT^{-1}f_{o}||_{\Psi_{1}}}{2t_{2}} \frac{||f||_{\Phi_{1}}}{t_{1}} \right) d\mu_{2}(x)$$

$$(By using Hölder's Inequality)$$

$$\leq \int \Phi_{2} \left(\frac{\beta(x)}{t_{2}} \right) d\mu_{2}(x)$$

$$\leq 1$$

Hence $||R_T^K f||_{\Phi_2} \leq 2||\beta||_{\Phi_2}||f||_{\Phi_1}$ for every $f \in L_{\Phi_1}(\mu_1)$, and R_T^K is a bounded operator. \Box

Theorem 3.4 Suppose $\beta \in L_{\Phi_2}(\mu_2)$, where $\beta(x) = ||K^x||_{\Psi_1}$. Then $I_K : L_{\Phi_1}(\mu_1) \to L_{\Phi_2}(\mu_2)$, $(I_K f)(x) = \int K(x, y) f(y) d\mu_1(y)$, is a bounded operator. **Proof:** Take $f \in L_{\Phi_1}(\mu_1)$. Write $t_1 = ||f||_{\Phi_1}$ and $t_2 = ||\beta||_{\Phi_2}$. Consider

$$\int \Phi_2 \left(\frac{|(I_K f)(x)|}{2t_1 t_2} \right) d\mu_2(x) = \int \Phi_2 \left(\frac{|\int K(x, y) f(y) d\mu_1(y)|}{2t_1 t_2} \right) d\mu_2(x)$$

$$\leq \int \Phi_2 \left(\frac{\int |K(x, y)|}{2t_2} \frac{|f(y)|}{t_1} d\mu_1(y) \right) d\mu_2(x)$$

$$\leq \int \Phi_2 \left(2 \frac{(||K^x||_{\Psi_1}}{2t_2} \frac{||f||_{\Phi_1}}{t_1} \right) d\mu_2(x)$$
(By using Hölder's Inequality)
$$\leq \int \Phi_2 \left(\frac{\beta(x)}{t_2} \right) d\mu_2(x)$$

$$\leq 1$$

Hence

$$|I_K f||_{\Phi_2} \le 2||\beta||_{\Phi_2}||f||_{\Phi_1}$$
 for every $f \in L_{\Phi_1}(\mu_1)$.

This proves that I_K is a bounded operator. \Box

Acknowledgement. The authors are extremely thankful to the referee for his useful suggestions.

References

- S. Bloom and R. Kerman, Weighted norm inequalities for operators of Hardy type, Proc. Amer. Math. Soc. 113, (1991), 135-141.
- [2] C. C. Cowen and B.D. Maccluer, Composition operators on spaces of analytic functions, Studies in advanced Mathematics, CRC Press New York (1995).
- [3] A. Gupta and B.S. Komal, Generalized integral operators on function spaces, Int. Journal of Math Analysis, Vol. 3, 26(2009), 1277-1282.
- [4] A. Gupta and B.S. Komal, Weighted composite integral operators, Int. Journal of Math Analysis, Vol. 3, 26(2009), 1283-1293.
- [5] A. Gupta and B.S. Komal, Volterra Composition operators Int. J. Comtemp. Math. Science, Vol. 6, 2011, No. 7, 345-351.
- [6] S. Gupta, B. S. Komal and Nidhi Suri, Weighted Composition Operators on Orlicz spaces, Int. J. Contemp. Math. Science, Vol. 5, No.1, (2010), 11-20.
- [7] A. Kuffner, O. John and S. Fucik, Function spaces Academic Prague, 1977.
- [8] Yu. I. Lyubic, Composition of integration and substitution, Linear and complex Analysis, Problem Book, Springer Lect. Notes in Math., 1043, Berlin (1984), 249-250.
- [9] K. R. Parthasarthy, Introduction to probability and measure, Macmilan Limited, (1977).
- [10] M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, Marcel Dekker, Inc. New York, Basel and Hong Kong, 1991.
- [11] R. K. Singh and B. S. Komal, Composition operator on l^p and its adjoint, Proc. Amer. Math. Soc. 70, (1978), 21-25.

- [12] R. K. Singh and J. S. Manhas, Composition operators on function spaces, North Holland Mathematics studies 179, Elsevier sciences publishers Amsterdam, New York (1993).
- [13] R. K. Singh, Composition operators induced by rational functions, Proc. Amer. Math. Soc. 59, (1976), 329-333.
- [14] V. D. Stepanov, On boundedness and compactness of a class of convolution operators, Soviet Math. Dokl. 41, (1990), 446-470.
- [15] R. Whitley, The spectrum of a Volterra composition operator, Integral equation and operator theory, Vol. 10, No. 1, (1987), 146-149.