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Abstract

In this paper we study bounded integro composition operators on Orlicz spaces.
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1 Introduction

Let (X,s,u) be a o-finite measure space. A measurable transformation T : (X,s) — (X, s) is
called non singular, if u(T~1(E)) = 0, whenever u(E) = 0 for each measurable subset E of X. If
T is non-singular, then the measure pT~! is absolutely continuous with respect to the measure .
Therefore by the Radon Nikodym theorem, there exists a positive measurable function fy such that

w(T-YE)) = /E fodu. The function fq is called the Radon Nikodym derivative of the measure puT~!

with respect to the measure p. A bounded projection operator E : L (X, s, 1) = Ly(X, T~ (s), ) is
known as the expectation operator or the conditional expectation. The properties of the expectation
operator can be found in Parthasarathy [9]. If T is non singular measurable transformation and if
fo is an essentially bounded measurable function, then the operator Cr : L,(p) — L,(p) defined
by Crf = foT, Vf € L,(u) is a bounded operator (see Singh [13 ] ). The operator Cr is called a
composition operator induced by T. A measurable function K : X x X — R is called a kernel function.
A convex function ® : R — RT is called a Young function if it satisfies the following properties:
(i) @(x) =P(—z) for every x € R,
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(i) ®(0)=0,
(iii) lim ®(z) = co.
r—r00
With each Young function ® we can associate another Young function ¥ : R — RT which
is defined by ¥(y) = sup{z|y| — ®(x) : « > 0} for each y € R. The function ¥ is called the

complementary function of ®. Suppose X C R. Define Lg (1) = {f|f : X — R is measurable function
and / O(af|)dp < oo for some a > 0}. For f € Lg(p), if we define
b'e

|f|<1>=inf{e>0:/X (|f>d <1}

then Lg(p) is a Banach space under the norm ||.||¢. If ®(x) = |z|P for every € R, then Lg(u) =
L, (1), the well known Banach space of pt" integrable functions defined on X. The Holder’s inequality
for Orlicz spaces is stated as follows:

If fe Lo(u) and g € Ly(p), with (@, ¥) as a normalized complementary Young pair, then

/ Fald() < 2111 11ll9]lw
X

Let {p,} be a sequence of strictly positive real numbers. Suppose X = N, the set of natural numbers.

Let u be the measure on P(N) , the power set of N, defined by u(E) = Z . Then
nek

Lo(N) = 4 (N) = {f|f N — C and ZCIJ ful ,un<oof0rsomea>0}

The space ¢4 (N) is known as weighted Orlicz sequence space.
If T: X — X is a measurable transformation and K : X x X — R is the kernel function, then
the bounded linear operators RE : Lg(n) — Lo(p) and LE : Le(p) — Lo (i) defined by

(BED@) = [ Ka){@w)dnty) o cvery < La(u)

and

(LED@) = [ KE@@)5@dute) for every f & Lo(a)

are known as integro composition operators.

For literature concerning Orlicz spaces, composition operators, integral operators, integro com-
position operators we refer to Rao [10], Gupta, Komal and Suri [6], Kuffner [7 ], Cowen [2], Singh and
Komal [11 ], Singh and Manhas [12], Bloom and Kerman [1], Gupta and Komal ([3 ],[4],[5]), Lyubic
[8], Stepanov [14] and Whitley [15].
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2 Bounded Integro Composition Operators on Weighted Or-
licz Sequence Spaces

In this section we obtain a sufficient condition for an integro composition operator to be bounded.
Let K :NxN—Rand T :N — N be two mappings. Set

Z K(mvp)/’ép7 if T—l(n) 75 ¢

peET—1(n) Hn

0 , AT (n)=¢

K(](T)%TL) =

For each m € N, let KJ* : N — N be defined by KJ*(n) = Ko(m,n) and 8 : N — R be defined by
Bm) = |IKq"|w-

Theorem 2.1 Let 3 € ¢4(N). Then the integro composition operator RE : ¢4 (N) — ¢4(N) is a
bounded operator.

Proof: Take f € ¢%(N). Consider

| > Ko(m,n) f(T(n))pn]

<R¥f»@nn) - =
L@<2mﬂ@mw¢ pm = A¢ EINEGE Hm
SN 1K (mp) f(T (D))l
n=1peT—1(n)
= “L¢ IEINE fim

Z Z (1) pap

_ /(I) n=1peT- 1<n> .
N 2|8l flle "
Z\Ko (m,n) f(n)|pn
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‘4 2118112 |1 /1o a
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(by using Holder’s inequality)
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Hence ||RE f|lo < 2||B||a||f||e for every f € ¢4 (N). This proves that R is a bounded operator. O

Example 2.2 Let T : N — N be defined by T'(n) = n+2 for all n € N. Let ® : N — R be defined

by ®(n) = 2

is defined by K (m,n) = Qm% Then, for u, = we get

L
n

o Km
1Ky e = inf{e>0:Z\I/< 06(”)>Mn§1
n=1

|
=
E,

2’ Then its complementary function U(n) is given by ¥(n) =

v
<
M8
<

|
=
E,

|
=
E,

oo
e>O:Z\II

I
=
=8

16 1
2¢292m+2n  gn+t2 <

2 =1
€>O:€222m223n§1}

n=1

€e>0:

I
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Lanr}

I
E;
—— A —— N ——— S ———
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Il
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1
)

= inf e>0:2.1<1}
6222"7‘ 7=
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B ,/7.22m—1

Also

=
CR
I

o0
= inf{e>0: Z
m=1
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= inf{e>0: %)

= —F <00

V21

Hence R¥ is a bounded operator in view of Theorem 2.1.
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3 Bounded Integro Composition Operators on Orlicz Spaces

In this section we shall discuss the boundedness of various types of integro composition operators
acting on Orlicz spaces. Let p be any measure on s. Suppose ®1,P, are two Young functions on X.
For x € X, let K : X — R be defined by K*(y) = K(z,y). Suppose 8 : X — R is defined by

Bx) = [[K7 ||,

Theorem 3.1 Suppose 3 € La,(uT71) .

Then LE : Lo, (1) — Lo, (u2) is a bounded operator.

Proof: Take f € Lo, (p1). Write t1 = ||f|a, , ta = ||B||@,, w27 1. Consider

Ju (55

<

Hence [|LF flle, < 2[Bllosuur—111f]le,

operator. O

Example 3.2 Let T : R — R be defined b
the Lebesgue measure and ®q(z) =

2
Suppose K : R x R — R be defined by K(z,y

plz) =

)dmu»—/' CfK 2hé<ﬂm<n)mmw

2KT(®)
®2<| |‘I’1||f||‘1’1>du2(m)

fon (51
for (45
/

( by usmg Holder’s inequality)
@2 < IE )d QTil(JC)

for every f € Lg,(p1). This proves that LE is a bounded

T(x) = Zx. Then dudj;l,(;ch) = 2. Take py = pio = pu,
2

CI)(x) Then ¥(z) = %-.

)=¢e

—(z2+y?)
P

@2(1‘) = L

. Now

K w

i {es 00 o (FE2) aug) <1

€
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Therefore,

||/8\|¢,de71 = inf{e>0:/<1>
B

(’B(x)) duT—(z) < 1}
= inf {e >0: z)

€
i duT(z) <1
2¢2 -

1 2
= inf<e>0:—= X z><—><\/27r§1
2¢2 2 7

= 1

Hence L? is a bounded operator in view of Theorem 3.1.

For each z € X, define K% : X — R by K%(y) = E(K*)oT ' (y)fo(y) and B(z) = ||K%||w,,
where ¥, is the complementary function of ®;.

Theorem 3.3 Suppose 8 € Lo,(12) . Then the integro composition operator RE : L, (1) —
La,(p2) is a bounded operator.
Proof: For f € Lg,(u1). Write t1 = || f||s, and t3 = ||5]||s,. Consider

/% (IIK z, y%th( )dul(y)l) dyin(x)
< o (Lt \|21;t2( M) g,
_ /(1)2 <|E (K®) OT () fo(y)l |f§f)dm(y)> dyia ()
- /@2 <2IIE sz(g Hfollw, Iftlllcpl) Qo)
(By using Holder’s Inequality)
< 02
)

Hence ||RE f||s, < 2|8l|@,||f||e, for every f € Lg, (111), and RE is a bounded operator. O
Theorem 3.4 Suppose B € La,(p2) , where f(z) = ||K*||w,. Then Ik : Ly, (p11) — La, (p2),

(Ixf)(z) = [ K(z,y)f(y)du(y), is a bounded operator.
Proof Take f € Lo, (p1). Write t1 = ||f]|e, and t2 = ||5]|s,-
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Consider

[on (U0 gy = [, (UKD 00
< [ (LRI 4 ))
[ U Y
/ E (By ;smg Hoider> s Inequality )
<
< /¢’2 t(g dpa(
< 1

Hence

Uk flle, < 2[B]le, |l flle, for every f € Lo, (11).

This proves that Ik is a bounded operator. O
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