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Abstract. A polymatroid is a generalization of the classical notion of matroid. The
main results of this paper are formulas for computing the type of base ring associated
to a product of transversal polymatroids. We also present some extensive computational
experiments which were needed in order to deduce the formulas. The base ring associated
to a product of transversal polymatroids has multiplicity very large in general. At this
moment we have examples of base rings with multiplicity of order 1015.
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1. Introduction

For the algorithms implemented in Normaliz see [3], [4], [5] and [7]. This paper is
organized as follows. In Section 2 we fix the notation and recall some basic results related
to finitely generated rational cones. The notion of polymatroid is a generalization of the
classical notion of matroid, see [8], [9], [12], [13] and [20]. Associated with the base B of
a discrete polymatroid P one has a K−algebra K[B], called the base ring of P, defined to
be the K−subalgebra of the polynomial ring in n indeterminates K[x1, . . . , xn] generated
by the monomials xu with u ∈ B. From [12], [19] the algebra K[B] is known to be normal
and hence Cohen-Macaulay. The type of normal ring is the minimal number of generators
of the canonical module. Danilov Stanley theorem, see [10], [17] gives us a description of
the canonicale module in terms of relative interior of the cone.

If Ai are some nonempty subsets of [n] for 1 ≤ i ≤ m, A = {A1, . . . , Am}, then the set
of the vectors

∑m
k=1 eik with ik ∈ Ak is the base of a polymatroid, called the transversal

polymatroid presented by A. The base ring of a transversal polymatroid presented by A is
the ring

K[A] := K[xi1 · · · xim | ij ∈ Aj , 1 ≤ j ≤ m].

In Section 4 we study the cone generated by a product of transversal polymatroids and
we compute the type of the associated base ring. We end this section with the following
conjecture:
Conjecture: Let n ≥ 4, Ai ⊂ [n] for any 1 ≤ i ≤ n and K[A] be the base ring associated
to the transversal polymatroid presented by A = {A1, . . . , An}. If the Hilbert series is:

HK[A](t) =
1 + h1 t+ . . .+ hn−r tn−r

(1− t)n
,

then we have the following:
1) If r = 1, then type(K[A]) = 1 + hn−2 − h1.
2) If 2 ≤ r ≤ n, then type(K[A]) = hn−r.

The base ring associated to a product of transversal polymatroids has multiplicity very
large in general. At this moment we have examples of base rings with multiplicity of order
1015.
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I am grateful to B. Ichim for some extensive computational experiments which was
needed in order to deduce the formulas contained in the paper.

2. Prelimininaries

In this section we fix the notation and recall some basic results. For details we refer the
reader to [1], [6], [2], [17], [18] and [21].

The subsets of elements ≥ 0 in Z,Q,R will be referred to by Z+,Q+,R+ and the subsets
of elements > 0 by Z>,Q>,R>.

Fix an integer n > 0. If 0 6= a ∈ Qn, then Ha will denote the rational hyperplane of Rn

through the origin with normal vector a, that is,

Ha = {x ∈ Rn | 〈x, a〉 = 0},

where 〈 , 〉 is the scalar product in Rn. The two closed rational linear halfspaces bounded
by Ha are:

H+
a = {x ∈ Rn | 〈x, a〉 ≥ 0} and H−

a = H+
−a = {x ∈ Rn | 〈x, a〉 ≤ 0}.

The two open rational linear halfspaces bounded by Ha are:

H>
a = {x ∈ Rn | 〈x, a〉 > 0} and H<

a = H>
−a = {x ∈ Rn | 〈x, a〉 < 0}.

If S ⊂ Qn, then the set

R+S = {
r∑

i=1

aivi : ai ∈ R+, vi ∈ S, r ∈ N}

is called the rational cone generated by S. The dimension of a cone is the dimension of the
smallest vector subspace of Rn which contains it.

By the theorem of Minkowski-Weyl, see [2], [11], [21], finitely generated rational cones
can also be described as intersection of finitely many rational closed subspaces (of the form
H+

a ). We further restrict this presentation to the class of finitely generated rational cones,
which will be simply called cones. If a cone C is presented as

C = H+
a1

∩ . . . ∩H+
ar

such that no H+
ai

can be omitted, then we say that this is an irredundant representation of

C. If dim(C) = n, then the halfspaces H+
a1
, . . . , H+

ar
in an irredundant representation of C

are uniquely determined and we set

relint(C) = H>
a1

∩ . . . ∩H>
ar

the relative interior of C. If ai = (ai1, . . . , ain), then we call

Hai(x) := ai1x1 + . . .+ ainxn = 0,

the equations of the cone C.
A hyperplane H is called a supporting hyperplane of a cone C if C ∩ H 6= ∅ and C is

contained in one of the closed halfspaces determined by H. If H is a supporting hyperplane
of C, then F = C ∩ H is called a proper face of C. It is convenient to consider also the
empty set and C as faces, the improper faces. The faces of a cone are themselves cones. A
face F with dim(F ) = dim(C)−1 is called a facet. If dim R+S = n and F is a facet defined
by the supporting hyperplane H, then H is generated as a linear subspace by a linearly
independent subset of S.

A cone C is pointed if 0 is a face of C. This equivalent to say that x ∈ C and −x ∈ C
implies x = 0. The faces of dimension 1 of a pointed cone are called extreme rays.
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3. Transversal polymatroids

In this section we introduce the notion of a discrete polymatroid and the particular case
of transversal polymatroid. We further recall some results from [16] on the embedding cone
and the type of a particular family of transversal polymatroids.

Discrete polymatroids. Fix an integer n > 0 and set [n] := {1, 2, . . . , n}. The
canonical basis vectors of Rn will be denoted by e1, . . . , en. For a vector a ∈ Rn, a =
(a1, . . . , an), we set | a | := a1 + . . .+ an.

A nonempty finite set B ⊂ Zn
+ is the set of bases a discrete polymatroid P if:

(a) for every u, v ∈ B one has | u | = | v |;
(b) (the exchange property) if u, v ∈ B, then for all i such that ui > vi there exists j

such that uj < vj and u+ ej − ei ∈ B.

An element of B is called a base of the discrete polymatroid P.
Let K be an infinite field. For a ∈ Zn

+, a = (a1, . . . , an) we denote by xa ∈ K[x1, . . . , xn]
the monomial xa := xa11 xa22 · · ·xann and we set log(xa) = a. Associated with the set of bases
B of a discrete polymatroid P one has a K−algebra K[B], called the base ring of P, de-
fined to be the K−subalgebra of the polynomial ring in n indeterminates K[x1, x2, . . . , xn]
generated by the monomials xu with u ∈ B. From [12], [19] the monoid algebra K[B]
is known to be normal and we recall that by a well known result of Danilov and Stanley
the canonical module ωK[B] of K[B], with respect to standard grading, can be expressed
as an ideal ofK[B] generated by monomials, that is ωK[B] = ({xa| a ∈ Z+B∩relint(R+B)}).

Transversal polymatroids. Consider another integer m such that 1 ≤ m ≤ n. If Ai

are some nonempty subsets of [n] for 1 ≤ i ≤ m and A = {A1, . . . , Am}, then the set of the
vectors

∑m
k=1 eik with ik ∈ Ak is the set of bases of a polymatroid, called the transversal

polymatroid presented by A. The base ring of the transversal polymatroid presented by A
is the ring

K[A] := K[xi1 · · · xim | ij ∈ Aj , 1 ≤ j ≤ m].

We denote by

A := {log(xj1 · · · xjn) | jk ∈ Ak, for all 1 ≤ k ≤ n} ⊂ Nn

the set of the exponents of the generators of the associated base ring K[A]. Further,
for the transversal polymatroid presented by A we associate a (n× n) square tiled by unit
subsquares, called boxes, colored with white and black as follows: the box of coordinate (i, j)
is white if j ∈ Ai, otherwise the box is black. We will call this square the polymatroidal

diagram associated to the presentation A = {A1, . . . , An}([14],[15]).
In the following we shall restrict our study to a special family of transversal polymatroids.

Fix n ∈ Z+, n ≥ 3, 1 ≤ i ≤ n − 2 and 1 ≤ j ≤ n − 1 and consider the transversal
polymatroid presented by A = {A1 = [n], A2 = [n] \ [i], . . . , Aj+1 = [n] \ [i], Aj+2 =
[n], . . . , An = [n]}.

We recall at this point some previous results contained in [16]. The cone generated by
A has the irredundant representation

R+A =
⋂

a∈N

H+
a ,

where N = {νji }
⋃

{ek | 1 ≤ k ≤ n} and

νji :=
i∑

k=1

−jek +
n∑

k=i+1

(n− j)ek.
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j − rows

n− rows

i− columns

n− columns

Polymatroidal diagram associated to the presentation

A = {A1 = [n], A2 = [n] \ [i], . . . , Aj+1 = [n] \ [i], Aj+2 = [n], . . . , An = [n]}.

The extreme rays of the cone R+A are given by

E := {nek | i+ 1 ≤ k ≤ n}
⋃

{(n− j)er + j es | 1 ≤ r ≤ i and i+ 1 ≤ s ≤ n}.

The polynomial

Pd(k) =

(
d+ k − 1

d− 1

)

counts the number of monomials in degree k over the standard graded polynomial ring
K[x1, . . . , xd], i.e. Pd(k) is the Hilbert function of K[x1, . . . , xd]. Then

Pd(k − d) =

(
k − 1

d− 1

)
= Qd(k)

counts the number of monomials in degree k for which all the variables have nonzero powers,
i.e. Qd(k) is the Hilbert function of the canonical module ωK[x1,...,xd] = K[x1, . . . , xd](−d).

The main result of [16] is the following theorem.

Theorem 1. With the above assumptions, the following holds:

(a) If i+ j ≤ n− 1, then the type of K[A] is

type(K[A]) = 1 +

n−i−j−1∑

t=1

Qi(n+ i− j + t)Qn−i(n− i+ j − t),

(b) If i+ j ≥ n, then the type of K[A] is

type(K[A]) =

r(n−j)−i∑

t=1

Qi(r(n− j)− t)Qn−i(rj + t),

where r =
⌈
i+1
n−j

⌉
(⌈x⌉ is the least integer ≥ x).

Further, from the proof of main theorem in [16], we get the following lemma:

Lemma 2. The following holds:
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(a) Suppose i+ j ≤ n− 1. Let M be the set

M = {α ∈ Zn
> | |(α1, . . . , αi)| = n+ i− j + t,

|(αi+1, . . . , αn)| = n− i+ j − t, t ∈ [n− i− j − 1]}.

Then for any β ∈ Z+A ∩ relint(R+A) with | β | = sn ≥ 2n and t ∈ [n − i − j − 1]
such that H

ν
j
i

(β) = n(n− i−j− t) we can find α ∈ M with H
ν
j
i

(α) = n(n− i−j− t)

and β − α ∈ Z+A.

(b) Suppose i+ j ≥ n and set r =
⌈
i+1
n−j

⌉
. Let M be the set

M = {α ∈ Zn
> | |(α1, . . . , αi)| = r(n− j)− t,

|(αi+1, . . . , αn)| = rj + t, t ∈ [r(n− j)− i]}.

Then for any β ∈ Z+A ∩ relint(R+A) with | β | = sn ≥ rn and t ∈ [r(n − j) − i]
such that H

ν
j
i

(β) = nt we can find α ∈ M with H
ν
j
i

(α) = nt such that β−α ∈ Z+A.

We set

Ar = {α = (α1, . . . , αn) ∈ Zn
+ | α =

r∑

i=1

βi where βi ∈ A}

and

A(r) = Ar
⋂

relint(R+A).

Lemma 3. The following holds:

(a) The cardinal of Ar is

#(Ar) =

r(n−j)∑

t=0

Pi(t)Pn−i(rn− t);

(b) The cardinal of A(r) is

#(A(r)) =

r(n−j)∑

t=i

Qi(t)Qn−i(rn− t).

Proof. Since the cone generated by A has the irreducible representation

R+A =
⋂

a∈N

H+
a

and the monoid generated by A is normal it follows that

Ar = {α ∈ Zn
+ | |α| = rn,

i∑

k=1

−jαk +
n∑

k=i+1

(n− j)αk ≥ 0}

= {α ∈ Zn
+ | |α| = rn, 0 ≤ α1 + . . .+ αi ≤ r(n− j)}

and

A(r) = {(α ∈ Zn
> | |α| = rn,

i∑

k=1

−jαk +
n∑

k=i+1

(n− j)αk > 0}

= {(α ∈ Zn
> | |α| = rn, i ≤ α1 + . . .+ αi < r(n− j)}.
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a) For any 0 ≤ t ≤ r(n− j), the equation α1+ . . .+αi = t has Pi(t) distinct nonnegative
integer solutions, respectively αi+1+ . . .+αn = rn−t has Pn−i(rn−t) distinct nonnegative
integer solutions. Thus, the cardinal of Ar is

#(Ar) =

r(n−j)∑

t=0

Pi(t)Pn−i(rn− t).

b) For any i ≤ t ≤ r(n−j)−1, the equation α1+. . .+αi = t hasQi(t) distinct nonnegative
integer solutions with αk ≥ 1, for any k ∈ [i], respectively αi+1 + . . . + αn = rn − t has
Qn−i(rn− t) distinct nonnegative integer solutions with αk ≥ 1 for any k ∈ [n] \ [i]. Thus,
the cardinal of A(r) is

#(A(r)) =

r(n−j)∑

t=i

Qi(t)Qn−i(rn− t).

�

4. The cone and the type of the base ring associated to a product of

transversal polymatroids

This section contains the main results of this paper. We study the cone generated by a
product of transversal polymatroids and the type of the associated base ring.

The product of transversal polymatroids. Fix n1, n2 ∈ Z+, n1, n2 ≥ 3, n = n1+n2,
i1 ∈ [n1 − 2], i2 ∈ [n2 − 2], j1 ∈ [n1 − 1] and j2 ∈ [n2 − 1]. For the vectors α ∈ Z

n1

+ and

β ∈ Z
n2

+ we denote by α̃, β̄ ∈ Z
n1+n2

+ the vectors

α̃ = (α, 0, . . . , 0︸ ︷︷ ︸
n2 times

) ∈ Z
n1+n2

+ , β̄ = (0, . . . , 0︸ ︷︷ ︸
n1 times

, β) ∈ Z
n1+n2

+ .

If S ⊂ Z
n1

+ and P ∈⊂ Z
n2

+ we denote by S̃, P̄ ∈ Z
n1+n2

+ the following sets

S̃ = {α̃ | α ∈ S} and P̄ = {β̄ | β ∈ P}.

Next, we consider theK−algebrasK[A] andK[B] which are the base rings of the transversal
polymatroids presented by A, respectively B, where:

A = {A1 = [n1], A2 = [n1] \ [i1], . . . , Aj1+1 = [n1] \ [i1], Aj1+2 = [n1], . . . , An1
= [n1]}

and

B = {An1+1 = [n] \ [n1], An1+2 = [n] \ [n1 + i2], . . . , An1+j2+1 = [n] \ [n1 + i2],

An1+j2+2 = [n] \ [n1], . . . , An1+n2
= [n] \ [n1]}.

Let
A = {log(xt1 · · · xtn1

) | jk ∈ Ak, for all 1 ≤ k ≤ n1} ⊂ Z
n1

+

be the exponent set of generators of K−algebra K[A] and

B = {log(xt1 · · · xtn1
) | jk ∈ Ak, for all n1 + 1 ≤ k ≤ n1 + n2} ⊂ Z

n2

+

be the exponent set of generators ofK−algebraK[B].We denote byK[A⋄B] theK−algebra

K[xα̃+β̄ | α ∈ A, β ∈ B] and by A ⋄B the exponent set of generators of K[A ⋄ B].
It is easy to see that K−algebra K[A ⋄ B] is the base ring associated to the transversal

polymatroid presented by

A ⋄ B = {A1 = [n1], A2 = [n1] \ [i1], . . . , Aj1+1 = [n1] \ [i1], Aj1+2 = [n1], . . . , An1
= [n1],

An1+1 = [n] \ [n1], An1+2 = [n] \ [n1 + i2], . . . , An1+j2+1 = [n] \ [n1 + i2],

An1+j2+2 = [n] \ [n1], . . . , An1+n2
= [n] \ [n1]} .
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S

Polymatroidal diagram associated to the presentation A ⋄ B.

j1 − rows

n1 − rows

i1 − columns
n1 − columns

i2 − columns n2 − columns

j2 − rows

n2 − rows

The cone generated by a product of transversal polymatroids. The following
proposition describes the cone generated by A ⋄B.

Proposition 4. With the notations from above, the cone generated by A ⋄ B has the irre-

ducible representation

R+(A ⋄B) = Π ∩
⋂

a∈N

H+
a ,

where Π is the hyperplane described by the equation

−n2x1 − · · · − n2xn1
+ n1xn1+1 + · · ·+ n1xn1+n2

= 0

and N = {ν̃j1i1 , ν̄
j2
i2
}
⋃
{ ek | 1 ≤ k ≤ n}.

Proof. Since A ⋄ B = {α̃ + β̄ | α ∈ A, β ∈ B} and | α̃ | = n1, | β̄ | = n2, it is clear that
R+(A ⋄B) ⊂ Π. It is also clear that

R+(A ⋄B) ⊂ R+(Ã ∪ R̄n2)
⋂

R+(R̃
n1 ∪ B̄).

From the irredundant representation presented in [16] (see Section 3) for the cone generated
by A and B we deduce that

R+(Ã ∪ R̄n2) =
⋂

a∈Ñ1

H+
a , R+(R̃

n1 ∪ B̄) =
⋂

a∈N̄2

H+
a

where Ñ1 = {ν̃j1i1 }
⋃
{ek | 1 ≤ k ≤ n1} and N̄2 = {ν̄j2i2 }

⋃
{ek | n1 + 1 ≤ k ≤ n}. We get

R+(A ⋄B) ⊂ Π ∩
⋂

a∈N

H+
a .

Let

C =
⋂

a∈N

H+
a .

It is clear that C is a pointed cone of dimension n so Π ∩ C is pointed of dimension n− 1.
Consider an extremal ray υ of the cone Π ∩ C. Then υ ∈ Π so it is not possible that all
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entries γi are 0 for all 1 ≤ i ≤ n1 or for all n1 + 1 ≤ i ≤ n. Moreover υ is contained in at
least n− 2 hyperplanes Ha so υ is contained in at least n− 4 hyperplanes of type Hek .

1) If υ is contained in n− 4 hyperplanes of type Hek then υ ∈ H
ν̃
j1
i1

and υ ∈ H
ν̄
j2
i2

2) If υ is contained in n− 3 hyperplanes of type Hek then υ ∈ H
ν̃
j1
i1

or υ ∈ H
ν̄
j2
i2

3) If υ is contained in n− 2 hyperplanes of type Hek then υ 6∈ H
ν̃
j1
i1

and υ 6∈ H
ν̄
j2
i2

First case.
Let 1 ≤ k1 < . . . < kn−4 ≤ n be a sequence of integers and {r1, s1, r2, s2} = [n] \
{k1, . . . , kn−4}. If 1 ≤ r1 ≤ i1, i1+1 ≤ s1 ≤ n1, n1+1 ≤ r2 ≤ n1+i2 and n1+i2+1 ≤ s2 ≤ n
then x = (x1, . . . , xn) ∈ Zn

+ with xt = (n1 − j1)δtr1 + j1δts1 + (n2 − j2)δtr2 + j2δts2 (δtk is
the Kronecker symbol) is a solution of the system of equations

(∗)





zk1 = 0
...

zkn−4
= 0

−j1 z1 − . . .− j1 zi1 + (n1 − j1)zi1+1 + . . .+ (n1 − j1)zn1
= 0

−j2 zn1+1 − . . .− j2 zn1+i2 + (n2 − j2)zn1+i2+1 + . . .+ (n2 − j2)zn = 0.

fulfilling also the condition Π(x) = 0. Else, there exists no solution x ∈ Zn
+ for the system

of equations (∗) with Π(x) = 0 because either H
ν̃
j1
i1

(x) 6= 0 or H
ν̄
j2
i2

(x) 6= 0.

Thus, there are i1i2(n1 − i1)(n2 − i2) sequences 1 ≤ k1 < . . . < kn−4 ≤ n such that the
system of equations (∗) has a solution x ∈ Zn

+ with Π(x) = 0, and they induce the set of
extremal rays:

{(n1 − j1)er1 + j1 es1 + (n2 − j2)er2 + j2 es2 | 1 ≤ r1 ≤ i1, i1 + 1 ≤ s1 ≤ n1,

n1 + 1 ≤ r2 ≤ n1 + i2, n1 + i2 + 1 ≤ s2 ≤ n}.

Second case.
Let 1 ≤ k1 < . . . < kn−3 ≤ n be a sequence of integers and {r1, s1, p} = [n]\{k1, . . . , kn−3}.
If 1 ≤ r1 ≤ i1, i1 + 1 ≤ s1 ≤ n1 and n1 + 1 ≤ p ≤ n then x ∈ Zn

+ with xt = (n1 − j1)δtr1 +
j1 δts1 + n2 δtp is a solution of the system of equations

(∗∗)





zk1 = 0
...

zkn−3
= 0

−j1 z1 − . . .− j1 zi1 + (n1 − j1)zi1+1 + . . .+ (n1 − j1)zn1
= 0.

fulfilling also the condition Π(x) = 0. Else, there exists no solution x ∈ Zn
+ for the system

of equations (∗∗) with Π(x) = 0.
Thus, there exist i1(n1− i1)n2 sequences 1 ≤ k1 < . . . < kn−3 ≤ n such that the system

of equations (∗∗) has a solution x ∈ Zn
+ with Π(x) = 0, and they induce the set of extremal

rays:

{(n1 − j1)er1 + j1 es1 + n2ep | 1 ≤ r1 ≤ i1, i1 + 1 ≤ s1 ≤ n1, n1 + 1 ≤ p ≤ n}.

Analog one obtains the set of extremal rays induced by υ ∈ H
ν̄
j2
i2

:

{n1ep + (n2 − j2)er2 + j2 es2 | 1 ≤ p ≤ n1, n1 + 1 ≤ r2 ≤ n1 + i2, n1 + i2 + 1 ≤ s2 ≤ n}.
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The third case.
It is easy to see that there are (n1 − i1)(n2 − i2) induced extremal rays in this case:

{n1er + n2es | i1 + 1 ≤ r ≤ n1, n1 + i2 + 1 ≤ s ≤ n}.

In conclusion, E := {v1 + v2 | v1 ∈ E1, v2 ∈ E2} is the set of extremal rays of the cone
Π ∩ C where

E1 := {n1ek | i1 + 1 ≤ k ≤ n1}
⋃

{(n1 − j1)er + j1 es | 1 ≤ r ≤ i1 and i1 + 1 ≤ s ≤ n1}

and

E2 :={n2ek | n1 + i1 + 1 ≤ k ≤ n}
⋃

{(n2 − j2)er + j2 es | n1 + 1 ≤ r ≤ n1 + i2 and n1 + i2 + 1 ≤ s ≤ n}.

It clear that E ⊂ R+(A ⋄B) and we get

R+(A ⋄B) ⊃ Π ∩
⋂

a∈N

H+
a .

�

The type of the base ring. The next theorem is the main result of this paper.
It contains formulas for computing the type of the base ring associated to a product of
transversal polymatroids.

Theorem 5. Let K[A] and K[B] the base rings of the transversal polymatroids presented

by A and B from above. Then:

a) If i1 + j1 ≤ n1 − 1 and i2 + j2 ≤ n2 − 1, then the type of K[A ⋄ B] is

type(K[A⋄B]) = 1+(type(K[A]−1)Q2+(type(K[B]−1)Q1−(type(K[A]−1)(type(K[B]−1),

where

Qr =

2(nr−jr)−1∑

t=ir

Qir(t)Qnr−ir(2nr − t), for r ∈ [2].

b) If i1 + j1 ≥ n1 and i2 + j2 ≥ n2 such that r1 ≤ r2 where r1 =
⌈

i1+1
n1−j1

⌉
, r2 =

⌈
i2+1
n2−j2

⌉

then the type of K[A ⋄ B] is

type(K[A ⋄ B]) = [

r2(n1−j1)−1∑

t=i1

Qi1(t)Qn1−i1(r2n1 − t)] type(K[B]).

c) If i1 + j1 ≤ n1 − 1, i2 + j2 ≥ n2 and r2 =
⌈

i2+1
n2−j2

⌉
, then the type of K[A ⋄ B] is

type(K[A ⋄ B]) = [G+ E] type(K[B]),

where

G =

(r2−1)(n1−j1)∑

t=0

Pi1(t)Pn1−i1((r2 − 1)n1 − t),

E =

n1−i1−j1−1∑

t=1

Qi1(i1 + (r2 − 1)(n1 − j1) + t)Qn1−i1(n1 − i1 + (r2 − 1)j1 − t).
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Proof. SinceK[A⋄B] is normal ([12]), the canonical module ωK[A⋄B] ofK[A⋄B], with respect
to standard grading, can be expressed as an ideal of K[A ⋄ B] generated by monomials

ωK[A⋄B] = ({xa| a ∈ Z+(A ⋄B) ∩ relint(R+(A ⋄B))})K[A ⋄ B],

where A⋄B is the exponent set of the K− algebra K[A⋄B] and relint(R+(A⋄B)) denotes
the relative interior of R+(A ⋄ B). By Proposition 4 the cone generated by A ⋄ B has the
irreducible representation

R+(A ⋄B) = Π ∩
⋂

a∈N

H+
a ,

where Π : −n2x1 − · · · − n2xn1
+ n1xn1+1 + · · ·+ n1xn1+n2

= 0,

N = {ν̃j1i1 , ν̄
j2
i2
, ek | 1 ≤ k ≤ n1 + n2} and {ei}1≤i≤n1+n2

is the canonical base of Rn1+n2 .
a) Let i1 ∈ [n1 − 2], j1 ∈ [n1 − 1], i2 ∈ [n2 − 2], j2 ∈ [n2 − 1] be such that i1 + j1 ≤ n1 − 1
and i2 + j2 ≤ n2 − 1. If we denote by MA,MB the sets

MA = {α ∈ Z
n1

> | |(α1, . . . , αi1)| = n1 + i1 − j1 + t, |(αi1+1, . . . , αn1
)| =

n1 − i1 + j1 − t for any t ∈ [n1 − i1 − j1 − 1]},

MB = {α ∈ Z
n2

> | |(α1, . . . , αi2)| = n2 + i2 − j2 + t, |(αi2+1, . . . , αn2
)| =

n2 − i2 + j2 − t for any t ∈ [n2 − i2 − j2 − 1]}

we know from [16] that the canonical module ωK[A] of K[A] ( respectively, ωK[B] of K[B])
with respect to the standard grading can be expressed as an ideal of K[A]( respectively,
K[B]) generated by monomials

ωK[A] = ({x1 · · · xn, xα| α ∈ MA})K[A],

respectively
ωK[B] = ({x1 · · · xn, xα| α ∈ MB})K[B].

We will denote by MA⋄B the set

MA⋄B = {α̃+ q̄, β̄ + p̃ | α ∈ MA, β ∈ MB, p ∈ A(2), q ∈ B(2)}.

We will show that the canonical module ωK[A⋄B] of K[A ⋄ B], with respect to standard
grading, can be expressed as an ideal of K[A ⋄ B], generated by monomials

ωK[A⋄B] = ({x1 · · · xn, xα| α ∈ MA⋄B})K[A ⋄ B].

This fact is equivalent to show that

Z+(A ⋄B) ∩ relint(R+(A ⋄B)) = {(1, . . . , 1) + Z+(A ⋄B)} ∪
⋃

α∈MA⋄B

{α+ Z+(A ⋄B)}.

Since for any α ∈ MA, β ∈ MB, p ∈ A(2), q ∈ B(2)

H
ν̃
j1
i1

(α̃+ q̄) = H
ν
j1
i1

(α) = n1(n1 − i1 − j1 + t) > 0, H
ν̃
j1
i1

(β̄ + p̃) = H
ν
j1
i1

(p) > 0

and

H
ν̄
j2
i2

(β̄ + p̃) = H
ν
j2
i2

(β) = n2(n2 − i2 − j2 + t) > 0, H
ν̄
j2
i2

(α̃+ q̄) = H
ν
j2
i2

(q) > 0

it follows that

Z+(A ⋄B) ∩ relint(R+(A ⋄B)) ⊇ {(1, . . . , 1) + Z+(A ⋄B)} ∪
⋃

α∈MA⋄B

{α+ Z+(A ⋄B)}.

Let γ ∈ Z+(A ⋄ B) ∩ relint(R+(A ⋄ B)), then γk ≥ 1 for any k ∈ [n1 + n2]. Since
H

ν̃
j1
i1

((1, . . . , 1)) = n1(n1 − i1 − j1) > 0 and H
ν̄
j2
i2

((1, . . . , 1)) = n2(n2 − i2 − j2) > 0 it

follows that (1, . . . , 1) ∈ relint(R+(A ⋄ B)). Let δ ∈ Z+
n1+n2 , δ = γ − (1, . . . , 1). It is
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clear that Z+(A ⋄ B) = Z+Ã + Z+B̄. So, we have H
ν̃
j1
i1

(δ) = H
ν̃
j1
i1

(γ) − n1(n1 − i1 − j1) =

H
ν
j1
i1

(γ
′

)−n1(n1−i1−j1) andH
ν̄
j2
i2

(δ) = H
ν̄
j2
i2

(γ)−n2(n2−i2−j2) = H
ν
j2
i2

(γ
′′

)−n2(n2−i2−j2)

where γ = (γ
′

, γ′′), γ
′

∈ Z+A and γ
′′

∈ Z+B

IfH
ν
j1
i1

(γ
′

) ≥ n1(n1−i1−j1) andH
ν
j2
i2

(γ
′′

) ≥ n2(n2−i2−j2) thenH
ν̃
j1
i1

(δ) ≥ 0 andH
ν̄
j2
i2

(δ) ≥

0. Thus δ ∈ Z+(A ⋄ B) and γ ∈ {(1, . . . , 1) + Z+(A ⋄ B)}. If H
ν
j1
i1

(γ
′

) < n1(n1 − i1 − j1)

or H
ν
j2
i2

(γ
′′

) < n2(n2 − i2 − j2), then let t1 ∈ [n1 − i1 − j1 − 1] and t2 ∈ [n2 − i2 − j2 − 1]

such that H
ν
j1
i1

(γ
′

) = n1(n1 − i1 − j1 − t1) or H
ν
j2
i2

(γ
′′

) = n2(n2 − i2 − j2 − t2). Using

Lemma 2 we can find η
′

∈ MA with H
ν
j1
i1

(γ
′

) = H
ν
j1
i1

(η
′

) and γ
′

− η′ ∈ Z+A, respec-

tively we can find η
′′

∈ MB with H
ν
j2
i2

(γ
′′

) = H
ν
j2
i2

(η
′′

) and γ
′′

− η′′ ∈ Z+B. Thus for any

p ∈ A(2) and q ∈ B(2) we have γ − (η̃′ + q̄) ∈ Z+(A ⋄ B), γ − (η̄′′ + p̃) ∈ Z+(A ⋄ B) and

so there exists α ∈ MA⋄B such that γ ∈ {α + Z+(A ⋄ B)}. If H
ν
j1
i1

(γ
′

) ≥ n1(n1 − i1 − j1)

and H
ν
j2
i2

(γ
′′

) < n2(n2 − i2 − j2), then γ
′

∈ (1, . . . , 1) + Z+A and we can find η
′′

∈ MB

with H
ν
j2
i2

(γ
′′

) = H
ν
j2
i2

(η
′′

) and γ
′′

− η′′ ∈ Z+B. Thus, γ ∈ (p̃ + η̄′′) + Z+(A ⋄ B), where

p = (2, . . . , 2︸ ︷︷ ︸
n1−times

). So there exists α ∈ MA⋄B such that γ ∈ {α + Z+(A ⋄ B)}. Analog the

another case: H
ν
j1
i1

(γ
′

) < n1(n1 − i1 − j1) and H
ν
j2
i2

(γ
′′

) ≥ n2(n2 − i2 − j2).

Thus

Z+(A ⋄B) ∩ relint(R+(A ⋄B)) = {(1, . . . , 1) + Z+(A ⋄B)} ∪
⋃

α∈MA⋄B

{α+ Z+(A ⋄B)}.

So, the canonical module ωK[A⋄B] of K[A ⋄ B], with respect to standard grading, can be
expressed as an ideal of K[A ⋄ B], generated by monomials

ωK[A⋄B] = ({x1 · · · xn, xα| α ∈ MA⋄B})K[A ⋄ B].

The type of K[A ⋄ B] is the minimal number of generators of the canonical module. So,
type(K[A ⋄ B]) = 1 + #(MA⋄B), where

#(MA⋄B) = #(MA)#(B(2)) + #(MB)#(A(2))−#(MA)#(MB).

Using lemma 3 and since #(MA) = type(K[A])− 1, #(MB) = type(K[B])− 1 we get that

#(MA⋄B) = (type(K[A]− 1)Q2 + (type(K[B]− 1)Q1 − (type(K[A]− 1)(type(K[B]− 1),

where #(A(2)) = Q1, #(B(2)) = Q2,

Qr =

2(nr−jr)−1∑

t=ir

Qir(t)Qnr−ir(2nr − t), for r ∈ [2].

b) Let i1 ∈ [n1 − 2], j1 ∈ [n1 − 1], i2 ∈ [n2 − 2], j2 ∈ [n2 − 1] be such that i1 + j1 ≥

n1, i2 + j2 ≥ n2, r1 =
⌈

i1+1
n1−j1

⌉
and r2 =

⌈
i2+1
n2−j2

⌉
.

If we denote by M
′

A,M
′

B the sets

M
′

A = {α ∈ Z
n1

> | |(α1, . . . , αi1)| = r1(n1 − j1)− t, |(αi1+1, . . . , αn1
)| =

r1j1 + t for any t ∈ [r1(n1 − j1)− i1]},

M
′

B = {α ∈ Z
n2

> | |(α1, . . . , αi2)| = r2(n2 − j2)− t, |(αi2+1, . . . , αn2
)| =
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r2j2 + t for any t ∈ [r2(n2 − j2)− i2]}

we know from [16] that the canonical module ωK[A] of K[A] ( respectively, ωK[B] of K[B])
with respect to the standard grading can be expressed as an ideal of K[A]
( respectively, K[B]) generated by monomials

ωK[A] = ({xα| α ∈ M
′

A})K[A],

respectively

ωK[B] = ({xα| α ∈ M
′

B})K[B].

We will denote by MA⋄B the set MA⋄B = {p̃+ β̄ | p ∈ A(r2), β ∈ M
′

B}. We will show that the
canonical module ωK[A⋄B] of K[A ⋄ B], with respect to standard grading, can be expressed
as an ideal of K[A ⋄ B], generated by monomials

ωK[A⋄B] = ({xα| α ∈ MA⋄B})K[A ⋄ B].

This fact is equivalent to show that

Z+(A ⋄B) ∩ relint(R+(A ⋄B)) =
⋃

α∈MA⋄B

{α+ Z+(A ⋄B)}.

Since for any p ∈ A(r2), β ∈ M
′

B we have H
ν̃
j1
i1

(p̃+ β̄) = H
ν
j1
i1

(p) > 0,

H
ν̄
j2
i2

(p̃+ β̄) = H
ν
j2
i2

(β) = n2t > 0 it follows that

Z+(A ⋄B) ∩ relint(R+(A ⋄B)) ⊇
⋃

α∈MA⋄B

{α+ Z+(A ⋄B)}.

Since H
ν̃
j1
i1

((1, . . . , 1)) = n1(n1 − i1 − j1) ≤ 0 and H
ν̄
j2
i2

((1, . . . , 1)) = n2(n2 − i2 − j2) ≤ 0

it follows that (1, . . . , 1) /∈ relint(R+(A ⋄B)). Let γ ∈ Z+(A ⋄B) ∩ relint(R+(A ⋄B)), then
H

ν̃
j1
i1

(γ) > 0, H
ν̄
j2
i2

(γ) > 0 and γk ≥ 1 for any k ∈ [n1+n2]. We claim that | γ | ≥ r2(n1+n2).

Indeed, since γ = (γ
′

, γ
′′

) ∈ Z+(A⋄B)∩relint(R+(A⋄B), |γ| = s(n1+n2) and Z+(A⋄B) =

Z+Ã+ Z+B̄, it follows that γ
′

∈ Z+A, γ
′′

∈ Z+B with |γ
′

| = sn1, |γ
′′

| = sn2 and

H
ν̄
j2
i2

(γ) = H
ν
j2
i2

(γ
′′

) = −j2

i2∑

k=1

γ
′′

k + (n2 − j2)(sn2 −
i2∑

k=1

γ
′′

k ) > 0 ⇐⇒
i2∑

k=1

γ
′′

k < (n2 − j2)s.

Hence i2+1 ≤ s(n2−j2) and so r2 =
⌈

i2+1
n2−j2

⌉
≤ s. Using Lemma 2 we can find η

′′

∈ M
′

B with

H
ν
j2
i2

(γ
′′

) = H
ν
j2
i2

(η
′′

) and γ
′′

− η′′ ∈ Z+B. Since for any p ∈ A(r2), we have H
ν̃
j1
i1

(p̃+ η̄
′′

) =

H
ν
j1
i1

(p) > 0, H
ν̄
j2
i2

(p̃ + η̄
′′

) = H
ν
j2
i2

(η
′′

) = n2t > 0 it follows that γ ∈ p̃ + η̄
′′

+ Z+(A ⋄ B).

Thus,

Z+(A ⋄B) ∩ relint(R+(A ⋄B)) ⊆
⋃

α∈MA⋄B

{α+ Z+(A ⋄B)}.

So, the canonical module ωK[A⋄B] of K[A ⋄ B], with respect to standard grading, can be
expressed as an ideal of K[A ⋄ B], generated by monomials

ωK[A⋄B] = ({xα| α ∈ MA⋄B})K[A ⋄ B].

The type of K[A ⋄ B] is the minimal number of generators of the canonical module. So,

type(K[A ⋄ B]) = #(MA⋄B) = #(A(r2))#(M
′

B). Using Lemma 3 and since #(M
′

B) =
type(K[B]) we get that

type(K[A ⋄ B]) = [

r2(n1−j1)−1∑

t=i1

Qi1(t)Qn1−i1(r2n1 − t)] type(K[B]).
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c) Let i1 ∈ [n1 − 2], j1 ∈ [n1 − 1], i2 ∈ [n2 − 2], j2 ∈ [n2 − 1], r2 =
⌈

i2+1
n2−j2

⌉
be such that

i1 + j1 ≤ n1 and i2 + j2 ≥ n2. If we denote by MA,M
′

B the sets

MA = {α ∈ Z
n1

> | |(α1, . . . , αi1)| = n1 + i1 − j1 + t, |(αi1+1, . . . , αn1
)| =

n1 − i1 + j1 − t for any t ∈ [n1 − i1 − j1 − 1]},

M
′

B = {α ∈ Z
n2

> | |(α1, . . . , αi2)| = r2(n2 − j2)− t, |(αi2+1, . . . , αn2
)| =

r2j2 + t for any t ∈ [r2(n2 − j2)− i2]}

we know from [16] that the canonical module ωK[A] of K[A] ( respectively, ωK[B] of K[B])
with respect to the standard grading can be expressed as an ideal of K[A]( respectively,
K[B]) generated by monomials

ωK[A] = ({x1 · · · xn, xα| α ∈ MA})K[A],

respectively

ωK[B] = ({xα| α ∈ M
′

B})K[B].

We will denote by MA⋄B the set MA⋄B = {α̃ + β̄ | β ∈ M
′

B, α = (1, . . . , 1) + α
′

with α
′

∈

Ar2−1 or α = γ + α
′′

with α
′′

∈ Ar2−2, γ ∈ MA}. We will show that the canonical module
ωK[A⋄B] of K[A ⋄ B], with respect to standard grading, can be expressed as an ideal of
K[A ⋄ B], generated by monomials

ωK[A⋄B] = ({xa| a ∈ MA⋄B})K[A ⋄ B].

This fact is equivalent to show that

Z+(A ⋄B) ∩ relint(R+(A ⋄B)) =
⋃

a∈MA⋄B

{a+ Z+(A ⋄B)}.

Since for any β ∈ M
′

B and α ∈ Z
n1

+ such that α = (1, . . . , 1) + α
′

with α
′

∈ Ar2−1 or

α = γ + α
′′

with γ ∈ MA, α
′′

∈ Ar2−2 we have H
ν̃
j1
i1

(α̃ + β̄) = H
ν
j1
i1

(α) = H
ν
j1
i1

(1, . . . , 1) +

H
ν
j1
i1

(α
′

) = n1(n1 − i1 − j1) + H
ν
j1
i1

(α
′

) > 0 or H
ν̃
j1
i1

(α̃ + β̄) = H
ν
j1
i1

(α) = H
ν
j1
i1

(γ) +

H
ν
j1
i1

(α
′′

) = n1(n1 − i1 − j1 − t) + H
ν
j1
i1

(α
′′

) > 0 and H
ν̄
j2
i2

(α̃ + β̄) = H
ν
j2
i2

(β) = n2t > 0

for any t ∈ [n1 − i1 − j1 − 1], it follows that

Z+(A ⋄B) ∩ relint(R+(A ⋄B)) ⊇
⋃

a∈MA⋄B

{a+ Z+(A ⋄B)}.

Since H
ν̃
j1
i1

((1, . . . , 1)) = n1(n1 − i1 − j1) > 0 and H
ν̄
j2
i2

((1, . . . , 1)) = n2(n2 − i2 − j2) ≤ 0

it follows that (1, . . . , 1) /∈ relint(R+(A ⋄ B)). Let γ ∈ Z+(A ⋄ B) ∩ relint(R+(A ⋄ B)),
then H

ν̃
j1
i1

(γ) > 0, H
ν̄
j2
i2

(γ) > 0 and γk ≥ 1 for any k ∈ [n1 + n2]. We claim that | γ | ≥

r2(n1+n2). Indeed, since γ = (γ
′

, γ
′′

) ∈ Z+(A⋄B)∩relint(R+(A⋄B)), |γ| = s(n1+n2) and

Z+(A ⋄B) = Z+Ã+Z+B̄, it follows that γ
′

∈ Z+A, γ
′′

∈ Z+B with |γ
′

| = sn1, |γ
′′

| = sn2

and

H
ν̄
j2
i2

(γ) = H
ν
j2
i2

(γ
′′

) = −j2

i2∑

k=1

γ
′′

k + (n2 − j2)(sn2 −
i2∑

k=1

γ
′′

k ) > 0 ⇐⇒
i2∑

k=1

γ
′′

k < (n2 − j2)s.

Hence i2 + 1 ≤ s(n2 − j2) and so r2 =
⌈

i2+1
n2−j2

⌉
≤ s. Since H

ν
j1
i1

((1, . . . , 1)) = n1(n1 −

i1 − j1) > 0 and for any δ ∈ MA we have H
ν
j1
i1

(δ) = n1(n1 − i1 − j1 − t) > 0 it follows

that for γ
′

∈ Z+A ∩ relint(R+A) such that |γ
′

| = sn1 with s ≥ r2 there exists α
′

∈
Ar2−1and α

′′

∈ Ar2−2 such that γ
′

∈ (1, . . . , 1) + α
′

+ Z+A or γ
′

∈ δ + α
′′

+ Z+A. Using
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Lemma 2 we can find η
′′

∈ M
′

B such that H
ν
j2
i2

(γ
′′

) = H
ν
j2
i2

(η
′′

) and γ
′′

− η′′ ∈ Z+B.

Thus, γ = (γ
′

, γ
′′

) ∈ ((1, . . . , 1) + α
′

, η
′′

) + Z+(A ⋄ B) with α
′

∈ Ar2−1, η
′′

∈ M
′

B or

γ = (γ
′

, γ
′′

) ∈ (δ + α
′′

, η
′′

) + Z+(A ⋄B) with δ ∈ MA, α
′′

∈ Ar2−2, η
′′

∈ M
′

B and so

Z+(A ⋄B) ∩ relint(R+(A ⋄B)) ⊆
⋃

a∈MA⋄B

{a+ Z+(A ⋄B)}.

The canonical module ωK[A⋄B] of K[A ⋄ B], with respect to standard grading, can be ex-
pressed as an ideal of K[A ⋄ B], generated by monomials

ωK[A⋄B] = ({xa| a ∈ MA⋄B})K[A ⋄ B].

The type of K[A ⋄ B] is the minimal number of generators of the canonical module,

type(K[A⋄B]) = #(MA⋄B) = [#(Ar2−1)+#({MA+Ar2−2}\{(1, . . . , 1)+Ar2−1})]#(M
′

B).

We denote

E(r2−2) = {α ∈ Z
r2n1

+ | αk ≥ 1, α1 + . . .+ αi1 = i1 + (r2 − 1)(n1 − j1) + t,

αi1+1 + . . .+ αn1
= n1 − i1 + (r2 − 1)j1 − t, for any k ∈ [n] and t ∈ [n1 − i1 − j1 − 1]}.

It is easy to see that E(r2−2) ⊇ {MA+Ar2−2}\{(1, . . . , 1)+Ar2−1}. Since for any α ∈ E(r2−2)

we have α1 + . . . + αi1 = n1 + i1 − j1 + t + (r2 − 2)(n1 − j1), αi1+1 + . . . + αn1
= n1 −

i1 + j1 − t + (r2 − 2)j1 for t ∈ [n1 − i1 − j1 − 1] and the set {(n1 − j1)er + j1 es | 1 ≤
r ≤ i1 and i1 + 1 ≤ s ≤ n1} ⊂ A are extremal rays of the cone R+A it follows that

{MA + Ar2−2} \ {(1, . . . , 1) + Ar2−1} = E(r2−2). For any 1 ≤ t ≤ n1 − i1 − j1 − 1, the
equation α1+ . . .+αi1 = i1+(r2− 1)(n1− j1)+ t has Qi1(i1+(r2− 1)(n1− j1)+ t) distinct
nonnegative integer solutions with αk ≥ 1, for any k ∈ [i1], respectively αi1+1 + . . .+αn1

=
n1 − i1 + (r2 − 1)j1 − t has Qn1−i1(n1 − i1 + (r2 − 1)j1 − t) distinct nonnegative integer

solutions with αk ≥ 1 for any k ∈ [n1] \ [i1]. Thus, the cardinal of E(r2−2) is

#(E(r2−2)) =

n1−i1−j1−1∑

t=1

Qi1(i1 + (r2 − 1)(n1 − j1) + t)Qn1−i1(n1 − i1 + (r2 − 1)j1 − t).

So,

type(K[A ⋄ B]) = [#(Ar2−1) + #(E(r2−2))] type(K[B]).

�

Corollary 6. Let K[A] and K[B] the base rings of the transversal polymatroids presented

by A and B and K[A ⋄ B] the base ring of the transversal polymatroid presented by A ⋄ B,
then: K[A ⋄ B] is Gorenstein ring if and only if K[A] and K[B] are Gorenstein rings.

Next we will give some examples.
Let A = {A1, . . . , A5}, B = {A6, . . . , A12} and A⋄B = {A1, . . . , A12}, where A1 = A3 =

A4 = A5 = [5], A2 = [5]\ [2], A6 = A9 = A10 = A11 = A12 = [12]\ [5], A7 = A8 = [12]\ [8].
The type of K[A ⋄ B] is

type(K[A ⋄ B]) = 1 + (7− 1)1680 + (113− 1)126− (7− 1)(113− 1) = 23521,

where
type(K[A]) = 7, type(K[B]) = 113, Q1 = 126, Q2 = 1680.

The Hilbert series of K[A ⋄ B] is

HK[A⋄B](t) =
1 + 188149t+ 32250295t2 + . . .+ 34608475t8 + 211669t9 + t10

(1− t)11
.

Note that type(K[A ⋄ B]) = 1 + h9 − h1 = 23521.

Galaxy
Text Box
218



Let A = {A1, . . . , A7}, B = {A8, . . . , A15} and A⋄B = {A1, . . . , A15}, where A1 = A6 =
A7 = [7], A2 = A3 = A4 = A5 = [7] \ [5], A8 = A15 = [15] \ [7], A9 = A10 = A11 = A12 =
A13 = A14 = [15] \ [13].

The type of K[A ⋄ B] is

type(K[A ⋄ B]) = (
11∑

t=5

(
t− 1

4

)(
27− t

1

)
)169 = 1327326,

where

type(K[B]) = 169.

The Hilbert series of K[A ⋄ B] is

HK[A⋄B](t) =
1 + 62818t+ 12287443t2 + . . .+ 91435344t9 + 1327326t10

(1− t)14
.

Note that type(K[A ⋄ B]) = h10 = 1327326.
Let A = {A1, . . . , A8}, B = {A9, . . . , A16} and A⋄B = {A1, . . . , A16}, where A1 = A4 =

A5 = A6 = A7 = A8 = [8], A2 = A3 = [8] \ [3], A9 = A16 = [16] \ [8], A10 = A11 = A12 =
A13 = A14 = A15 = [16] \ [14].

The type of K[A ⋄ B] is

type(K[A ⋄ B]) = (2572125 + 42630)169 = 441893595,

where

type(K[A]) = 226, type(K[B]) = 169, G = 2572125, E = 42630.

The Hilbert series of K[A ⋄ B] is

HK[A⋄B](t) =
1 + 1266825t+ 661717155t2 + . . .+ 32407888815t10 + 441893595t11

(1− t)15
.

Note that type(K[A ⋄ B]) = h11 = 441893595.
We end this section with the following conjecture:
Conjecture: Let n ≥ 4, Ai ⊂ [n] for any 1 ≤ i ≤ n and K[A] be the base ring associated

to the transversal polymatroid presented by A = {A1, . . . , An}. If the Hilbert series is:

HK[A](t) =
1 + h1 t+ . . .+ hn−r tn−r

(1− t)n
,

then we have the following:
1) If r = 1, then type(K[A]) = 1 + hn−2 − h1.
2) If 2 ≤ r ≤ n, then type(K[A]) = hn−r.
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