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Abstract. In this work, we establish necessary and sufficient conditions for oscillation
of a class of second-order delay differential equations of the form:(

r(t)x′(t)
)′

+ q(t)H
(
x(σ(t))

)
= 0, t ≥ t0,

under the assumptions
∫∞
0

dt
r(t) =∞, when H is sublinear and superlinear. Finally, some

illustrating examples are presented to show that feasibility and effectiveness of main
results.
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1. Introduction

Consider the nonlinear delay differential equations of the form(
r(t)x′(t)

)′
+ q(t)H

(
x(σ(t))

)
= 0, t ≥ t0,(1.1)

where r, q, σ ∈ C(R+,R+) such that σ(t) ≤ t with limt→∞ σ(t) = ∞ and H ∈ C(R,R) is nondecreasing
and satisfying the property uH(u) > 0 for u 6= 0. The objective of this work is to establish the necessary
and sufficient conditions for oscillation of solutions of (1.1) under the assumption

(A1) R(t) =
∫ t
0

ds
r(s) → +∞ as t→∞.

The motivation of the present work has come from the work of [6]. In [6], Liu et al. have considered
the the existence of oscillatory solutions of forced nonlinear delay differential equations of the form[

r(t)Φ(x′(t))
]′

+

m∑
i=1

fi
(
t, x(gi(t))

)
= q(t).

and established a new sufficient condition for global existence of oscillatory solution by the Schauder-
Tychonoff theorem. In this direction, we refer some related works ([1],[2], [4]–[7], [13]) to the readers and
the references cited therein.

The delay differential equations find numerous applications in natural sciences and technology. Equa-
tions involving delay, and those involving advance and a combination of both arise in the models on
lossless transmission lines in high speed computers which are used to interconnect switching circuits. The
construction of these models using delays is complemented by the mathematical investigation of nonlinear
equations. Moreover, the delay differential equations play an important role in modeling virtually every
physical, technical, or biological process.
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Definition 1.1. By a solution of (1.1) we understand a function x ∈ C([t0,∞),R) such that x(t) and
r(t)x′(t) are once continuously differentiable and equation (1.1)) is satisfied for t ≥ 0, where sup{|x(t)| :
t ≥ t0} > 0 for every t0 ≥ 0. A solution of (1.1) is said to be oscillatory if it has arbitrarily large zeros;
otherwise, it is called nonoscillatory.

2. Main Results

This section deals with the necessary and sufficient conditions for oscillation of all solutions of (1.1).
We need the following conditions for this work in the sequel.

(A2) H(uv) = H(u)H(v), u, v ∈ R.

Remark 2.1. [8] Assumption (A2) implies that H(−u) = −H(u). Indeed, H(1)H(1) = H(1) and

H(1) > 0 imply that H(1) = 1. Further, H(−1)H(−1) = H(1) = 1 implies that
(
H(−1)

)2
= 1. Since

H(−1) < 0, we conclude that H(−1) = −1. Hence,

H(−u) = H(−1)H(−u) = −H(−u).

On the other hand, H(uv) = H(u)H(v) for u > 0 and v > 0 and H(−u) = −H(u) imply that H(xy) =
H(x)H(y) for every x, y ∈ R.

Remark 2.2. [8] We may note that if x(t) is a solution of (1.1), then y(t) = −x(t) is also a solution of
(1.1) provided that H satisfies (A2).

Theorem 2.3. Assume that (A1) and (A2) hold. Furthermore assume that

(A3) H is sublinear, that is, H(u)
uβ ≥ H(v)

vβ
, 0 < u ≤ v, β < 1

hold. Then every solution of the equation (1.1) oscillates if and only if

(A4)
∫∞
T
q(t)H

(
CR(σ(t))

)
dt = +∞, T > 0 for every C > 0.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1). So there exists t0 > 0 such that x(t) > 0
or < 0 for t ≥ t0. Without loss of generality and because of (A2), we may assume that x(t) > 0 and
x(σ(t)) > 0 for t ≥ t1 > t0. From (1.1), it follows that(

r(t)x′(t)
)′

= −q(t)H
(
x(σ(t))

)
< 0,(2.1)

hold for t ≥ t1. Hence there exists t2 > t1 such that r(t)x′(t) is nonincreasing on [t2,∞). We claim
that r(t)x′(t) > 0 for t ∈ [t2,∞). If r(t)x′(t) ≤ 0 for t ≥ t3 then we can find K > 0 such that
r(t)x′(t) ≤ −K for t ≥ t3. Integrating the relation x′(t) ≤ − K

r(t) , t ≥ t3 from t3 to t(> t3) and obtain

x(t) − x(t3) ≤ −K
∫ t
t3

ds
r(s) , that is, x(t) ≤ x(t3) −K

[∫ t
t3

ds
r(s)

]
→ −∞ as t → ∞, a contradiction to the

fact that x(t) is a positive solution of the equation of (1.1). So our claim holds. We integrate (1.1) from
t(≥ t3) to +∞, we get [

r(s)x′(s)
]∞
t

+

∫ ∞
t

q(s)H
(
x(σ(s))

)
ds = 0.

Since, limt→∞ r(t)x′(t) exists, then the above inequality becomes∫ ∞
t

q(s)H
(
x(σ(s))

)
ds ≤ r(t)x′(t)

for t ≥ t3, therefore

x′(t) ≥ 1

r(t)

[∫ ∞
t

q(s)H
(
x(σ(s))

)
ds

]
(2.2)

for t ≥ t3. Let t4 > t3 be such a point that

R(t)−R(t4) ≥ 1

2
R(t) for t ≥ t4.
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Integrating (2.2) from t4 to t(> t4), we obtain

x(t)− x(t4) ≥
∫ t

t4

1

r(s)

[∫ ∞
s

q(u)H
(
x(σ(u))

)
du

]
ds

≥
∫ t

t4

1

r(s)

[∫ ∞
t

q(u)H
(
x(σ(u))

)
du

]
ds

that is,

x(t) ≥
∫ t

t4

1

r(s)

[∫ ∞
t

q(u)H
(
x(σ(u))

)
du

]
ds

≥ 1

2
R(t)

[∫ ∞
t

q(u)H
(
x(σ(u))

)
du

]
(2.3)

for t ≥ t4. Since, r(t)x′(t) is nonincreasing on [t4,∞), then there exists a constant C > 0 and t5 ≥ t4
such that r(t)x′(t) ≤ C for t ≥ t5 and hence x(t) ≤ CR(t), t ≥ t5. Using the fact H is sublinear, we have

H
(
x(σ(t))

)
=
H
(
x(σ(t))

)
xβ
(
σ(t)

) xβ
(
σ(t)

)
≥
H
(
CR(σ(t))

)
CβRβ

(
σ(t)

) xβ(σ(t)
)

and hence (2.3) reduces to

x(t) ≥ R(t)

2Cβ

[∫ ∞
t

q(u)H
(
CR(σ(u))

) xβ(σ(u)
)

Rβ
(
σ(u)

)du]
for t ≥ t5. If we define

w(t) =
1

2Cβ

[∫ ∞
t

q(u)H
(
CR(σ(u))

) xβ(σ(u)
)

Rβ
(
σ(u)

)du] ,
then x(t) ≥ R(t)w(t) for t ≥ t5. Now,

w′(t) ≤ − 1

2Cβ
q(t)H

(
CR(σ(t))

) xβ(σ(t)
)

Rβ
(
σ(t)

)
≤ − 1

2Cβ
q(t)H

(
CR(σ(t))

)
wβ
(
σ(t)

)
≤ 0

implies that w(t) is nonincreasing on [t5,∞) and limt→∞ w(t) exists. It is easy to verify that

[w1−β(t)]′ ≤ − 1

2Cβ
(1− β)q(t)H

(
CR(σ(t))

)
w−β(t)wβ

(
σ(t)

)
≤ − 1

2Cβ
(
1− β

)
q(t)H

(
CR(σ(t))

)
.

Integrating the last inequality from t5 to t(> t5), we obtain[
w1−β(s)

]t
t5
≤ −1

2

(
1− β

)
C−β

∫ t

t5

q(s)H
(
CR(σ(s))

)
ds,

that is,

1

2

(
1− β

)
C−β

∫ t

t5

q(s)H
(
CR(σ(s))

)
ds ≤ −

[
w1−β(s)

]t
t5

<∞, as t→∞,

a contradiction to (A4).
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Next, for the necessary part we suppose that (A4) doesn’t hold. So, for C > 0, let∫ ∞
T

q(t)H
(
CR(σ(t))

)
dt <

C

2
.

Let’s consider

M =
{
x : x ∈ C([t0,+∞),R), x(t) = 0 for t ∈ [t0, T ] and

C

2
[R(t)−R(T )] ≤ x(t) ≤ C[R(t)−R(T )]

}
and define Φ : M → C([t0,+∞),R) such that

(Φx)(t) =

{
0, t ∈ [t0, T )∫ t
T

1
r(u)

[
C
2 +

∫∞
u
q(s)H

(
x(σ(s))

)
ds
]
du t ≥ T.

For every x ∈M ,

(Φx)(t) ≥ C

2

∫ t

T

du

r(u)
=
C

2
[R(t)−R(T )] ,

and the inequality x(t) ≤ CR(t) implies that

(Φx)(t) ≤ C
∫ t

T

du

r(u)
= C [R(t)−R(T )] .

Thus, (Φx)(t) ∈M . Let us define now the function un : [t0,+∞)→ R by the recursive formula

un(t) = (Φun−1)(t), n ≥ 1,

with the initial condition

u0(t) =

{
0, t ∈ [t0, T )
C
2 [R(t)−R(T )], t ≥ T.

Inductively it is easily verified that

C

2
[R(t)−R(T )] ≤ un−1(t) ≤ un(t) ≤ C[R(t)−R(T )],

for t ≥ T . Therefore for t ≥ t0, limn→+∞ un(t) exists. Let limn→+∞ un(t) = u(t) for t ≥ t0. By
Lebesgue’s dominated convergence theorem u ∈ M and (Φu)(t) = u(t), where u(t) is a solution of the
equation (1.1) on [t0,∞) such that u(t) > 0. Hence, (A4) is a necessary condition. This completes the
proof of the theorem. �

Theorem 2.4. Assume that (A1), (A2) hold and r(t) ≥ r(σ(t)). Furthermore assume that

(A5) H is superlinear, that is, H(u)
uβ ≥ H(v)

vβ
, u ≥ v > 0, β > 1.

Then every solution of the equation (1.1) is oscillatory if and only if

(A6)
∫∞
0

1
r(t)

[∫∞
t
q(s)ds

]
dt = +∞.

Proof. For sufficient part, we use the same type of argument as in the proof of the Theorem 2.3 for the
case r(t)x′(t) ≤ 0. Let’s consider the case r(t)x′(t) > 0 for t ≥ t3. So there exists a constant C > 0 and
t4 > t3 such that x(σ(t)) ≥ C for t ≥ t4. Consequently,

H
(
x(σ(t))

)
=
H
(
x(σ(t))

)
xβ
(
σ(t)

) xβ
(
σ(t)

)
≥ H(C)

Cβ
xβ
(
σ(t)

)
, t ≥ t4.
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Therefore, (2.2) becomes

r(t)x′(t) ≥
∫ ∞
t

q(s)
H(C)

Cβ
xβ
(
σ(s)

)
ds,

that is,

r
(
σ(t)

)
x′
(
σ(t)

)
≥
[∫ ∞

t

q(s)xβ
(
σ(s)

)
ds

]
H(C)

Cβ
,

implies that

x′
(
σ(t)

)
≥ H(C)

Cβr
(
σ(t)

) [∫ ∞
t

q(s)ds

]
xβ
(
σ(t)

)
≥ H(C)

Cβr(t)

[∫ ∞
t

q(s)ds

]
xβ
(
σ(t)

)
.

Integrating the last inequality from t4 to +∞, we get

H(C)

Cβ

∫ ∞
t4

1

r(t)

[∫ ∞
t

q(s)ds

]
dt ≤

∫ ∞
t4

x′
(
σ(t)

)
xβ
(
σ(t)

) < +∞,

which is a contradiction to (A6).
Next, we show that (A6) is necessary. Assume that (A6) fails to hold and let

H(C)

∫ ∞
T

1

r(t)

[∫ ∞
t

q(s)ds

]
dt ≤ C

2
, T ≥ σ,(2.4)

where C > 0 is a constant. Consider

M =
{
x : x ∈ C([t0,+∞),R), x(t) =

C

2
for t ∈ [t0, T ) and

C

2
≤ x(t) ≤ C, t ≥ T

}
,

and let Φ : M → C([t0,+∞),R) be defined by

(Φx)(t) =

{
C
2 , t ∈ [t0, T )
C
2 +

∫ t
T

1
r(s)

[∫∞
s
q(u)H

(
x(σ(u))

)
du
]
du, t ≥ T.

For every x ∈M , (Φx)(t) ≥ C
2 . Using definition of the set M , definition of the mapping Φ and (2.4), we

obtained (Φx)(t) ≤ C. Therefore, (Φx) ∈ M . Analogously to the proof of the Theorem 2.3 we get that
the mapping Φ has a fixed point u ∈M , that is, u(t) = (Φu)(t), t ≥ t0. It can be easily verified that u(t)
is a solution of (1.1), such that C

2 ≤ u(t) ≤ C for t ≥ T , that is, u(t) is a nonoscillatory solution of (1.1).
Thus the proof of the theorem is complete. �

We conclude this section with the following examples to illustrate our main results:

Example 2.5. Consider the delay differential equations

(E1)
(
e−tx′(t)

)′
+ etx

(
(t− 2)

) 1
3 = 0,

where r(t) = e−t, q(t) = et, σ(t) = t−2 and H(x) = x
1
3 . If we choose β = 1

2 < 1, then all the assumptions
of the Theorem 2.3 holds. Hence by Theorem 2.3, every solution of (E1) oscillates.

Example 2.6. Consider the delay differential equations

(E2)
(
e−3tx′(t)

)′
+ e−2tx

(
(t− 1)

)3
= 0,

where r(t) = e−3t, q(t) = e−2t, σ(t) = t − 1 and H(x) = x3. If we choose β = 2 > 1, then all the
assumptions of the Theorem 2.4 holds. Hence by Theorem 2.4, every solution of (E2) oscillates.

Galaxy
Text Box
84



Acknowledgement: This work is supported by the Department of Science and Technology (DST),
New Delhi, India, through the letter no. DST/INSPIRE Fellowship/2014/140, dated Sept. 15, 2014

References

[1] B. Baculikova, and J. Dzurina, Oscillation theorems for second order neutral differential equations,
Compu. Math. Appl. 61 (2011), 94–99.

[2] J. Dzurina, Oscillation theorems for second order advanced neutral differential equations, Tatra Mt.
Math. Publ. DOI: 10.2478/v10127-011-0006-4, 48 (2011), 61–71.

[3] I. Gyori and G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Claren-
don, Oxford, 1991.

[4] M. Hasanbulli, and Y. V. Rogovchenko, Oscillation criteria for second order nonlinear neutral dif-
ferential equations, Appl. Math. Compu. 215 (2010), 4392–4399.

[5] Q. Li, R. Wang, F. Chen, and T. Li, Oscillation of second-order nonlinear delay differential equations
with nonpositive neutral coefficients, Adv. Diff. Eq. (2015) 2015:35. DOI 10.1186/s13662-015-0377-y.

[6] Y. Liu, J. Zhanga, and J. Yan, Existence of oscillatory solutions of second order delay differential
equations, J. Compu. Appl. Math. 277 (2015), 17–22.

[7] Q. Meng, and J. Yan, Bounded oscillation for second order non-linear neutral delay differential
equations in critical and non-critical cases, Nonlinear Anal. 64 (2006), 1543–1561.

[8] S. S. Santra, Existence of positive solution and new oscillation criteria for nonlinear first order
neutral delay differential equations, Diff. Equ. Appli. 8(1): (2016), 33–51.

[9] A. K. Tripathy, and R. R. Mohanta, Oscillation properties of a class of second order neutral differ-
ential equations with piecewise constant arguments, R. J. Math. Compu. Sci. 5(2): (2015), 178–190.

[10] S. Tanaka, A oscillation theorem for a class of even order neutral differential equations, J. Math.
Anal. Appl. 273 (2007), 172–189.

[11] R. Xu, and F. Meng, Some new oscillation criteria for second order quasilinear neutral delay differ-
ential equations, Appl. Math. Comp. 182 (2006), 797–803.

[12] Z. Xu, and P. Weng, Oscillation of second order neutral equations with distributed deviating argument,
J. Comp. Appl. Math. 202 (2007), 460–477.

[13] J. Yan, Existence of oscillatory solutions of forced second order delay differential equations, Appl.
Math. Lett. 24 (2011), 1455–1460.

[14] Q. Zhang, and J. Yan, Oscillation behavior of even order neutral differential equations with variable
coefficients, Appl. Math. Lett. 19 (2006), 1202–1206.

Department of Mathematics, Sambalpur University, Sambalpur - 768019, INDIA
E-mail address: shyam01.math@gmail.com

Galaxy
Text Box
85


	Text2: ROMANIAN JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2017, VOLUME 7, ISSUE 2, p.80-85


