SOME RESULTS IN LOCAL COHOMOLOGY AND SERRE SUBCATEGORY

REZA SAZEEDEH AND RASUL RASULI

ABSTRACT. Let R be a noetherain ring, let \mathfrak{a} be an ideal of R, and let M be an R-module. Let S be a Serre subcategory of the category of R-modules and let i be a non-negative integer. In this paper we find some conditions under which $H^i_{\mathfrak{a}}(M) \in S$ or $\operatorname{Supp}_R(H^i_{\mathfrak{a}}(M)) \subseteq \operatorname{Supp}(S)$.

1. INTRODUCTION

Throughout this paper R is a commutative noetherian ring and S is a Serre subcategory of R-modules. The main aim of this paper is to investigate when local cohomology modules belong to the Serre subcategory S.

Recall that a Serre subcategory of the category of R-modules is a full subcategory whenever it is closed under taking submodules, quotient modules and extension. Some examples of these subcategories are the subcategories of finite generated R-modules; coatomic R-modules [Zos1]; minimax R-modules [Zos2].

Recently some results have been proved concerning with the local cohomology modules $H^i_{\mathfrak{a}}(M)$ of a module M in some certain Serre subcategory of the category of modules (cf. [AM, AT1, AT2]).

M. Aghapournahr and L. Melkersson [AM] gave a condition on a Serre subcategory S. To give more details, let \mathfrak{a} be an ideal of R, let M be an R-module and let $(0:_M \mathfrak{a}) = \{x \in M | \mathfrak{a}x = 0\}$. The R-module M is said to satisfy $C_{\mathfrak{a}}$ condition on S whenever the following condition holds:

If
$$\Gamma_{\mathfrak{a}}(M) = M$$
 and $(0:_M \mathfrak{a}) \in S$, then $M \in S$.

From [AM], S is said to satisfy $C_{\mathfrak{a}}$ condition whenever every *R*-module satisfies $C_{\mathfrak{a}}$ condition on S.

In this paper, by dealing with this condition, we answer to the following question:

When do the local cohomology modules $H^i_{\mathfrak{a}}(M)$ belong to \mathcal{S} for a non-negative integer *i*?

To be more precise, let M be a finitely generated R-module. We show that if $M \in \mathcal{S}$ or $R/\mathfrak{a} \in \mathcal{S}$, then $H^i_\mathfrak{a}(M) \in \mathcal{S}$ for all $i \geq 0$. We prove that if $D(\mathfrak{a}) \subseteq \operatorname{Supp}(\mathcal{S})$, then $H^i_\mathfrak{a}(M) \in \mathcal{S}$ for all $i > \mathcal{S} - \dim M$. Let n be a fixed non-negative integer. We show that if M is an R-module such that $\operatorname{Supp}_R(\operatorname{Ext}^j_R(R/\mathfrak{a}, M)) \subseteq \operatorname{Supp}(\mathcal{S})$ for all $j \leq n$, then $\operatorname{Supp}_R(H^j_\mathfrak{a}(M)) \subseteq \operatorname{Supp}(\mathcal{S})$ for all $j \leq n$.

2. The main results

We start this section by a definition on Serre subcategory of modules due to M. Aghapournahr and L. Melkersson [AM].

Definition 2.1. Let \mathfrak{a} be an ideal of R, let M be an R-module and let $(0:_M \mathfrak{a}) = \{x \in M | \mathfrak{a}x = 0\}$. We say that M satisfy $C_{\mathfrak{a}}$ condition on S whenever the following condition holds:

²⁰¹⁰ Mathematics Subject Classification. 16C60,13D45.

Key words and phrases. Serre subcategory, local cohomology.

If
$$\Gamma_{\mathfrak{a}}(M) = M$$
 and $(0:_M \mathfrak{a}) \in S$, then $M \in S$.

From [AM], S is said to satisfy $C_{\mathfrak{a}}$ condition whenever every *R*-module satisfies $C_{\mathfrak{a}}$ condition on S.

Example 2.2. The class of artinian modules satisfy the condition $C_{\mathfrak{a}}$ for every ideal \mathfrak{a} of R. But the class of noetherian modules \mathcal{N} over a non-artinian local ring (R, \mathfrak{m}) does not satisfy $C_{\mathfrak{m}}$ condition, because the injective envelope $E(R/\mathfrak{m})$ of R/\mathfrak{m} , does not satisfy $C_{\mathfrak{m}}$ condition on \mathcal{N} .

Theorem 2.3. Let \mathfrak{a} be an ideal of R, let S be a Serre subcategory satisfying $C_{\mathfrak{a}}$ condition and let M be a finitely generated R-module such that $M \in S$. Then $H^i_{\mathfrak{a}}(M) \in S$ for all $i \geq 0$.

Proof. We proceed the assertion by induction on *i*. Let i = 0. As $H^0_{\mathfrak{a}}(M) = \Gamma_{\mathfrak{a}}(M)$ is a submodule of $M \in S$ and S is closed under taking submodules, we deduce that $\Gamma_{\mathfrak{a}}(M) \in S$. Now suppose, inductively that i > 0 and the result has been proved for all values smaller than *i*. By the basic properties of local cohomology, for each j > 0, there is an isomorphism $H^j_{\mathfrak{a}}(M) \cong H^j_{\mathfrak{a}}(M/\Gamma_{\mathfrak{a}}(M))$; moreover, since S is closed under quotient modules, $M/\Gamma_{\mathfrak{a}}(M) \in S$. Thus by replacing M by $M/\Gamma_{\mathfrak{a}}(M)$, we may assume that $\Gamma_{\mathfrak{a}}(M) = 0$. In this case, we assert that $\mathfrak{a} \nsubseteq \mathfrak{p}$ for all $\mathfrak{p} \in \operatorname{Ass}(M)$; otherwise there exists $\mathfrak{q} \in \operatorname{Ass}(M)$ such that $\mathfrak{a} \subseteq q$. Since $\mathfrak{q} \in \operatorname{Ass}(M)$, there exists a non-zero element $m \in M$ such that $\mathfrak{q} = \operatorname{Ann}(m)$ and so $\mathfrak{a}m \subseteq \mathfrak{q}m = 0$. But this fact implies that $m \in \Gamma_{\mathfrak{a}}(M)$ and so $\Gamma_{\mathfrak{a}}(M) \neq 0$ which is a contradiction. Since M is a finitely generated, $\operatorname{Ass}(M)$ is finite; and hence, by the Prime Avoidance Theorem, $\mathfrak{a} \nsubseteq \bigcup_{\mathfrak{p} \in \operatorname{Ass}(M)} \mathfrak{p}$. Thus \mathfrak{a} contains a non-zero divisor x on M which gives rise an exact sequence of modules $0 \to M \xrightarrow{x} M \to M/xM \to 0$. Applying the functor $H^i_{\mathfrak{a}}(.)$, there exists a long exact sequence of modules

$$\cdots \to H^{i-1}_{\mathfrak{a}}(M/xM) \to H^{i}_{\mathfrak{a}}(M) \xrightarrow{x} H^{i}_{\mathfrak{a}}(M) \to \dots$$

which yields an exact sequence of modules $H^{i-1}_{\mathfrak{a}}(M/xM) \to (0:_{H^{i}_{\mathfrak{a}}(M)} x) \to 0$. We notice that since $M \in S$ and S is closed under taking quotients modules, $M/xM \in S$. Now, the induction hypothesis implies that $H^{i-1}_{\mathfrak{a}}(M/xM) \in S$, and then the quotients module $(0:_{H^{i}_{\mathfrak{a}}(M)} x)$ lies in S. On the other hand $(0:_{H^{i}_{\mathfrak{a}}(M)} \mathfrak{a}) \subset (0:_{H^{i}_{\mathfrak{a}}(M)} x) \in S$ and since S is closed under taking submodules, $(0:_{H^{i}_{\mathfrak{a}}(M)} \mathfrak{a}) \in S$. Furthermore, by the basic properties of local cohomology, we have $\Gamma_{\mathfrak{a}}(H^{i}_{\mathfrak{a}}(M)) = H^{i}_{\mathfrak{a}}(M)$. Now, since $H^{i}_{\mathfrak{a}}(M)$ satisfies $C_{\mathfrak{a}}$ condition on $S, H^{i}_{\mathfrak{a}}(M) \in S$. \Box

Proposition 2.4. Let (R, \mathfrak{m}) be a local ring, let \mathfrak{a} be an ideal of R and let S be a Serre subcategory satisfying $C_{\mathfrak{a}}$ condition. If n is a fixed non-negative integer such that $H^{i}_{\mathfrak{a}}(M) \in S$ for all i < n, then $\Gamma_{\mathfrak{m}}(H^{n}_{\mathfrak{a}}(M)) \in S$.

Proof. It follows from [AT2, Corollary 2.9] that $\operatorname{Hom}_R(R/\mathfrak{a}, H^n_\mathfrak{a}(M)) \in S$. On the other hand, there is the following isomorphisms and equalities

$$(0:_{\Gamma_{\mathfrak{m}}(H^{n}_{\mathfrak{a}}(M))}\mathfrak{a}) = \Gamma_{\mathfrak{m}}(0:_{H^{n}_{\mathfrak{a}}(M)}\mathfrak{a}) \cong \Gamma_{\mathfrak{m}}(\operatorname{Hom}_{R}(R/\mathfrak{a}, H^{n}_{\mathfrak{a}}(M))).$$

As \mathcal{S} is closed under taking submodules, $\Gamma_{\mathfrak{m}}(\operatorname{Hom}_{R}(R/\mathfrak{a}, H^{n}_{\mathfrak{a}}(M))) \in \mathcal{S}$. Therefore the preceding isomorphism implies that $(0:_{\Gamma_{\mathfrak{m}}(H^{n}_{\mathfrak{a}}(M))}\mathfrak{a}) \in \mathcal{S}$. Moreover, it is clear to see that $\Gamma_{\mathfrak{a}}(\Gamma_{\mathfrak{m}}(H^{n}_{\mathfrak{a}}(M))) = \Gamma_{\mathfrak{m}}(H^{n}_{\mathfrak{a}}(M))$. Lastly, since $\Gamma_{\mathfrak{m}}(H^{n}_{\mathfrak{a}}(M))$ satisfies $C_{\mathfrak{a}}$ condition on \mathcal{S} , we conclude that $\Gamma_{\mathfrak{m}}(H^{n}_{\mathfrak{a}}(M)) \in \mathcal{S}$.

Following [BS], the *ideal transform functor with respect to an ideal* \mathfrak{a} of R, denoted by $D_{\mathfrak{a}}(.) = \lim_{n \in \mathbb{N}} \operatorname{Hom}_{R}(\mathfrak{a}^{\mathfrak{n}}, .)$ is a functor from the category of all R-modules and R-homomorphisms $\mathcal{C}(R)$ to

itself.

We now have the following proposition.

Proposition 2.5. Let \mathfrak{a} be an ideal of R, let S be a Serre subcategory satisfying $C_{\mathfrak{a}}$ condition and let M be an R-module such that $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}, M) \in S$ for i = 0, 1. Then $H_{\mathfrak{a}}^{i}(M) \in S$ for i = 0, 1.

Proof. It is clear to see that $(0:_{\Gamma_{\mathfrak{a}}(M)} \mathfrak{a}) = (0:_M \mathfrak{a}) \cong \operatorname{Hom}_R(R/\mathfrak{a}, M) \in S$, and moreover $\Gamma_{\mathfrak{a}}(\Gamma_{\mathfrak{a}}(M) = \Gamma_{\mathfrak{a}}(M)$. Now, since by the assumption $\Gamma_{\mathfrak{a}}(M)$ satisfies $C_{\mathfrak{a}}$ condition on S, $\Gamma_{\mathfrak{a}}(M) \in S$. We now prove the assertion for i = 1. By the definition of Ext, for each $j \geq 0$, the module $\operatorname{Ext}_R^j(R/\mathfrak{a}, \Gamma_{\mathfrak{a}}(M))$ is a quotient of some submodules of finite direct sums of $\Gamma_{\mathfrak{a}}(M)$ and since S is closed under taking submodules, quotients and extensions, $\operatorname{Ext}_R^j(R/\mathfrak{a}, \Gamma_{\mathfrak{a}}(M)) \in S$ for all $j \geq 0$. From this, if we apply the functor $\operatorname{Hom}_R(R/\mathfrak{a}, .)$ to the exact sequence $0 \to \Gamma_{\mathfrak{a}}(M) \to M \to M/\Gamma_{\mathfrak{a}}(M) \to 0$, then we deduce that $\operatorname{Ext}_R^i(R/\mathfrak{a}, M/\Gamma_{\mathfrak{a}}(M)) \in S$ for i = 0, 1. On the other hand, there is an isomorphism $H^1_{\mathfrak{a}}(M) \cong H^1_{\mathfrak{a}}(M/\Gamma_{\mathfrak{a}}(M))$ and so replacing M by $M/\Gamma_{\mathfrak{a}}(M)$, we may assume that $\Gamma_{\mathfrak{a}}(M) = 0$. Hence, by the basic properties of local cohomology, we have the following exact sequence

$$0 \to M \to D_{\mathfrak{a}}(M) \to H^1_{\mathfrak{a}}(M) \to 0.$$

Application of the functor $\operatorname{Hom}_R(R/\mathfrak{a}, -)$ induces the following exact sequence

$$\cdots \to \operatorname{Hom}_R(R/\mathfrak{a}, D_\mathfrak{a}(M)) \to \operatorname{Hom}_R(R/\mathfrak{a}, H^1_\mathfrak{a}(M)) \to \operatorname{Ext}^1_R(R/\mathfrak{a}, M) \to \ldots$$

We note that $\operatorname{Hom}_R(R/\mathfrak{a}, D_\mathfrak{a}(M)) = 0$ and so the assumption implies that $\operatorname{Hom}_R(R/\mathfrak{a}, H^1_\mathfrak{a}(M)) \in \mathcal{S}$. Now since $\Gamma_\mathfrak{a}(H^1_\mathfrak{a}(M)) = H^1_\mathfrak{a}(M)$ and $H^1_\mathfrak{a}(M)$ satisfies $C_\mathfrak{a}$ condition on $\mathcal{S}, H^1_\mathfrak{a}(M) \in \mathcal{S}$. \Box

Corollary 2.6. Let $x \in R$ and let S satisfies C_{xR} condition. If $M \in S$, then $M_x \in S$.

Proof. It is clear to see that $\operatorname{Ext}_{R}^{i}(R/xR, M) \in S$ and so in view of the above proposition $H_{xR}^{i}(M) \in S$ for i = 0, 1. Now the result follows by the following exact sequence

$$0 \to \Gamma_{xR}(M) \to M \to M_x \to H^1_{xR}(M) \to 0.$$

Definition 2.7. For any Serre subcategory S we define the *support of* S as follows:

$$\operatorname{Supp}(\mathcal{S}) = \{ \mathfrak{p} \in \operatorname{Spec} R | R / \mathfrak{p} \in \mathcal{S} \}.$$

For an *R*-module *M* we define $\operatorname{Supp}_R(M) = \{\mathfrak{p} \in \operatorname{Spec}(R) | M_{\mathfrak{p}} \neq 0\}$. We also define *S*-Support of *M* as follows:

$$S - \operatorname{Supp}_R(M) = \operatorname{Supp}_R(M) \setminus \operatorname{Supp}(S).$$

Following [AT1], we define Krull dimension of M with respect to S, denoted by $S - \dim(M)$ as:

$$\mathcal{S} - \dim(M) = \sup\{\operatorname{ht}_M(\mathfrak{p}) | \mathfrak{p} \in \mathcal{S} - \operatorname{Supp}_R(M)\}$$

where $\operatorname{ht}_M(\mathfrak{p}) = \sup\{n \mid \mathfrak{p}_0 \subset \mathfrak{p}_1 \subset \cdots \subset \mathfrak{p}_n = \mathfrak{p} \text{ is a chain of prime ideals in } \operatorname{Supp}_R(M)\}.$

For an ideal \mathfrak{a} of R, we define $D(\mathfrak{a}) = \{\mathfrak{p} \in \operatorname{Spec}(R) | \mathfrak{a} \nsubseteq \mathfrak{p}\}$. This set is an open subset of $\operatorname{Spec}(R)$ with respect to Zariski topology.

Theorem 2.8. Let \mathfrak{a} be an ideal of R, let S be a Serre subcategory satisfying $C_{\mathfrak{a}}$ condition and that $D(\mathfrak{a}) \subseteq \text{Supp}(S)$. If M is a finitely generated R-module, then $H^i_{\mathfrak{a}}(M) \in S$ for all $i > S - \dim M$.

Proof. We proceed the claim by induction on $n = S - \dim M$. Let n = 0. For every $\mathfrak{p} \in \mathbb{R}$ $\mathcal{S}-\operatorname{Supp}_{R}(M)$, we have $\operatorname{ht}\mathfrak{p}=0$ and so $\mathfrak{p}\in \operatorname{Ass}(M)$. In this case by Definition 2.7, $\mathfrak{p}\notin \operatorname{Supp}(\mathcal{S})$. Now, using the assumption $D(\mathfrak{a}) \subseteq \operatorname{Supp}(\mathcal{S})$, we deduce that $\mathfrak{p} \notin D(\mathfrak{a})$ and so $\mathfrak{a} \subseteq \mathfrak{p}$. As $\mathfrak{p} \in \operatorname{Ass}(M)$, there exists some $m \in M$ such that $\mathfrak{p} = \operatorname{Ann}(m)$ and so $\mathfrak{a}m = 0$ which forces $m \in \Gamma_{\mathfrak{a}}(M)$. Therefore $\mathfrak{p} \in \operatorname{Ass}(\Gamma_{\mathfrak{a}}(M))$. We note that $\operatorname{Ass}(M) = \operatorname{Ass}(\Gamma_{\mathfrak{a}}(M)) \cup \operatorname{Ass}(M/\Gamma_{\mathfrak{a}}(M))$ and $\operatorname{Ass}(\Gamma_{\mathfrak{a}}(M)) \cap \operatorname{Ass}(M/\Gamma_{\mathfrak{a}}(M)) = \emptyset$. Now we assert that $\mathcal{S} - \operatorname{Supp}_R(M/\Gamma_{\mathfrak{a}}(M)) = \emptyset$. Suppose on the contrary that $\mathcal{S} - \operatorname{Supp}_R(M/\Gamma_{\mathfrak{a}}(M)) \neq \emptyset$ and then there exists some $\mathfrak{q} \in$ $\mathcal{S} - \operatorname{Supp}_R(M/\Gamma_{\mathfrak{a}}(M))$. As $M/\Gamma_{\mathfrak{a}}(M)$ is finitely generated, $(0:_{M/\Gamma_{\mathfrak{a}}(M)}\mathfrak{a}) \subseteq \mathfrak{q}$. Hence there exists a minimal prime ideal \mathfrak{p}_1 of $(0:_{M/\Gamma_{\mathfrak{a}}(M)}\mathfrak{a})$ such that $(0:_{M/\Gamma_{\mathfrak{a}}(M)}\mathfrak{a}) \subseteq \mathfrak{p}_1 \subseteq \mathfrak{q}$. But, it is known that the minimal prime ideals of $(0:_{M/\Gamma_{\mathfrak{a}}(M)}\mathfrak{a})$ are contained in Ass $(M/\Gamma_{\mathfrak{a}}(M))$; and hence $\mathfrak{p}_1 \in \operatorname{Ass}(M/\Gamma_{\mathfrak{a}}(M))$. Now, since $\mathfrak{p}_1 \subseteq \mathfrak{q}$, there exists an epimorphism of *R*-modules $R/\mathfrak{p}_1 \twoheadrightarrow R/\mathfrak{q}$. Moreover, since $\mathfrak{q} \in \mathcal{S} - \operatorname{Supp}_R(M/\Gamma_\mathfrak{a}(M))$, by the definition $\mathfrak{q} \notin \operatorname{Supp}(\mathcal{S})$ and so $R/\mathfrak{q} \notin \mathcal{S}$. Since \mathcal{S} is closed under taking quotient modules, $R/\mathfrak{p}_1 \notin \mathcal{S}$ and then $\mathfrak{p}_1 \notin \mathrm{Supp}(\mathcal{S})$. Therefore $\mathfrak{p}_1 \in \mathcal{S} - \operatorname{Supp}_R(M)$. But the first argument implies that $\mathfrak{p}_1 \in \operatorname{Ass}(\Gamma_\mathfrak{a}(M))$ and this contradicts that $\operatorname{Ass}(\Gamma_{\mathfrak{a}}(M)) \cap \operatorname{Ass}(M/\Gamma_{\mathfrak{a}}(M)) = \emptyset$. Thus $\mathcal{S} - \operatorname{Supp}_{R}(M/\Gamma_{\mathfrak{a}}(M)) = \emptyset$ and then $M/\Gamma_{\mathfrak{a}}(M) \in \mathcal{S}$. Since $M/\Gamma_{\mathfrak{a}}(M) \in \mathcal{S}$, by the basic properties of local cohomology and using Theorem 2.3, we have $H^i_{\mathfrak{a}}(M) \cong H^i_{\mathfrak{a}}(M/\Gamma_{\mathfrak{a}}(M)) \in \mathcal{S}$ for all i > 0. Now, assume that $n \geq 1$ and the result has been proved for all values smaller than n. Without loss of generality we may assume that $\Gamma_{\mathfrak{a}}(M) = 0$ and so \mathfrak{a} contains a non-zerodivisor x on M. Then $x \notin \mathfrak{p}$ for every $\mathfrak{p} \in \operatorname{Ass}(M)$. As $\mathcal{S} - \operatorname{Supp}_R(M/xM) \subseteq \mathcal{S} - \operatorname{Supp}_R(M)$, the choice of x implies that $\mathcal{S} - \dim M/xM \leq n-1$ and so using the induction hypothesis $H^i_{\mathfrak{a}}(M/xM) \in \mathcal{S}$ for all i > n-1. Now applying the functor $H^{i}_{\mathfrak{a}}(.)$ to the exact sequence

$$0 \to M \xrightarrow{x} M \to M/xM \to 0$$

we get a long exact sequence

$$\cdots \to H^{i-1}_{\mathfrak{a}}(M/xM) \to H^{i}_{\mathfrak{a}}(M) \xrightarrow{x} H^{i}_{\mathfrak{a}}(M) \to \dots$$

which yields an exact sequence $H_{\mathfrak{a}}^{i-1}(M/xM) \to (0:_{H_{\mathfrak{a}}^{i}(M)} x) \to 0$. As \mathcal{S} is closed under taking quotient modules, $(0:_{H_{\mathfrak{a}}^{i}(M)} x) \in \mathcal{S}$ for all i > n. Moreover, since \mathcal{S} is closed under taking submodules and $(0:_{H_{\mathfrak{a}}^{i}(M)} \mathfrak{a}) \subseteq (0:_{H_{\mathfrak{a}}^{i}(M)} x)$, we deduce that $(0:_{H_{\mathfrak{a}}^{i}(M)} \mathfrak{a}) \in \mathcal{S}$ for each i > n. Furthermore, $\Gamma_{\mathfrak{a}}(H_{\mathfrak{a}}^{i}(M)) = H_{\mathfrak{a}}^{i}(M)$ for each i > n. Now, since $H_{\mathfrak{a}}^{i}(M)$ satisfies $C_{\mathfrak{a}}$ condition on \mathcal{S} , one can conclude that $H_{\mathfrak{a}}^{i}(M) \in \mathcal{S}$ for all i > n.

Corollary 2.9. Let \mathfrak{a} be an ideal of R, let S be a Serre subcategory satisfying $C_{\mathfrak{a}}$ condition and $D(\mathfrak{a}) \subseteq \operatorname{Supp}(S)$, and let M be an R-module. Then $\operatorname{Supp}_R(H^i_{\mathfrak{a}}(M)) \subseteq \operatorname{Supp}(S)$ for every $i > S - \dim(M)$ where $\operatorname{Supp}_R(H^i_{\mathfrak{a}}(M)) = \{\mathfrak{p} \in \operatorname{Spec}(R) | H^i_{\mathfrak{a}R_n}(M_{\mathfrak{p}}) \neq 0\}.$

Proof. It is easy to see that for each finitely generated submodule N of M there is $\mathcal{S} - \dim(N) \leq \mathcal{S} - \dim(M)$. Then by virtue of the previous theorem, $H^i_{\mathfrak{a}}(N) \in \mathcal{S}$ for all $i > \mathcal{S} - \dim(M)$. We now show that $\operatorname{Supp}_R(H^i_{\mathfrak{a}}(N)) \subseteq \operatorname{Supp}(\mathcal{S})$ for all $i > \mathcal{S} - \dim(M)$. Let $\mathfrak{p} \in \operatorname{Supp}_R(H^i_{\mathfrak{a}}(N))$. Then there exists a non-zero element $x \in H^i_{\mathfrak{a}}(N)$ such that $\operatorname{Ann}(x) \subseteq \mathfrak{p}$ and so there exists a natural epimorphism $xR \twoheadrightarrow R/\mathfrak{p}$. Since $H^i_{\mathfrak{a}}(N) \in \mathcal{S}$ and \mathcal{S} is closed under taking submodules, $xR \in \mathcal{S}$. Subsequently, since \mathcal{S} is closed under taking quotient modules, $R/\mathfrak{p} \in \mathcal{S}$ and so $\mathfrak{p} \in \operatorname{Supp}(\mathcal{S})$. For

every *R*-module *M*, we have $M = \lim_{\to} M_i$ where M_i is taken over finitely generated submodules of *M*. Then $\operatorname{Supp}_R(H^i_{\mathfrak{a}}(M)) \subseteq \operatorname{Supp}_R(\coprod H^i_{\mathfrak{a}}(M_i)) \subseteq \operatorname{Supp}(\mathcal{S})$ for every $i > \mathcal{S} - \dim(M)$. \Box

Theorem 2.10. Let \mathfrak{a} be an ideal of R, let S be a Serre subcategory satisfying $C_{\mathfrak{a}}$ condition, and let $R/\mathfrak{a} \in S$. Then $H^i_{\mathfrak{a}}(M) \in S$ for every $i \geq 0$ and every finitely generated R-module M.

Proof. Let M be a finitely generated R-module. We proceed by induction on i. Let i = 0. For every $\mathfrak{p} \in V(\mathfrak{a}) = \{\mathfrak{p} \in \operatorname{Spec}(R) | \mathfrak{a} \subseteq \mathfrak{p}\}$, there is an epimorphism $R/\mathfrak{a} \twoheadrightarrow R/\mathfrak{p}$. As $R/\mathfrak{a} \in S$ and \mathcal{S} is closed under quotient modules, $R/\mathfrak{p} \in \mathcal{S}$, hence $\operatorname{Supp}_R(\Gamma_\mathfrak{a}(M)) \subseteq V(\mathfrak{a}) \subseteq \operatorname{Supp}(\mathcal{S})$. Since $\Gamma_{\mathfrak{a}}(M)$ is notherian, there is a filtration $0 = N_0 \subseteq N_1 \subseteq N_2 \subseteq ... \subset N_n = \Gamma_{\mathfrak{a}}(M)$ such that $N_i/N_{i-1} \cong R/\mathfrak{p}_i$ for some $\mathfrak{p}_i \in \operatorname{Supp}_R(\Gamma_\mathfrak{a}(M))$. We show that by induction on j that each N_j lies \mathcal{S} . For j = 1, since $N_1 = R/\mathfrak{p}_1$ and $\mathfrak{p}_1 \in \text{Supp}(\mathcal{S})$, the assertion is clear. Suppose that j > 1 and the result has been proved for j - 1. There exists an exact sequence of modules $0 \to N_{j-1} \to N_j \to R/\mathfrak{p}_j \to 0$. By the induction hypothesis, we have $N_{j-1} \in \mathcal{S}$ and by the previous argument $R/\mathfrak{p}_j \in \mathcal{S}$. Now since \mathcal{S} is closed under taking extension, we deduce that $N_i \in \mathcal{S}$. Hence $N_n = \Gamma_{\mathfrak{a}}(M) \in \mathcal{S}$. Let i > 0 and assume that the result has been proved for all values smaller than i. By the same way mentioned in the previous theorem we may assume that $\Gamma_{\mathfrak{a}}(M) = 0$ and so \mathfrak{a} contains a non-zerodivisor x on M. Applying the functor $H^i_{\mathfrak{o}}(.)$ to the exact sequence $0 \to M \xrightarrow{x} M \to M/xM \to 0$, we get an exact sequence $H^{i-1}_{\mathfrak{a}}(M/xM) \to (0:_{H^{i}_{\mathfrak{a}}(M)} \mathfrak{a}) \to 0.$ Now using the induction hypothesis, $H^{i-1}_{\mathfrak{a}}(M/xM) \in \mathcal{S}.$ As \mathcal{S} is closed under taking quotient modules, $(0 :_{H^i_{\mathfrak{a}}(M)} x) \in \mathcal{S}$ for all i > n. Moreover, since S is closed under taking submodules and $(0:_{H^i_{\mathfrak{a}}(M)}\mathfrak{a}) \subseteq (0:_{H^i_{\mathfrak{a}}(M)}x)$, we deduce that $(0:_{H^{i}_{\mathfrak{a}}(M)}\mathfrak{a}) \in \mathcal{S}$ for each i > n and furthermore $\Gamma_{\mathfrak{a}}(H^{i}_{\mathfrak{a}}(M)) = H^{i}_{\mathfrak{a}}(M)$. Lastly, since $H^{i}_{\mathfrak{a}}(M)$ satisfies $C_{\mathfrak{a}}$ condition on \mathcal{S} , $H^{i}_{\mathfrak{a}}(M) \in \mathcal{S}$.

Theorem 2.11. Let \mathfrak{a} be an ideal of R; let S be a Serre subcategory and let n be a fixed nonnegative integer. Let M be an R-module such that $\operatorname{Supp}_R(\operatorname{Ext}^j_R(R/\mathfrak{a}, M)) \subseteq \operatorname{Supp}(S)$ for all $j \leq n$. Then $\operatorname{Supp}_R(\operatorname{H}^j_\mathfrak{a}(M)) \subseteq \operatorname{Supp}(S)$ for all $j \leq n$.

Proof. We proceed by induction on j. At first assume that j = 0. In order to prove the assertion in this case, we show by induction on i that $\operatorname{Supp}_R(\operatorname{Hom}_R(R/\mathfrak{a}^i, M)) \subseteq \operatorname{Supp}(\mathcal{S})$ for all $i \ge 1$, where by Definition 2.7, $\operatorname{Supp}_R(\operatorname{Hom}_R(R/\mathfrak{a}^i, M)) = \{\mathfrak{p} \in \operatorname{Spec}(R) | \operatorname{Hom}_R(R/\mathfrak{a}^i, M)_{\mathfrak{p}} \ne 0\}$. The case i = 1 is the assumption. Suppose, inductively, that i > 1 and that the result have been proved for i. There exists an exact sequence of R-modules

$$0 \to \mathfrak{a}^i/\mathfrak{a}^{i+1} \to R/\mathfrak{a}^{i+1} \to R/\mathfrak{a}^i \to 0 \quad (\dagger).$$

Applying the functor $\operatorname{Hom}_R(., M)$ to the exact sequence and using the induction hypothesis, it suffices to show that

$$\operatorname{Supp}_R(\operatorname{Hom}_R(\mathfrak{a}^i/\mathfrak{a}^{i+1}, M)) \subseteq \operatorname{Supp}(\mathcal{S}).$$

Since R is noetherian, $\mathfrak{a}^i/\mathfrak{a}^{i+1}$ is a finitely generated R/\mathfrak{a} -module and so there exist some elements $a_1 + \mathfrak{a}^{i+1}, \ldots, a_t + \mathfrak{a}^{i+1} \in \mathfrak{a}^i/\mathfrak{a}^{i+1}$ such that $\mathfrak{a}^i/\mathfrak{a}^{i+1} = \langle a_1 + \mathfrak{a}^{i+1}, \ldots, a_t + \mathfrak{a}^{i+1} \rangle R/\mathfrak{a}$. We now define a homomorphism of R/\mathfrak{a} -module, $\varphi : (R/\mathfrak{a})^t \to \mathfrak{a}^i/\mathfrak{a}^{i+1}$ by $\varphi(r_1 + \mathfrak{a}, \ldots, r_t + \mathfrak{a}) = r_1a_1 + \cdots + r_ta_t + \mathfrak{a}^{i+1}$ for every $(r_1 + \mathfrak{a}, \ldots, r_t + \mathfrak{a}) \in (R/\mathfrak{a})^t$. One can see at once that φ is

an epimorphism and if we consider $X = \ker \varphi$, then we have the following exact sequence of R/\mathfrak{a} -modules

$$0 \to X \to (R/\mathfrak{a})^t \to \mathfrak{a}^i/\mathfrak{a}^{i+1} \to 0 \quad (\ddagger).$$

Applying the functor $\operatorname{Hom}_R(-, M)$ to (\ddagger) , we conclude that $\operatorname{Supp}_R(\operatorname{Hom}_R(\mathfrak{a}^i/\mathfrak{a}^{i+1}, M)) \subseteq \operatorname{Supp}_R(\operatorname{Hom}_R(R/\mathfrak{a}, M)) \subseteq \operatorname{Supp}(\mathcal{S})$. Let j > 0 and assume that the result has been proved for all values smaller than j < n. We prove again by induction on i that $\operatorname{Supp}_R(\operatorname{Ext}_R^j(R/\mathfrak{a}^i, M) \subseteq \operatorname{Supp}(\mathcal{S})$. The case i = 1 is clear by the assumption. Assume that the result is true for i and so we prove it for i + 1. Applying the functor $\operatorname{Ext}_R^j(., M)$ to (\ddagger) and using the induction hypothesis on i, we have to prove that $\operatorname{Supp}_R(\operatorname{Ext}_R^j(\mathfrak{a}^i/\mathfrak{a}^{i+1}, M)) \subseteq \mathcal{S}$. Application of the same functor to (\ddagger) gives rise the following exact sequence

$$\operatorname{Ext}_{R}^{j-1}(X,M) \to \operatorname{Ext}_{R}^{j}(\mathfrak{a}^{i}/\mathfrak{a}^{i+1},M) \to (\operatorname{Ext}_{R}^{j}(R/\mathfrak{a},M))^{t}.$$

Using the assumption on *i*, it suffices to prove that $\operatorname{Supp}_R(\operatorname{Ext}_R^{j-1}(X, M)) \subseteq \operatorname{Supp}(\mathcal{S})$. As *R* is noetherian, *X* is a finitely generated R/\mathfrak{a} -module and so by applying an analogous argument of $\mathfrak{a}^i/\mathfrak{a}^{i+1}$, we have a non-negative integer t_1 and an exact sequence of *R*-modules

$$0 \to X_1 \to (R/\mathfrak{a})^{t_1} \to X \to 0 \quad (\dagger_1)$$

Continuing this way for $i \ge 2$, we obtain R/\mathfrak{a} -module X_i , non-negative integer t_i and the exact sequence

$$0 \to X_i \to (R/\mathfrak{a})^{t_i} \to X_{i-1} \to 0 \quad (\dagger_i).$$

Application of the functor $\operatorname{Hom}_R(., M)$ to (\ddagger_1) induces the following exact sequence of *R*-modules

$$\operatorname{Ext}_{R}^{j-2}(X_{1},M) \to \operatorname{Ext}_{R}^{j-1}(X,M) \to \operatorname{Ext}_{R}^{j-1}(R/\mathfrak{a}^{t_{1}},M).$$

Using the induction hypothesis on j, we get $\operatorname{Supp}(\operatorname{Ext}_R^{j-1}(R/\mathfrak{a}^{t_1}, M)) \subseteq \operatorname{Supp}(\mathcal{S})$ and so in order to prove that $\operatorname{Supp}_R(\operatorname{Ext}_R^{j-1}(X, M)) \subseteq \operatorname{Supp}(\mathcal{S})$, it suffices to show that $\operatorname{Supp}_R(\operatorname{Ext}_R^{j-2}(X_1, M)) \subseteq$ $\operatorname{Supp}(\mathcal{S})$. Iterating this way on $\ddagger_2, \ldots \ddagger_{j-1}$, it suffices to show that $\operatorname{Supp}_R(\operatorname{Hom}_R(X_{j-1}, M)) \subseteq$ $\operatorname{Supp}(\mathcal{S})$. Finally applying the functor $\operatorname{Hom}_R(., M)$ to (\ddagger_j) , we get the exact sequence $0 \to$ $\operatorname{Hom}_R(X_{j-1}, M) \to \operatorname{Hom}_R(R/\mathfrak{a}, M)^{t_j}$ which follows the result.

References

- [AM] M. Aghapournahr, L. Melkersson, Local cohomology and serre subcategory, J. Algebra, 320(2008), 1275-1287.
- [AT1] M. Asgharzadeh and M. Tousi, Cohen-Macaulayness with respect to serve classes, Illinois. J. Math, 53(2009), no. 1, 67-85.
- [AT2] M. Asgharzadeh and M. Tousi, A Unified approache to local cohomology modules using serre classes, arXiv:math/0712.3875v2[math.AC], 8 Apr 2008.
- [BS] M. Brodmann and R. Y. Sharp, Local cohomology: an algebraic introduction with geometric applications, Cambridge Studies in Advanced Mathematics 60, Cambridge University Press (1998).
- [Zos1] H. Zoschinger, Minimax Moduln, J. Algebra, 102(1986), 1-32.
- [Zos2] H. Zoschinger, Koatomare Moduln, Math. Z, 170(1980), 221-232.

DEPARTMENT OF MATHEMATICS, URMIA UNIVERSITY, P.O.BOX:165,URMIA,IRAN-AND,SCHOOL OF MATHE-MATICS, INSTITUTE FOR RESEARCH IN FUNDAMENTAL SCIENCES(IPM), P.O.BOX: 19395-5746, TEHRAN, IRAN *E-mail address*: rsazeedeh@ipm.ir

MATHEMATICS DEPARTMENT, FACULTY OF SCIENCE, PAYAME NOOR UNIVERSITY(PNU), TEHRAN, IRAN *E-mail address*: rasulirasul@yahoo.com