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SOME RESULTS IN LOCAL COHOMOLOGY AND SERRE SUBCATEGORY

REZA SAZEEDEH AND RASUL RASULI

ABSTRACT. Let R be a noetherain ring, let a be an ideal of R, and let M be an R-module. Let
S be a Serre subcategory of the category of R-modules and let ¢ be a non-negative integer. In
this paper we find some conditions under which Hg(M) € S or Suppy(Hg(M)) C Supp(S).

1. INTRODUCTION

Throughout this paper R is a commutative noetherian ring and S is a Serre subcategory
of R-modules. The main aim of this paper is to investigate when local cohomology modules
belong to the Serre subcategory S.

Recall that a Serre subcategory of the category of R-modules is a full subcategory whenever
it is closed under taking submodules, quotient modules and extension. Some examples of these
subcategories are the subcategories of finite generated R-modules; coatomic R-modules [Zosl];
minimax R-modules [Zos2].

Recently some results have been proved concerning with the local cohomology modules H: (M)
of a module M in some certain Serre subcategory of the category of modules (cf. [AM, AT1,
AT2]).

M. Aghapournahr and L. Melkersson [AM] gave a condition on a Serre subcategory S. To give
more details, let a be an ideal of R, let M be an R-module and let (0 :57 a) = {z € M|az = 0}.
The R-module M is said to satisfy C, condition on & whenever the following condition holds:

IfTq(M) =M and (0 :ps a) € S, then M € S.
From [AM], S is said to satisfy C, condition whenever every R-module satisfies C;y condition on

S.

In this paper, by dealing with this condition, we answer to the following question:
When do the local cohomology modules H:(M) belong to S for a non-negative integer i?

To be more precise, let M be a finitely generated R-module. We show that if M € S or
R/a € 8, then Hi{(M) € S for all i > 0. We prove that if D(a) C Supp(S), then Hi(M) € S for
all i > § —dim M. Let n be a fixed non-negative integer. We show that if M is an R-module
such that Suppg(Ext)(R/a, M)) C Supp(S) for all j < n, then Suppg(HZ(M)) C Supp(S) for
all j <n.

2. THE MAIN RESULTS

We start this section by a definition on Serre subcategory of modules due to M. Aghapournahr
and L. Melkersson [AM].

Definition 2.1. Let a be an ideal of R, let M be an R-module and let (0 :ps a) = {z € M|ax =
0}. We say that M satisfy C, condition on & whenever the following condition holds:
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IfTq(M) =M and (0 :ps a) € S, then M € S.

From [AM], § is said to satisfy C, condition whenever every R-module satisfies C;; condition on

S.

Example 2.2. The class of artinian modules satisfy the condition C, for every ideal a of R.
But the class of noetherian modules A over a non-artinian local ring (R, m) does not satisfy Cp,
condition, because the injective envelope E(R/m) of R/m, does not satisfy Cy, condition on N.

Theorem 2.3. Let a be an ideal of R, let S be a Serre subcategory satisfying Cy condition and
let M be a finitely generated R-module such that M € §. Then HY(M) € S for all i > 0.

Proof. We proceed the assertion by induction on i. Let i = 0. As HY(M) = Tq(M) is a
submodule of M € S and S is closed under taking submodules, we deduce that I'q(M) € S.
Now suppose, inductively that ¢ > 0 and the result has been proved for all values smaller
than 7. By the basic properties of local cohomology, for each j > 0, there is an isomorphism
H} (M) = H}(M/T4(M)); moreover, since S is closed under quotient modules, M /Ty (M) € S.
Thus by replacing M by M /T'q(M), we may assume that I';(M) = 0. In this case, we assert that
a & p for all p € Ass(M); otherwise there exists g € Ass(M) such that a C ¢. Since q € Ass(M),
there exists a non-zero element m € M such that ¢ = Ann(m) and so am C gm = 0. But this
fact implies that m € I'q(M) and so I'q(M) # 0 which is a contradiction. Since M is a finitely
generated, Ass(M) is finite; and hence, by the Prime Avoidance Theorem, a ¢ Upe Ass(M) P-
Thus a contains a non-zero divisor x on M which gives rise an exact sequence of modules
0— M35 M — M/zM — 0. Applying the functor Hi(.), there exists a long exact sequence of
modules
coo = HEY M /M) — HL(M) 5 H(M) — ...

which yields an exact sequence of modules H: (M /xM) — (0 : mi(vy ) — 0. We notice that
since M € § and § is closed under taking quotients modules, M/zM € S. Now, the induction
hypothesis implies that H:~1(M/xM) € S, and then the quotients module (0 ‘i) ) lies
in §. On the other hand (0 :yi(57) @) C (0 :yipy) ®) € S and since S is closed under taking
submodules, (0 : Hi(M) a) € S. Furthermore, by the basic properties of local cohomology, we
have T'y(H.(M)) = Hi(M). Now, since H(M) satisfies Cy condition on S, Hi(M) € S. O

Proposition 2.4. Let (R, m) be a local ring, let a be an ideal of R and let S be a Serre subcategory
satisfying Cq condition. If n is a fived non-negative integer such that H(M) € S for all i < n,
then Tw(HZ(M)) € S.

Proof. 1t follows from [AT2, Corollary 2.9] that Hompg(R/a, H}(M)) € S. On the other hand,
there is the following isomorphisms and equalities

(0 T (HZ(M)) Cl) = Fm(O ‘HD (M) Cl) = I‘m(HomR(R/a, HZL(M)))

As S is closed under taking submodules, I'y(Homp(R/a, H(M))) € S. Therefore the
preceding isomorphism implies that (0 :p,(gra)) @) € S. Moreover, it is clear to see that
Fo(Tn(HF(M))) = Tn(HZ(M)). Lastly, since I'n(H(M)) satisfies Cy condition on S, we con-
clude that 'y (H}(M)) € S. O
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Following [BS], the ideal transform functor with respect to an ideal a of R, denoted by Dq(.) =
h_n}HomR(a“, .) is a functor from the category of all R-modules and R-homomorphisms C(R) to
neN

itself.
We now have the following proposition.

Proposition 2.5. Let a be an ideal of R, let S be a Serre subcategory satisfying Cy condition
and let M be an R-module such that Extiy(R/a,M) € S for i = 0,1. Then H.(M) € S for
i=0,1.
Proof. Tt is clear to see that (0 :p ) @) = (0 :p a) = Hompg(R/a, M) € S, and moreover
[y(Ta(M) =T'q(M). Now, since by the assumption I'q(M) satisfies Cy condition on S, I';(M) €
S. We now prove the assertion for i = 1. By the definition of Ext, for each j > 0, the module
Ext),(R/a,T'q(M)) is a quotient of some submodules of finite direct sums of I'q(M) and since
S is closed under taking submodules, quotients and extensions, Exth,(R/a,T'q(M)) € S for all
j > 0. From this, if we apply the functor Hompg(R/a,.) to the exact sequence 0 — I'q(M) —
M — M/Ty(M) — 0, then we deduce that Ext%(R/a, M/Tq(M)) € S for i = 0,1. On the other
hand, there is an isomorphism H}(M) = HY(M/T4(M)) and so replacing M by M/T(M), we
may assume that I'q(M) = 0. Hence, by the basic properties of local cohomology, we have the
following exact sequence
0— M — Dy(M) — HL(M) — 0.

Application of the functor Homg(R/a, —) induces the following exact sequence

.-« — Hompg(R/a, Do(M)) — Hompg(R/a, H}(M)) — Exth(R/a, M) — .. ..

We note that Hompg(R/a, Dy(M)) = 0 and so the assumption implies that Homg(R/a, HL(M)) €
S. Now since I'q(H}(M)) = HL(M) and H!(M) satisfies Cy condition on S, H} (M) € S. O

Corollary 2.6. Let x € R and let S satisfies Cpr condition. If M € S, then M, € S.

Proof. 1t is clear to see that Extl%(R/zR,M) € S and so in view of the above proposition
H! (M) € S for i =0,1. Now the result follows by the following exact sequence

0— Tur(M) = M — M, — Hp(M) — 0.

Definition 2.7. For any Serre subcategory S we define the support of S as follows:
Supp(S) = {p € SpecR|R/p € S}.
For an R-module M we define Suppr(M) = {p € Spec(R)|M, # 0}. We also define S-Support
of M as follows:
S — Suppp(M) = Suppr(M) \ Supp(S).
Following [AT1], we define Krull dimension of M with respect to S, denoted by S — dim(M) as:
S — dim(M) = sup{htys(p)p € S — Suppr(M)}

where htys(p) = sup{n| po C p1 C -+ C p, = p is a chain of prime ideals in Suppr(M)}.
For an ideal a of R, we define D(a) = {p € Spec(R)|a € p}. This set is an open subset of
Spec(R) with respect to Zariski topology.
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Theorem 2.8. Let a be an ideal of R, let S be a Serre subcategory satisfying Cq condition
and that D(a) C Supp(S). If M is a finitely generated R-module, then HL(M) € S for all
i>8 —dim M.

Proof. We proceed the claim by induction on n = § — dim M. Let n = 0. For every p €
S —Suppp (M), we have htp = 0 and so p € Ass(M). In this case by Definition 2.7, p ¢ Supp(S).
Now, using the assumption D(a) C Supp(S), we deduce that p ¢ D(a) and so a C p. As
p € Ass(M), there exists some m € M such that p = Ann(m) and so am = 0 which forces
m € I'q(M). Therefore p € Ass(I'q(M)). We note that Ass(M) = Ass(I'q(M)) U Ass(M /T'q(M))
and Ass(Tq(M)) N Ass(M/Tq(M)) = 0. Now we assert that S — Suppr(M/Tq(M)) = 0.
Suppose on the contrary that & — Suppgr(M/Tq(M)) # () and then there exists some q €
S — Suppr(M/To(M)). As M/T'(M) is finitely generated, (0 :p;/p,(ar) @) € q. Hence there
exists a minimal prime ideal p; of (0 :p7/p,(ar) @) such that (0 :prp ) @) € p1 € q. But,
it is known that the minimal prime ideals of (0 :j;/r (1) @) are contained in Ass(M/T'q(M));
and hence p; € Ass(M/T'q(M)). Now, since p; C q, there exists an epimorphism of R-modules
R/p1 — R/q. Moreover, since q € S — Suppr(M/T'q(M)), by the definition q ¢ Supp(S) and so
R/q ¢ S. Since S is closed under taking quotient modules, R/p; ¢ S and then p; ¢ Supp(S).
Therefore p; € S — Suppr(M). But the first argument implies that p; € Ass(I'q(M)) and this
contradicts that Ass(T'q(M)) N Ass(M/Tq(M)) = 0. Thus S — Suppr(M/Tq(M)) = 0 and then
M/To(M) € §. Since M/T'y(M) € S, by the basic properties of local cohomology and using
Theorem 2.3, we have H.(M) = H{(M/Tq(M)) € S for all i > 0. Now, assume that n > 1
and the result has been proved for all values smaller than n. Without loss of generality we
may assume that I';(M) = 0 and so a contains a non-zerodivisor z on M. Then z ¢ p for
every p € Ass(M). As § — Suppr(M/xM) C S — Suppr(M), the choice of x implies that
S —dim M/xM < n—1 and so using the induction hypothesis Hi(M/zM) € S for all i > n — 1.
Now applying the functor H{(.) to the exact sequence

0—M>3M-— M/zM — 0
we get a long exact sequence
coo = HEY M /aM) — HL (M) 5 H(M) — ...
which yields an exact sequence H:i~Y(M/xM) — (0 : mi) ) = 0. As S is closed under taking
quotient modules, (0 : Hi(M) x) € S for all i > n. Moreover, since S is closed under taking
submodules and (0 :fi(ppy @) € (0 :gi(ar) ), we deduce that (0 :pi(pp) a) € S for each i > n.

Furthermore, I'y(HL(M)) = H;(M) for each i > n. Now, since HE(M) satisfies C condition on
S, one can conclude that H}(M) € S for all i > n. O

Corollary 2.9. Let a be an ideal of R, let S be a Serre subcategory satisfying Cy condition
and D(a) C Supp(S), and let M be an R-module. Then Suppg(Hg(M)) C Supp(S) for every
i>8 — dim(M) where Suppr(HL(M)) ={p € Spec(R)|H;Rp(Mp) #0}.

Proof. Tt is easy to see that for each finitely generated submodule N of M there is S —dim(N) <
S — dim(M). Then by virtue of the previous theorem, H:(N) € S for all i > S — dim(M). We
now show that Supp z(Hi(N)) € Supp(S) for all i > S—dim(M). Let p € Suppg(HL(N)). Then
there exists a non-zero element x € H:(N) such that Ann(z) C p and so there exists a natural
epimorphism xR — R/p. Since H(N) € S and S is closed under taking submodules, R € S.
Subsequently, since S is closed under taking quotient modules, R/p € S and so p € Supp(S). For
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every R-module M, we have M = li_r}nMi where M; is taken over finitely generated submodules
of M. Then Suppg(H.(M)) C Suppg([] Hi(M;)) C Supp(S) for every i > S — dim(M). O

Theorem 2.10. Let a be an ideal of R, let S be a Serre subcategory satisfying Cq condition,
and let R/a € S. Then HL(M) € S for every i > 0 and every finitely generated R-module M.

Proof. Let M be a finitely generated R-module. We proceed by induction on i. Let ¢ = 0. For
every p € V(a) = {p € Spec(R)|a C p}, there is an epimorphism R/a — R/p. As R/a € S
and S is closed under quotient modules, R/p € S, hence Suppr(I's(M)) C V(a) C Supp(S).
Since I'q(M) is noetherian, there is a filtration 0 = Ny € Ny C Ny C ... C N, = I'q(M)
such that N;/N;,_1 = R/p; for some p; € Suppp(I'qs(M)). We show that by induction on j
that each N; lies S. For j = 1, since Ny = R/p; and p; € Supp(S), the assertion is clear.
Suppose that j > 1 and the result has been proved for j — 1. There exists an exact sequence
of modules 0 — N;j_1 — N; — R/p; — 0. By the induction hypothesis, we have N;_; € S
and by the previous argument R/p; € S. Now since S is closed under taking extension, we
deduce that N; € S. Hence N, = I'q(M) € S. Let i > 0 and assume that the result has
been proved for all values smaller than i. By the same way mentioned in the previous theorem
we may assume that I'y(M) = 0 and so a contains a non-zerodivisor x on M. Applying the
functor Hi(.) to the exact sequence 0 — M % M — M/xM — 0, we get an exact sequence
Hi7Y(M/zM) — (0 ‘i) @) — 0. Now using the induction hypothesis, Hi7Y(M/xzM) € S.
As S is closed under taking quotient modules, (0 : Hi(M) x) € § for all i > n. Moreover,
since S is closed under taking submodules and (0 :yi(5s) @) € (0 :gi(ps) ), we deduce that
(0 :pi(ary @) € S for each i > n and furthermore L (HL(M)) = HY(M). Lastly, since H:(M)
satisfies Cy condition on S, Hi(M) € S.

O

Theorem 2.11. Let a be an ideal of R; let S be a Serre subcategory and let n be a fived non-
negative integer. Let M be an R-module such that Suppg(Ext},(R/a, M)) C Supp(S) for all
j <n. Then Suppr(Hi(M)) C Supp(S) for all j < n.

Proof. We proceed by induction on j. At first assume that j = 0. In order to prove the assertion
in this case, we show by induction on i that Suppg(Hompg(R/a’, M)) C Supp(S) for all i > 1,
where by Definition 2.7, Suppg(Hompg(R/a?, M)) = {p € Spec(R)|Hompg(R/a*, M), # 0}. The
case ¢ = 1 is the assumption. Suppose, inductively, that ¢ > 1 and that the result have been
proved for i. There exists an exact sequence of R-modules

0—a'/a™ - R/a™ - R/a* =0 (}).

Applying the functor Hompg(., M) to the exact sequence and using the induction hypothesis, it
suffices to show that

Supp p(Homp(a’/a*™, M)) C Supp(S).
Since R is noetherian, a’/a**! is a finitely generated R/a-module and so there exist some elements
ar +atl o ap + attt € af/att! such that a/aitt =< ay + oL ap + attt > R/a. We
now define a homomorphism of R/a-module, ¢ : (R/a)t — a'/a"™ by ¢(ry +a,...,7 +a) =
ria; + -+ rap + attt for every (r1 +a,...,7 +a) € (R/a). One can see at once that ¢ is
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an epimorphism and if we consider X = ker ¢, then we have the following exact sequence of
R/a-modules
0= X — (R/a)t = a/a™ =0 (3).

Applying the functor Hompg(—, M) to (1), we conclude that Suppp(Hompg(a’/att M)) C
Suppr(Hompg(R/a, M)) C Supp(S). Let 7 > 0 and assume that the result has been proved for
all values smaller than j < n. We prove again by induction on i that Supp R(Extg;{(R/ at, M) C
Supp(S). The case i = 1 is clear by the assumption. Assume that the result is true for i and so
we prove it for i+ 1. Applying the functor Extjé(., M) to (1) and using the induction hypothesis
on ¢, we have to prove that Supp R(Extz%(a" /aitt M)) C S. Application of the same functor to
(1) gives rise the following exact sequence

Extl, ' (X, M) — Extl(a’/a™', M) — (Ext}y(R/a, M))".

Using the assumption on 4, it suffices to prove that SuppR(Extggl(X, M)) C Supp(S). As R is
noetherian, X is a finitely generated R/a-module and so by applying an analogous argument of
a’/a’t!) we have a non-negative integer ¢; and an exact sequence of R-modules

0—X; = (R/a)* = X =0 (1)

Continuing this way for i > 2, we obtain R/a-module X;, non-negative integer ¢; and the exact
sequence

0—X; = (R/a)f = X;m1 =0 (1,).
Application of the functor Hompg(., M) to (f;) induces the following exact sequence of R-modules

Exty; *(X1, M) — Ext}; (X, M) — Ext}; ' (R/a"t, M).

Using the induction hypothesis on j, we get Supp(Ext?{l(R/ a’t, M)) C Supp(8S) and so in order
to prove that SuppR(Extgl(X, M)) C Supp(S), it suffices to show that SuppR(Extg{Q(Xl, M)) C
Supp(S). Iterating this way on I,,...1; 4, it suffices to show that Suppg(Hompg(X;-1,M)) C
Supp(S). Finally applying the functor Homg(., M) to (I;), we get the exact sequence 0 —
Homp(X,_1, M) — Hompg(R/a, M)% which follows the result.

]
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