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Abstract. Let M be a semimodule over a commutative semiring R and U a nonempty
proper subset of M . In this paper, a generalization of the total graph T (Γ(M)), denoted
by TU (Γ(M)) is presented, where U is a multiplicative-prime subset of M . It is the graph
with all elements of M as vertices, and for distinct m,n ∈ M , the vertices m and n are
adjacent if and only if m + n ∈ U . Among other things, the diameter and the girth of
T (Γ(M)) are also studied.
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1. Introduction

Throughout this paper all semirings are commutative with nonzero identity. Recently, there has been
considerable in the literature to associating graphs with algebraic structures (see [2], [3], [8] and [11]).
The concept of a total graph goes back to Anderson and Badawi in [1]. The total torsion element graph of
semimodule over commutative semirings (denoted by T (Γ(M)) was introduced in [9]. The set of vertices
of T (Γ(M)) is all elements of M , and two distinct vertices m and n are adjacent whenever m+n ∈ T (M)
(that is, T (M) = {m ∈M : rm = 0 for some 0 6= r ∈ R}).

Let R be a commutative semiring, M be an R-semimodule and let U be a nonempty subset of M .
The subset {r ∈ R : rM ⊆ U} will be denoted by (U :R M) or (U : M). It is clear that if U is a
subsemimodule of M , then (U : M) is an ideal of R. We define a nonempty subset U of M to be a
multiplicative-prime subset of M if the following two conditions hold: (i) rm ∈ U for every r ∈ R and
m ∈ U ; (ii) if sx ∈ U for some s ∈ R and x ∈ M , then x ∈ U or s ∈ (U : M). It is clear that 0 ∈ U .
Note that if U is a subsemimodule of M , then U is necessarily a prime subsemimodule of M . In the
present paper, we introduce and investigate the generalized total graph of M , denoted by TU (Γ(M)), as
a (undirected) graph with all elements of M as vertices, and for distinct m,n ∈M , the vertices m and n
are adjacent if and only if m+ n ∈ U .
Let TU (Γ(U)) be the (induced) subgraph of TU (Γ(M)) with vertex set U , and let TU (Γ(M \ U)) be the
(induced) subgraph TU (Γ(M)) with vertices consisting of M \ U .
The study of TU (Γ(M)) breaks naturally into two cases depending on whether or not U is a subsemi-
module of M . In Section 3, we investigate the homomorphic character of semimodule which epicts the
correcponding graphical character. In the forth section, we handle the case when U is a subsemimodule
of M ; in Section 5, we do the case when U is not a subsemimodule of M . For every case, we characterize
the girths and diameters of TU (Γ(M)), TU (Γ(U)) and TU (Γ(M \ U).
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2. Preliminaries

For the sake of completeness, we state some definitions and notations used throughout. For a graph
Γ, by E(Γ) and V (Γ), we denote the set of all edges and vertices, respectively. We recall that a graph is
connected if there exists a path connecting any two distinct vertices. The distance between two distinct
vertices a and b, denoted by d(a, b), is the length of a shortest path connecting them (if such a path does
not exist, then d(a, a) = 0 and d(a, b) = ∞). The diameter of a graph Γ, denoted by diam(Γ), is equal
to sup{d(a, b) : a, b ∈ V (Γ)}. The degree of a vertex of a graph G is the number of edges incident to the
vertex. The degree of a vertex ν is denoted by deg(ν). The minimum degree of a graph G denoted by
δ(G) is the minimum degree of its vertices. A graph is complete if it is connected with diameter less than
or equal to one. The girth of a graph Γ, denoted gr(Γ), is the length of a shortest cycle in Γ, provided
Γ contains a cycle; otherwise; gr(Γ) = ∞. We denote the complete graph on n vertices by Kn and the
complete bipartite graph on m and n vertices by Km,n (we allow m and n to be infinite cardinals). We
say that two (induced) subgraphs Γ1 and Γ2 of Γ are disjoint if Γ1 and Γ2 have no common vertices and
no vertex of Γ1 (respectively, Γ2) is adjacent (in Γ) to any vertex not in Γ1 (respectively, Γ2).

Throughout this paper R is a commutative semiring with identity. In order to make this paper easier
to follow, we recall in this section various notions from semimodule theory which will be used in the
sequel. For the definitions of monoid, semirings, semimodules and subsemimodules we refer [4],[5] and
[6]. Let M be a semimodule over a commutative semiring R.

(1) A subtractive subsemimodule (= k-subsemimodule) N is a subsemimodule of M such that if
x, x+ y ∈ N , then y ∈ N (so {0M} is a k-subsemimodule of M).

(2) An element x of M is called a zero-sum in M if x+y = 0 for some y ∈M . We use S(M) to denote
the set of all zero-sum elements of M .

(3) A subsemimodule N of a semimodule M over a semiring R is called a partitioning subsemimodule
(= QM -subsemimodule) if there exists a subset QM of M such that M = ∪{q + N : q ∈ QM} and if
q1, q2 ∈ QM then (q1 + N) ∩ (q2 + N) 6= ∅ if and only if q1 = q2. Let N be a QM -subsemimodule of M
and let M/N = {q + N : q ∈ QM}. Then M/N forms an R-semimodule under the operations ⊕ and
� defined as follows: (q1 + N) ⊕ (q2 + N) = q3 + N , where q3 ∈ QM is the unique element such that
q1 + q2 +N ⊆ q3 +N and r � (q1 +N) = q4 + I, where r ∈ R and q4 ∈ QM is the unique element such
that rq1 +N ⊆ q4 +N . This R-semimodule M/N is called the quotient semimodule of M by N [7]. By
[7, Lemma 2.3], there exists a unique element q0 ∈ QM such that q0 +N = N . Thus q0 +N is the zero
element of M/N .

3. Total graph under semimodule homomorphism

In this section we investigate the homomorphic character of semimodule which epicts the correcponding
graphical character. We begin with the following lemma.

Lemma 3.1. Let M be a semimodule over a commutative semiring R and U be a multiplicative-prime
subset of M . If f : M →M ′ is a semimodule epimorphism with Kerf ⊆ U , then f(U) is a multiplicative-
prime subset of M ′.

Proof. Suppose that r ∈ R and y ∈ f(U). So y = f(x) for some x ∈ U . Then rx ∈ U since U is a
multiplicative-prime subset of M . Thus ry = rf(x) = f(rx) ∈ f(U). Now assume that rm′ ∈ f(U) for
some r ∈ R and m′ ∈ M ′. So rm′ = f(u) for some u ∈ U . Then m′ = f(x) for some m ∈ M and
f(rm) = rm′ = f(u).Then rm− u ∈ Kerf ⊆ U , hence rm ∈ U . Since U is a multiplicative-prime subset
of M , then either r ∈ (U : M) or m ∈ U . On the other hand, it is easy to see that (U : M) = (f(U) : M ′)
since f is an epimorphism. Then either r ∈ (f(U) : M ′) or m′ ∈ f(U). So f(U) is a multiplicative-prime
subset of M ′. �
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Lemma 3.2. Let M be a semimodule over a commutative semiring R and U be a multiplicative-prime
subset of M . If f : M → M ′ is a semimodule epimorphism with Kerf ⊆ U . If x is adjacent to y in
TU (Γ(M)), then f(x) is adjacent to f(y) in Tf(U)(Γ(M ′)).

Proof. Suppose that x is adjacent to y, so x+ y ∈ U . Thus f(x) + f(y) = f(x+ y) ∈ f(U). �

Theorem 3.3. Let M be a semimodule over a commutative semiring R and U be a multiplicative-prime
subset of M . If f : M →M ′ is a semimodule epimorphism with Kerf ⊆ U and TU (Γ(M)) is a complete
graph, then so is Tf(U)(Γ(M ′)).

Proof. Let m′, n′ ∈ M ′. Then there exist m,n ∈ M , such that f(m) = m′ and f(n) = n′. Since
TU (Γ(M)) is a complete graph, so m+ n ∈ U . Hence m′ + n′ = f(m+ n) ∈ f(U) and Tf(U)(Γ(M ′)) is a
complete graph. �

We end this section with a theorem that shows the relationship of the diameters and the girths between
TU (Γ(M)) and Tf(U)(Γ(M ′)) for an R-semimodule’s epimorphism f : M →M ′.

Theorem 3.4. Let M be a semimodule over a commutative semiring R and U be a multiplicative-prime
subset of M . If f : M →M ′ is a semimodule epimorphism with Kerf ⊆ U . Then the following hold:
(1) If TU (Γ(M)) is connected, then Tf(U)(Γ(M ′)) is connected.
(2) If diam(TU (Γ(M))) = n, then diam(Tf(U)(Γ(M ′))) ≤ n.
(3) If gr(TU (Γ(M))) = n, then gr(Tf(U)(Γ(M ′))) ≤ n.

Proof. (1) Let m′, n′ ∈ M ′. Then f(m) = m′ and f(n) = n′ for some m,n ∈ M . Since TU (Γ(M)) is
connected, so there exists a path m−m1−m2− ...−mk−n from m to n. So m+m1,mi+mi+1,mk+n ∈
U for each i = 1, 2, ..., k − 1. Then f(m) + f(m1), f(mi) + f(mi+1), f(mk) + f(n) ∈ f(U) for each
i = 1, 2, ..., k − 1. So m′ = f(m) − f(m1) − f(m2) − ... − f(mk) − f(n) = n′ is a path from m′ to n′.
Hence Tf(U)(Γ(M ′)) is connected.
(2) It is clear by part (1).
(3) Let gr(TU (Γ(M))) = n. So there exists a cycle x1 − x2 − ... − xn − x1 in TU (Γ(M)). Then xn +
x1, xi + xi+1 ∈ U for each i = 1, 2, .., n− 1. So f(x1)− f(x2)− ...− f(xn)− f(x1) is a cycle of lenght n
in Tf(U)(Γ(M ′)). So by definition, we have gr(Tf(U)(Γ(M ′))) ≤ n. �

4. The case when U is a subsemimodule of M

Let M be a semimodule over a commutative semiring R. In this section, we study the case when
U is a subsemimodule of M . Note that since U is a subsemimodule, then U is necessarily a prime
subsemimodule.

Theorem 4.1. Let M be a semimodule over a semiring R such that U is a subsemimodule of M . Then:
(i) TU (Γ(M)) is complete if and only if U = M .
(ii) TU (Γ(M)) is totally disconnected if and only if U = S(M) = {0}.

Proof. (i) If U = M , then for any two vertices x, y ∈ M , one has x + y ∈ U ; hence they are adjacent in
TU (Γ(M)). Conversely, assume that TU (Γ(M)) is complete and let m ∈ M . Then m is adjacent to 0.
Thus m = m+ 0 ∈ U , and hence we have equality.

(ii) Let TU (Γ(M)) be totally disconnected. Then 0 is not adjacent to any vertex; hence x = x+ 0 /∈ U
for every non-zero element x of M . Thus U = {0}. If there is a non-zero element m of S(M), then there
exists 0 6= m′ ∈ M such that m+m′ = 0 ∈ U , which is a contradiction. Thus S(M) = {0}. Conversely,
assume that there exist distinct a, b ∈M such that a+ b ∈ U = {0}. Then a, b ∈ S(M), a contradiction.
Hence TU (Γ(M)) is totally disconnected. �

Proposition 4.2. Let M be a semimodule over a commutative semiring R such that U is a subsemimodule
of M . Then TU (Γ(U)) is a complete (induced) subgraph of TU (Γ(M)).

Proof. The proof is straightforward. �
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By [10, Theorem 3.1], if U is a prime submodule of M , then TU (Γ(U)) is disjoint from TU (Γ(M \U)).
But the following theorem shows that for R-semimodules, it is necessary to have U is a k-subsemimodule
of M .

Theorem 4.3. Let M be a semimodule over a commutative semiring R such that U is a subsemimodule
of M . Then:

(i) If U is a k-subsemimodule of M , then TU (Γ(U)) is disjoint from TU (Γ(M \ U)).
(ii) If U is not a k-subsemimodule of M , then TU (Γ(U)) is not disjoint from TU (Γ(M \ U)).

Proof. (i) Let U be a k-subsemimodule of M . If TU (Γ(U)) is not disjoint from TU (Γ(M \U)), then there
exist a ∈ U and b ∈ M \ U such that a + b ∈ U . Thus b ∈ U since U is a k-subsemimodule of M which
is a contradiction. Thus TU (Γ(U)) is disjoint from TU (Γ(M \ U)).

(ii) Assume that U is not a k-subsemimodule of M . So there exist a ∈ U and b ∈ M \ U such that
a+ b ∈ U . So TU (Γ(U)) is not disjoint from TU (Γ(M \ U)). �

Example 4.4. Let R = Z∗ = Z+∪{0} and M = Z∗ ∪ {∞}. Then (R,+, .) is a commutative semiring
and (M,max) is an R-semimodule and U = {0, 1, 2, 3, 4, 5, 6, 7, 8,∞} is a subsemimodule of M by [4,
Example 2.2].
It is easy to see that U is a prime subsemimodule of M with (U : M) = 0, but U is not a k-subsemimodule,
since ∞, ∞+ 9 ∈ U but 9 /∈ U . So TU (Γ(U)) is not disjoint from TU (Γ(M \ U)) by Theorem 4.3.

Now, we show that if U is not a k-subsemimodule of M , the connectivity of TU (Γ(M \ U)) leads to
the connectivity of TU (Γ(M)).

Theorem 4.5. Let M be a semimodule over a commutative semiring R and let U be a subsemimodule
of M such that U is not a k-subsemimodule. If TU (Γ(M \U)) is connected, then TU (Γ(M)) is connected.

Proof. Suppose that TU (Γ(M \ U)) is connected, it suffices to show that there is a path between m and
n in TU (Γ(M)) for every m ∈ U and n ∈ M \ U by Proposition 4.2. By Theorem 4.3, there exist a ∈ U
and b ∈M \U such that a+ b ∈ U . Since TU (Γ(U)) is complete, there is an edge between a and m. Also
since TU (Γ(M \ U)) is connected, then there is a path from b to n. So there is a path from m to n in
TU (Γ(M)) and so TU (Γ(M)) is connected. �

Now, we give the main result of this section. The next theorem gives a complete description of
TU (Γ(M)). We allow α and β to be infinite cardinals.

Theorem 4.6. Let M be a semimodule over a commutative semiring R such that U is a subsemimodule
of M and let |U | = α and |QM \ {q0}| = β. Then:

(i) If U is a k-subsemimodule of M and 2 ∈ (U : M), then TU (Γ(M \ U)) is the union of disjoint
complete subgraphs.

(ii) If U is a k-subsemimodule of M and 2 /∈ (U : M), then TU (Γ(M \ U)) is the union of totally
disconnected subgraphs and some connected subgraphs.

(iii) If U is a QM -subsemimodule of M and 2 ∈ (U : M), then TU (Γ(M \U)) is the union of β disjoint
Kλ’s such that λ ≤ α.

(iv) If U is a QM -subsemimodule of M and 2 /∈ (U : M), then TU (Γ(M \ U)) is the union of totally
disconnected subgraphs and complete bipartite subgraphs.

Proof. (i) Let 2 ∈ (U : M). We set up an equivalence relation ∼ on M \ U as follows: for y, y′ ∈M \ U ,
we write y ∼ y′ if and only if y + y′ ∈ U . It is straightforward to check that ∼ is an equivalence relation
on M \ U , since U is a prime k-subsemimodule. For y ∈ M \ U , we denote the equivalence class which
contains y by [y]. Now let y ∈ M \ U . If [y] = {y}, then (y + a) + (y + b) = 2y + (a + b) ∈ U for every
a, b ∈ U since 2 ∈ (U : M) and U is a k-subsemimodule. So y + U is a complete subgraph with at most
α vertices. If |[y]| = γ > 1, then for every y′ ∈ [y] we have (y+ a) + (y′+ b) = (y+ y′) + a+ b ∈ U , where
a, b ∈ U . Thus y + U is a part of a complete graph Kν with ν ≤ αγ vertices. Therefore, TU (Γ(M \ U))
is the union of disjoint complete subgraphs.
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(ii) Let 2 /∈ (U : M) and y ∈M \ U . Set

Ay = {y′ ∈M \ U : y + y′ ∈ U}.

If Ay = ∅, then y+y′ /∈ U for every y′ ∈M \U . In this case, we show that y+U is a totally disconnected
subgraph of TU (Γ(M \U)). If (y+a)+(y+b) ∈ U for some a, b ∈ U , then 2y+a+b = (y+a)+(y+b) ∈ U ;
so 2y ∈ U , which is a contradiction since U is a prime k-subsemimodule. Therefore, y + U is a totally
disconnected subgraph of TU (Γ(M \ U). We may assume that Ay 6= ∅. Then y + y′ ∈ U for some
y′ ∈M \U . Thus (y+a)+(y′+ b) = (y+y′)+(a+ b) ∈ U for every a, b ∈ U ; hence each element of y+U
is adjacent to each element of y′ + U . If |Ay| = ν, then we have a connected subgraph of TU (Γ(M \ U))
with at most αν vertices. Hence, if 2 /∈ (U : M), then TU (Γ(M \U)) is the union of totally disconnected
subgraphs and some connected subgraphs.

(iii) First we show that QM \ {q0} ⊆ M \ U . Let q ∈ QM \ {q0}. If q ∈ U , then q ∈ U ∩ QM . So
q + q0 ∈ (q + U) ∩ (q0 + U), so (q + U) ∩ (q0 + U) 6= ∅ and so q = q0 which is a contradiction. Then
q + U ⊆M \ U for every q ∈ QM \ {q0} since U is a k-subsemimodule.
Let 2 ∈ (U : M) and q ∈ QM \ {q0}. Then each coset q + U is a complete subgraph of TU (Γ(M \ U))
with λ vertices such that λ ≤ α (note that (q1 + U) ∩ (q2 + U) 6= ∅ if and only if q1 = q2) since
(q + a) + (q + b) = 2q + (a+ b) ∈ U for all a, b ∈ U since 2 ∈ (U : M) and U is a k-subsemimodule. Now
we show that distinct cosets form disjoint subgraphs of TU (Γ(M \ U). If q1 + a and q2 + b are adjacent
for some q1, q2 ∈ QM \ {q0} and a, b ∈ U , then (q1 + a) + (q2 + b) ∈ U gives q1 + q2 ∈ U since U is
a k-subsemimodule of M . So q2 + 2q1 = q1 + (q1 + q2) ∈ q1 + U . Likewise, q2 + 2q1 ∈ q2 + U since
2 ∈ (U : M). So q2 + 2q1 ∈ (q1 + U) ∩ (q2 + U); hence q1 = q2. Thus TU (Γ(M \ U)) is the union of β
disjoint induced subgraphs q + U , each of which is a Kλ such that λ ≤ α.

(iv) Now assume that 2 /∈ (U : M) and let q ∈ QM \ {q0}. If q + q′ /∈ U for every q′ ∈ QM \ {q0},
then Aq = ∅. Then by part (ii), q + U is a totally disconnected subgraph of TU (Γ(M \ U)), since
QM \ {q0} ⊆M \ U by part (iii) . So we may assume that q + q′ ∈ U for some q′ ∈ QM \ {q0}. Then by
(ii) each element of q + U is adjacent to each element of q′ + U ; we show that q′ is the unique element.
Let q + q′′ ∈ U for some q′′ ∈ QM \ {q0}. Therefore, q + q′ + q′′ = q′ + (q + q′′) ∈ q′ + U . Likewise,
q+q′+q′′ = q′′+(q+q′) ∈ q′′+U . Thus (q′+U)∩(q′′+U) 6= ∅ gives q′ = q′′. Therefore (q+U)∪(q′+U)
is a complete bipartite subgraph of TU (Γ(M \U)). So TU (Γ(M \U)) is the union of totally disconnected
subgraphs and complete bipartite subgraphs. �

Example 4.7. Let R = Z∗ = Z+∪{0} and M = Z∗ ×Z∗. Then (R,+, .) is a commutative semiring and
(M,+) is an R-semimodule. Assume that U = 2Z∗×2Z∗. One can show that (U : M) = 2R and U is
a prime k-subsemimodule of M . Then by Theorem 4.6, TU (Γ(M \ U)) is the union of disjoint complete
subgraphs.

Example 4.8. Let R = Z∗ = Z+∪{0} and M = R. Then for each m ∈ R \ {0}, Rm is a QM -
subsemimodule of M where QM = {0, 1, 2, ...,m− 1}.
(1) If U = 2R = {0, 2, 4, 6, ...}, then U is a QM -subsemimodule of M and 2 ∈ (U : M). So TU (Γ(M \U))
is the union of disjoint Kλ by Theorem 4.6.
(2) If U = 3R = {0, 3, 6, 9, ...}, then U is a QM -subsemimodule of M and 2 /∈ (U : M). TU (Γ(M \U)) is
the union of totally disconnected subgraphs and complete bipartite subgraphs by Theorem 4.6.

We obtain some result concerning when TU (Γ(M \U)) is complete, connected or totally disconnected
graph by the following theorem.

Theorem 4.9. Let M be a semimodule over a commutative semiring R such that U is a QM -
subsemimodule of M and let |U | = α and |QM \ {q0}| = β. Then the following hold:
(i) TU (Γ(M \ U)) is complete if and only if either 2 ∈ (U : M) and |M/U | = 2 or 2 /∈ (U : M) ,
|M/U | = 3, |q + U | = |q′ + U | = 1 and q + q′ ∈ U for q, q′ ∈ QM \ {q0}.
(ii) TU (Γ(M \ U)) is connected if and only if either 2 ∈ (U : M) and |M/U | = 2 or 2 /∈ (U : M) ,
|M/U | = 3 and q + q′ ∈ U for q, q′ ∈ QM \ {q0}.
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(iii) TU (Γ(M \ U)) is totally disconnected if and only if either 2 ∈ (U : M) and |q + U | = 1 for any
q ∈ QM \ {q0} or 2 /∈ (U : M) and q + q′ ∈M \ U for every q, q′ ∈ QM \ {q0}.

Proof. (i) Let U be a QM -subsemimodule of M and TU (Γ(M \ U)) be a complete graph. By Theorem
4.6 TU (Γ(M \U)) is complete if and only if TU (Γ(M \U)) is either a single complete graph Kλ such that
λ ≤ α or K1,1. If 2 ∈ (U : M), then TU (Γ(M \ U)) is a single graph Kλ and so β = 1. This implies
that M = U ∪ (q + U) for q ∈ QM \ {q0} and thus |M/U | = 2. If 2 /∈ (U : M), then TU (Γ(M \ U)) is a
complete bipartite graph K1,1. Thus M = U ∪ (q+U)∪ (q′+U) and |q+U | = |q′+U | = 1 and q+q′ ∈ U
for q, q′ ∈ QM \ {q0}.
Conversely, suppose that 2 ∈ (U : M) and |M/U | = 2, so M = U ∪ (q + U) for q ∈ QM \ {q0}. Assume
that m,n ∈M \U . Then m,n ∈ q+U . Thus there are u1, u2 ∈ U such that m = q+ u1 and n = q+ u2.
Therefore m+n = (q+u1) + (q+u2) = 2q+ (u1 +u2) ∈ U since U is a subsemimodule and 2 ∈ (U : M).
Hence TU (Γ(M \ U)) is a complete graph. Now, assume that 2 /∈ (U : M) and |M/U | = 3, then
M = U ∪ (q+U)∪ (q′+U). Let m and m′ be distinct elements of M \U . So m ∈ q+U and m′ ∈ q′+U
since |q + U | = |q′ + U | and q + q′ ∈ U . Thus m = q + u and m′ = q′ + u′ for some u, u′ ∈ U . Thus
m+m′ = (q + q′) + (u+ u′) ∈ U by assumption and since U is a subsemimodule. Hence TU (Γ(M \ U))
is a complete graph.
(ii) Let U be a QM -subsemimodule of M and TU (Γ(M \ U)) be a connected graph. By Theorem 4.6
TU (Γ(M \ U)) is either a single complete graph Kλ or a complete bipartite graph. If 2 ∈ (U : M),
then β = 1. So M = U ∪ (q + U) for q ∈ QM \ {q0} and thus |M/U | = 2. If 2 /∈ (U : M), then
M = U ∪ (q + U) ∪ (q′ + U) and q + q′ ∈ U for q, q′ ∈ QM \ {q0} since TU (Γ(M \ U)) is a complete
bipartite graph. Hence |M/U | = 3.
Conversely, suppose that 2 ∈ (U : M) and |M/U | = 2, so M = U ∪ (q + U) for q ∈ QM \ {q0}. Since
TU (Γ(M \ U)) is a complete graph by part (i), then it is a connected graph. If 2 /∈ (U : M) , |M/U | = 3
and q+q′ ∈ U for q, q′ ∈ QM \{q0}, then M = U ∪ (q+U)∪ (q′+U). By Theorem 4.6 , (q+U)∪ (q′+U)
is a complete bipartite graph, so TU (Γ(M \ U)) is a complete graph.
(iii) Let U be a QM -subsemimodule of M and TU (Γ(M \U)) be a totally disconnected graph. If 2 ∈ (U :
M), since TU (Γ(M \U)) is the union of β disjoint Kλ’s such that λ ≤ α by Theorem 4.6, then |q+U | = 1
for any q ∈ QM \{q0}. If 2 /∈ (U : M), then q+q′ ∈M \U for every q, q′ ∈ QM \{q0} since TU (Γ(M \U))
is totally disconnected by Theorem 4.6.
Conversely, suppose that 2 ∈ (U : M) and |q + U | = 1 for any q ∈ QM \ {q0}, thus TU (Γ(M \ U)) is the
union of β disjoint K1’s by Theorem 4.6 and so TU (Γ(M \ U)) is totally disconnected. If 2 /∈ (U : M)
and q + q′ ∈ M \ U for every q, q′ ∈ QM \ {q0}, then TU (Γ(M \ U)) is the union of totally disconnected
subgraphs by Theorem 4.6 and so TU (Γ(M \ U)) is totally disconnected. �

Example 4.10. Let R = Z∗ = Z+∪{0} and M = Z6. Then (R,+, .) is a commutative semiring and
(M,+6) is an R-semimodule. Set U = {0, 2, 4} and QM = {0, 1}. Then U is a prime QM -subsemimodule
of M . It is easy to see that 2 ∈ (U : M). Since |M/U | = 2, so TU (Γ(M \ U)) is a complete graph by
Theorem 4.9.

Proposition 4.11. Let M be a semimodule over a commutative semiring R such that U is a prime
k-subsemimodule of M . Then the following hold:
(1) If 2 ∈ (U : M), then diam(TU (Γ(M \ U))) = 0, 1 or ∞.
(2) If 2 /∈ (U : M), then diam(TU (Γ(M \ U))) = 0, 1, 2 or ∞.

Proof. The proof is clear by Theorem 4.6 and Theorem 4.9. �

The next theorem gives a more explicit description of diam(TU (Γ(M \ U))).

Theorem 4.12. Let M be a semimodule over a commutative semiring R such that U is a prime k-
subsemimodule of M . Then the following hold:
(i) diam(TU (Γ(M \ U))) = 0 if and only if |M/U | = 1.
(ii) diam(TU (Γ(M \ U))) = 1 if and only if 2 ∈ (U : M) and |M/U | = 2 or 2 /∈ (U : M) , |M/U | = 3,
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|q + U | = |q′ + U | = 1 and q + q′ ∈ U for q, q′ ∈ QM \ {q0}.
(iii) diam(TU (Γ(M \U))) = 2 if and only if 2 /∈ (U : M) , |M/U | = 3 and q+q′ ∈ U for q, q′ ∈ QM \{q0}
and there is a q ∈ QM \ {q0} such that |q + U | ≥ 2.
(iv) Otherwise diam(TU (Γ(M \ U))) =∞

Proof. (i) If diam(TU (Γ(M \ U))) = 0, then TU (Γ(M \ U)) is a complete graph K1 and so |M/U | = 1.
(ii) It is clear that TU (Γ(M \ U)) is a complete graph if and only if diam(TU (Γ(M \ U))) = 1. So the
proof is clear by Theorem 4.9 .
(iii) Let diam(TU (Γ(M \ U))) = 2 . Then TU (Γ(M \ U)) is a complete bipartite graph Km,n such that
m ≥ 2 or n ≥ 2. Thus 2 /∈ (U : M) and |QM \ {q0}| = 2 by Theorem 4.6. Therefore |M/U | = 3 and
q + q′ ∈ U for q, q′ ∈ QM \ {q0}. Since m ≥ 2 or n ≥ 2, we have |q + U | ≥ 2 or |q′ + U | ≥ 2.
Conversely, let 2 /∈ (U : M) , |M/U | = 3. Then M = U ∪ (q + U) ∪ (q′ + U) and TU (Γ(M \ U)) is a
complete bipartite graph since q + q′ ∈ U for q, q′ ∈ QM \ {q0}. Hence diam(TU (Γ(M \ U))) = 2, since
|q + U | ≥ 2 or |q′ + U | ≥ 2. �

Proposition 4.13. Let M be a semimodule over a commutative semiring R such that U is a k-
subsemimodule of M . Then gr(TU (Γ(M \ U))) = 3, 4 or ∞. In particular, if TU (Γ(M \ U)) contains a
cycle, gr(TU (Γ(M \ U))) ≤ 4.

Proof. Let TU (Γ(M \ U)) contains a cycle. Then TU (Γ(M \ U)) is not a totally disconnected graph, so
by the proof of Theorem 4.6, TU (Γ(M \ U)) has either a complete or a complete bipartite subgraph.
Therefore, it must contain either a 3-cycle or a 4-cycle. Thus gr(TU (Γ(M \ U))) ≤ 4. �

Now, we explicitly determine gr(TU (Γ(M \U))). The proof breaks naturally into two cases depending
on whether or not 2 ∈ (U : M).

Theorem 4.14. Let M be a semimodule over a commutative semiring R such that U be a k-
subsemimodule of M . Then:

(i) gr(TU (Γ(M \ U))) = 3 if and only if 2 ∈ (U : M) and |y + U | ≥ 3 for some y ∈M \ U .
(ii) gr(TU (Γ(M \ U))) = 4 if and only if 2 /∈ (U : M) and y + y′ ∈ U for some y, y′ ∈M \ U .
(iii) Otherwise gr(TU (Γ(M \ U))) =∞.

Proof. (i) Assume that gr(TU (Γ(M \U))) = 3. Then by Theorem 4.6, TU (Γ(M \U)) is a complete graph
Kλ with 3 ≤ λ. Therefore, 2 ∈ (U : M) and |y + U | ≥ 3 for some y ∈M \ U .

(ii) If gr(TU (Γ(M \U))) = 4, then by Theorem 4.6, TU (Γ(M \U)) has a complete bipartite subgraph;
hence 2 /∈ (U : M) and y + y′ ∈ U for some y, y′ ∈M \ U by Theorem 4.6. The other implications of (i)
and (ii) follows directly from Theorem 4.6. �

We end this section with the following theorem.

Theorem 4.15. Let M be a semimodule over a commutative semiring R such that U be a k-
subsemimodule of M . Then:

(i) gr(TU (Γ(M))) = 3 if and only if |U | ≥ 3.
(ii) gr(TU (Γ(M))) = 4 if and only if 2 /∈ (U : M), |U | < 3 and y + y′ ∈ U for some y, y′ ∈M \ U .
(iii) Otherwise, gr(TU (Γ(M))) =∞.

Proof. (i) This follows from Proposition 4.2.
(ii) Since gr(TU (Γ(U)) = 3 or ∞, then gr(TU (Γ(M \U))) = 4. Therefore, 2 /∈ (U : M) and y+ y′ ∈ U

for some y, y′ ∈ M \ U by Theorem 4.14. On the other hand, gr(T (Γ(M)) 6= 3; so |U | < 3. The other
implication follows from Theorem 4.6. �

5. The case when U is not a subsemimodule of M

We continue to use the notation already established, so M is a semimodule over a commutative semir-
ing R. In this section , we study the graph TU (Γ(M)) when U is not a subsemimodule of M .
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First we have the following examples of multiplicative-prime subsets of modules that are not a subsemi-
module.

Example 5.1. Let R = Z∗ = Z+∪{0} and M = Z∗×Z∗. Assume that U1 = Z∗×2Z∗, U2 = Z∗×3Z∗ and
U = U1 ∪ U2. One can show that (U : M) = 2R ∪ 3R. It is easy to see that U is a multiplicative-prime
subset of M but U is not a subsemimodule since (1, 2), (1, 3) ∈ U and (1, 2) + (1, 3) = (2, 5) /∈ U .

Example 5.2. Let R = Z∗ = Z+∪{0} and M = R. Then for each m ∈ R \ {0}, Rm is a QM -
subsemimodule of M where QM = {0, 1, 2, ...,m − 1}. Now let U = 5R ∪ 7R. One can show that
(U : M) = 5R ∪ 7R. It is easy to see that U is a multiplicative-prime subset of M but U is not a
subsemimodule since 5, 7 ∈ U and 5 + 7 = 12 /∈ U .

Lemma 5.3. Let M be a semimodule over a commutative semiring R such that U is not a subsemimodule
of M . Then there are distinct m,m′ ∈ U∗ such that m+m′ ∈M \ U .

Proof. It is clear, since U is always closed under scalar multiplication of its elements by elements of R. �

Theorem 5.4. Let M be a semimodule over a commutative semiring R such that U is not a subsemi-
module of M . Then the following hold:
(i) TU (Γ(U)) is connected with diam(TU (Γ(U))) = 2.
(ii) Either gr(TU (Γ(U))) = 3 or gr(TU (Γ(U))) =∞.
(iii) If 2 ∈ (0 : M) and gr(TU (Γ(M))) = 3, then gr(TU (Γ(U))) = 3.

Proof. (i) Let x ∈ U∗. Then x is adjacent to 0. Thus x − 0 − y is a path in TU (Γ(U)) of length two
between any two distinct x, y ∈ U∗. Moreover, there exist nonadjacent x, y ∈ U∗ by Lemma 5.3; thus
diam(TU (Γ(U))) = 2.
(ii) If x+y ∈ U for some distinct x, y ∈ U∗, then 0−x−y−0 is a 3-cycle in TU (Γ(U)); so gr(TU (Γ(U))) = 3.
Otherwise, x + y ∈ M \ U for all distinct x, y ∈ U . Therefore, in this case, each x ∈ U∗ is adjacent to
0, and no two distinct x, y ∈ U∗ are adjacent. Thus TU (Γ(U)) is a star graph with center 0; hence
gr(TU (Γ(U))) =∞.
(iii) Let m1 − m2 − m3 − m1 be a 3-cycle in TU (Γ(M)), so m1 + m2,m2 + m3,m3 + m1 ∈ U . If
mi +mj = 0 for some i 6= j where i, j ∈ {1, 2, 3}, then mj = 2mi +mj = mi +mi +mj = mi which is a
contradiction. Similarly if mi +mj = mi +mk for some i 6= j, k and j 6= k where i, j, k ∈ {1, 2, 3}, then
mj = 2mi + mj = mi + (mi + mj) = mi + (mi + mk) = 2mi + mk = mk which is a contradiction. So
(m1 +m2)− (m2 +m3)− (m3 +m1)− (m1 +m2) is a 3-cycle in TU (Γ(U))., �

Theorem 5.5. Let M be a semimodule over a commutative semiring R such that U is not a subsemi-
module of M . If U ∩ S(M) 6= {0} and δ(TU (Γ(U))) = 1, then the following hold:
(i) Some vertex of TU (Γ(U)) is adjacent to a vertex of TU (Γ(M \ U)). In particular, the subgraphs
TU (Γ(U)) and TU (Γ(M \ U)) are not disjoint.
(ii) If TU (Γ(M \ U)) is connected, then TU (Γ(M)) is connected.

Proof. (i) Let 0 6= x ∈ U ∩ S(M). Then there exists y ∈ M such that x + y = 0. If y ∈ M \ U , Then
x ∈ U and y ∈M \U are adjacent vertices in TU (Γ(M)). So assume that y ∈ U . Since δ(TU (Γ(U))) = 1,
so deg(z) = 1 for some z ∈ U . Then z is not adjacent to x, since z is adjacent to zero and deg(z) = 1.
Therefore x + z /∈ U . But (x + z) + y = z ∈ U so y ∈ U and x + z ∈ M \ U are adjacent vertices in
TU (Γ(M)). Hence the subgraphs TU (Γ(U)) and TU (Γ(M \ U)) are not disjoint.
(ii) Suppose that TU (Γ(M \ U)) is connected, it suffices to show that there is a path between m and
n in TU (Γ(M)) for every m ∈ U and n ∈ M \ U by Theorem 5.4. By part (i), there exist a ∈ U and
b ∈ M \ U such that a + b ∈ U . Since TU (Γ(U)) is connected, there is an edge between a and m. Also
since TU (Γ(M \ U)) is connected, then there is a path from b to n. So there is a path from m to n in
TU (Γ(M)) and so TU (Γ(M)) is connected. �

Lemma 5.6. Let M be a semimodule over a commutative semiring R such that U is not a subsemimodule
of M . Then |U | ≥ 3.
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Proof. There are distinct elements m,m′ ∈ U∗ such that m+m′ ∈M\U by Lemma 5.3. Thus |U | ≥ 3. �

Theorem 5.7. Let M be a semimodule over a commutative semiring R such that U is not a subsemi-
module of M . If T(U :M)(Γ(R)) is connected, then TU (Γ(M)) is connected.

Proof. It is clear that if r ∈ (U : M) and x ∈ M , then rx ∈ U . Assume that y ∈ M and let 0 − a1 −
a2 − · · · − ak − 1 be a path from 0 to 1 in T(U :M)(Γ(R)). So a1, ak + 1, ai + ai+1 ∈ (U : M) for each
i = 1, ..., k − 1. Now let y ∈M . Then 0− a1y − a2y − · · · − aky − y is a path from 0 to y in TU (Γ(M)).
Since all vertices may be connected via 0, TU (Γ(M)) is connected. �
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