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Abstract

Let M be a module over a commutative ring R and U a nonempty
proper subset of M . In this paper, a generalization of the total graph
T (Γ(M)), denoted by T (ΓU (M)) is presented, where U is a multiplicative-
prime subset of M . It is the graph with all elements of M as vertices,
and for two distinct elements m,n ∈ M , the vertices m and n are ad-
jacent if and only if m+ n ∈ U . The main purpose of this paper is to
extend the definitions and properties given in [1] and [10] to a more
general case.
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1 Introduction

Throughout of this paper R is a commutative ring with nonzero identity and
M is a unitary R-module. The concept of the graph of zero-divisors of R was
first introduced in [8] and [2]. Recently, there has been considerable atten-
tion in associating graphs with algebraic structures (see [3],[4],[6],[7], [9] and
[11]). Anderson and Badawi in [5] defined the notion of a multiplicative-
prime subset of a commutative ring R. It is a nonempty proper H of R
which satisfies the following two properties: (i) ab ∈ H for every a ∈ H
and b ∈ R; (ii) if rs ∈ H for some r, s ∈ R, then either r ∈ H or s ∈ H.
For any multiplicative-prime subset H of R, they introduced the notion of a
generalized total graph GTH(R) with vertices in R and for any two vertices
x, y ∈ R, they are adjacent if and only if x + y ∈ H. Let R be a commu-
tative ring and U be a nonempty subset of an R-module M . The subset
{r ∈ R : rM ⊆ U} will be denoted by (U :R M) or (U : M). It is clear
that if U is a submodule of M , then (U : M) is an ideal of R. We say
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that a nonempty subset U of M is a multiplicative-prime subset of M if the
following two conditions hold: (i) rm ∈ U for every r ∈ R and m ∈ U ; (ii)
if sx ∈ U for some s ∈ R and x ∈ M , then x ∈ U or s ∈ (U : M). Note
that if U is a submodule ofM , then U is necessarily a prime submodule ofM .

In the present paper, we introduce and investigate the generalized total
graph of M , denoted by GTU (M), as a (undirected) graph with all elements
of M as vertices, and for two distinct elements m,n ∈ M , the vertices m
and n are adjacent if and only if m + n ∈ U where U is a multiplicative-
prime subset of M . Let GTU (U) be the (induced) subgraph of GTU (M)
with vertex set U , and let GTU (M \U) be the (induced) subgraph GTU (M)
with vertices consisting of M \ U . The study of GTU (M) breaks naturally
into two cases depending on whether or not U is a submodule of M . In
the second section, we obtain some properties concerning U . In the third
section, we consider the case when U is a submodule of M ; in the forth
section, we do the case when U is not a submodule of M . For every case, we
characterize the girths and diameters of GTU (M), GTU (U) and GTU (M \U).

We begin with some notation and definitions. For a graph Γ, by E(Γ) and
V (Γ), we mean the set of all edges and vertices, respectively. We recall that
a graph is connected if there exists a path connecting any two of it’s distinct
vertices. At the other extreme, we say that a graph is totally disconnected
if no two vertices of this graph are adjacent. The distance between two
distinct vertices a and b, denoted by d(a, b), is the length of a shortest path
connecting them (if such a path does not exist, then d(a, b) = ∞. We also
define d(a, a) = 0. The diameter of a graph Γ, denoted by diam(Γ), is equal
to sup{d(a, b) : a, b ∈ V (Γ)}. A graph is complete if it is connected with
diameter less than or equal to one. The girth of a graph Γ, denoted gr(Γ),
is the length of a shortest cycle in Γ, provided Γ contains a cycle; otherwise;
gr(Γ) = ∞. We denote the complete graph on n vertices by Kn and the
complete bipartite graph on m and n vertices by Km,n (we allow m and n
to be infinite cardinals). We will sometimes call a K1,m a star graph. For
a graph Γ, the degree of a vertex v in Γ, denoted deg(v), is the number of
edges of Γ incident with v. For a nonnegative integer k, a graph is called
k-regular if every vertex has degree k. We say that two (induced) subgraphs
Γ1 and Γ2 of Γ are disjoint if Γ1 and Γ2 have no common vertices and no
vertices of Γ1 is adjacent(in Γ) to some vertex of Γ2.
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2 Multiplicative-prime subsets of a module

We devote this section to the multiplicative-prime subsets of an R-module
M . Throughout this paper, we assume that every multiplicatively closed
proper subset S of R contains 1, but does not contain 0. We first begin with
the following lemma.

Lemma 2.1 Let U be a proper multiplicative-prime subset of M . Then the
following hold:
(1) (U : M) is a multiplicative-prime subset of R.
(2) S = R \ (U : M) is a multiplicatively closed subset of R.

Proof. Let r ∈ R and s ∈ (U : M). Then rsM ⊆ sM ⊆ U . So rs ∈ (U :
M). Now, suppose that ab ∈ (U : M) and a 6∈ (U : M) for some a, b ∈ R.
It suffices to show that b ∈ (U : M). There exists m ∈ M \ U such that
am 6∈ U . Since abm ∈ U and U is a multiplicative-prime subset of M , thus
b ∈ (U : M).
(2) Since U is a proper subset of M so it is clear that 1 ∈ S. Let r, s ∈ S.
Then r 6∈ (U : M) and s 6∈ (U : M). So rs 6∈ (U : M) since (U : M) is a
multiplicative-prime subset of R. 2

Now, we have the following Definition from [13, Definition 1].

Definition 2.2 Let S be a multiplicatively closed subset of a ring R and M
an R-module.
(1) A non-empty subset S∗ of M is said to be S-closed if sx ∈ S∗ for every
s ∈ S and x ∈ S∗.
(2) An S-closed subset S∗ is said to be saturated if whenever rm ∈ S∗ for
some r ∈ R and m ∈M , then r ∈ S and m ∈ S∗.

Proposition 2.3 Let U be a proper multiplicative-prime subset of M and
S = R \ (U : M). Then S∗ = M \ U is a saturated S-closed subset of M .

Proof. First suppose that s ∈ S and x ∈ S∗. It is clear that sx 6∈ U ,
since U is a multiplicative-prime of M . Then S∗ is S-closed. Now suppose
that rm ∈ S∗ for some r ∈ R and m ∈ M , then rm 6∈ U . Since U is
a multiplicative-prime subset of M , if m ∈ U , then rm ∈ U which is a
contradiction. So m ∈ S∗ = M \ U . Now, suppose that r ∈ (U : M). So
rm ∈ rM ⊆ U which is a contradiction. Thus r ∈ S = R \ (U : M). So S∗

is a saturated S-closed subset of M . 2
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Proposition 2.4 Let M be a cyclic R-module and U be a proper multiplicative-
prime subset of M . Then U is a union of prime submodules Ni, i ∈ I, of
M and (U : M) is a union of prime ideals Pi = (Ni : M) for each i ∈ I.

Proof. The proof is clear by Proposition 2.3 and [13, Theorem 4.8]. 2

Proposition 2.5 Let U be a proper multiplicative-prime subset of M and
S = R \ (U : M). Then
(1) S−1(U :R M) = (S−1U :S−1R S

−1M).
(2) S−1U is a multiplicative-prime subset of S−1M .

Proof. (1) It suffices to show that (S−1U :S−1R S−1M) ⊆ S−1(U :R M).
Let r/s ∈ (S−1U :S−1R S

−1M) such that r ∈ R and s ∈ S and let m ∈ M .
Then (r/s)(m/1) ∈ S−1U . There exist u ∈ U and t ∈ S such that rm/s =
u/t. Then t′trm = t′su for some t′ ∈ S. It follows that rm ∈ U , since
t′t ∈ S = R \ (U : M). Thus r ∈ (U :R M) and so r/s ∈ S−1(U :R M).
(2) It is clear that (r/s)(m/t) = rs/tm ∈ S−1U for every r/s ∈ S−1R
and m/t ∈ S−1U . Now, let that (a/s)(x/t) ∈ S−1U for some a/s ∈ S−1R
and x/t ∈ S−1M . Then ax/st = u/s′ for some s′ ∈ S and u ∈ U . So
s′′s′ax = s′′stu for some s′′ ∈ S. Hence ax ∈ U since S is a multiplicatively
closed subset of R and U is a multiplicative-prime subset of M . So either
a ∈ (U :R M) or u ∈ U , then the result is clear by part (1) above. 2

3 The case when U is a submodule of M

In this section, we study the case when U is a (prime) submodule of M . If
U = M , then it is clear that GTU (M) is a complete graph and GTU (M) is
a disconnected graph when U = 0 and |M | ≥ 2. So we may assume that
U 6= 0 and U 6= M .

Theorem 3.1 Let M be a module over a commutative ring R and U be a
prime submodule of M . Then GTU (U) is a complete subgraph of GTU (M)
and is disjoint from GTU (M \ U). In particular, GTU (U) is connected and
GTU (R) is disconnected.

Proof. It is clear by the definitions. 2

Theorem 3.2 Let M be a module over a commutative ring R and U be a
prime submodule of M . Then the following hold:
(1) Suppose that G is an induced subgraph of GTU (M \U) and let m and m′

be distinct vertices of G that are connected by a path in G. Then there exists
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a path in G of length 2 between m and m′. In particular, if GTU (M \ U) is
connected, then diam(GTU (M \ U)) ≤ 2.
(2) Let m and m′ be distinct elements of GTU (M \U) that are connected by
a path. If m+m′ 6∈ U then m− (−m)−m′ and m− (−m′)−m′ are paths
of length 2 between m and m′ in GTU (M \ U).

Proof. (1) Let m1,m2,m3 and m4 are distinct vertices of G. It suffices to
show that if there is a path m1−m2−m3−m4 from m1 to m4, then m1 and
m4 are adjacent. Now, m1 + m2,m2 + m3,m3 + m4 ∈ U gives m1 + m4 =
(m1 + m2) − (m2 + m3) − (m3 + m4) ∈ U . Thus m1 and m4 are adjacent.
It’s clear that if GTU (M \ U) is connected, then diam(GTU (M \ U)) ≤ 2.
(2) Since m,m′ 6∈ U and m+m′ 6∈ U , there exists w ∈ GTU (M \U) such that
m−w−m′ is a path of length 2 by part (1) above. Thus w+m,w+m′ ∈ U
and hence m −m′ = (m + w) − (w + m′) ∈ U . Also, since m,m′ 6∈ U , we
must have m 6= −m′ and m′ 6= −m′. Thus m − (−m′) −m′ is a path from
m to m′ in GTU (M \ U). 2

Theorem 3.3 Let M be a module over a commutative ring R and U be a
prime submodule of M .Then the following statement are equivalent:
(1) GTU (M \ U) is connected.
(2) Either m+m′ ∈ U or m−m′ ∈ U (but not both) for all m,m′ ∈M \U .
(3) Either m+m′ ∈ U or m+ 2m′ ∈ U for all m,m′ ∈M \ U .
In particular, if (3) is satisfied, then either 2m ∈ U or 3m ∈ U (but not
both) for all m ∈M \ U .

Proof. (1)=⇒ (2) Let m,m′ ∈M \U be such that m+m′ 6∈ U . If m = m′,
then m −m′ ∈ U . Otherwise m − (−m′) −m′ is a path from m to m′ by
Theorem 3.2 (2). Then m−m′ ∈ U .
(2)=⇒ (3) Let m,m′ ∈M \U be distinct elements of M such that m+m′ 6∈
U . Thus (m + m′) + m′ ∈ U or (m + m′) − m′ ∈ U by assumption. If
(m + m′) − m′ ∈ U , then m ∈ U , that is a contradiction. Therefore,
(m + m′) + m′ = m + 2m′ ∈ U . In particular, m + m = 2m ∈ U or
m+ 2m = 3m ∈ U for all m ∈M \U . Both 2m and 3m can’t be in U , since
m = 3m− 2m ∈ U is a contradiction.
(3) =⇒ (1) Let m,m′ ∈M \U be distinct elements of M such that m+m′ 6∈
U . By hypothesis m + 2m′ ∈ U and we get 2m′ 6∈ U . Thus 3m′ ∈ U by
assumption. Moreover, since m + m′ 6∈ U and 3m′ ∈ U , hence m 6= 2m′.
Therefore m − (2m′) −m′ is a path from m to m′ in GTU (M \ U). Thus
GTU (M \ U) is connected. 2
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Example 3.4 Let R = Z4 denote the ring of integers modulo 4 and let
M = Z8 as an R-module. Let U = 2Z8 = {0̄, 2̄, 4̄, 6̄}. It is clear that
2 ∈ (U :R M). Now 5̄ + 2̄, 5̄ − 2̄ 6∈ U . So GTU (M \ U) is not connected by
Theorem 3.3.

Now, we give the main theorem of this section. Since GTU (U) is a
complete subgraph of GTU (M) by Theorem 3.1, the next theorem gives a
complete description of GTU (M). We allow α and β to be infinite, then of
course β − 1 = β−1

2 = β.

Theorem 3.5 Let M be a module over a commutative ring R and U be a
prime submodule of M and let α = |U | and |M/U | = β.
(1) If 2 ∈ (U :R M), then GTU (M \ U) is the union of β − 1 disjoint kα’s.
(2) If 2 6∈ (U :R M), then GTU (M \ U) is the union of β−1

2 disjoint kα,α’s.

Proof. (1) We first note that m + U ⊆ M \ U for all m 6∈ U . Now, let
2 ∈ (U :R M) and m + n1,m + n2 ∈ m + U for some n1, n2 ∈ U . Then
(m+n1)+(m+n2) = 2m+(n1+n2) ∈ U , since U is a submodule ofM and 2 ∈
(U :R M). So each coset m+U induces a complete subgraph of GTU (M \U).
Moreover, distinct cosets form disjoint subgraphs of GTU (M \ U), since if
m+n and m′+n′ are adjacent for some m,m′ ∈M \U and n, n′ ∈ U , then
m+m′ = (m+n)+(m′+n′)−(n+n′) ∈ U . Thenm−m′ = (m+m′)−2m′ ∈ U
that gives m+U = m′+U . Thus GTU (M \U) is the union of β− 1 disjoint
(induced) subgraphs m+ U , each of which is kα where α = |U | = |m+ U |.
(2) Letm ∈M\U and 2 6∈ (U :R M). We claim that no two distinct elements
inm+U are adjacent. Suppose not. Letm+m1,m+m2 ∈ m+U are adjacent
for somem1,m2 ∈ U . Then (m+m1)+(m+m2) = 2m+(m1+m2) ∈ U . This
implies 2m ∈ U , since U is a prime submodule of M , we have 2 ∈ (U :R M)
which is a contradiction. Thus (m+U)∪ (−m+U) is a complete bipartite
(induced) subgraph of GTU (M \ U).
Moreover, if m + x1 is adjacent to m′ + x2 for some m,m′ ∈ M \ U and
x1, x2 ∈ U , then m+ x1 +m′+ x2 ∈ U , and hence m+m′ = m+ x1 +m′+
x2 − (x1 + x2) ∈ U . Therefore m + U = −m′ + U . Thus GTU (M \ U) is
the union of β−1

2 disjoint subgraph (m+U)
⋃

(−m+U), each of which is a
kα,α, Where α = |U | = |m+ U |. 2

Example 3.6 Let R = Z12 and M = Z6 as an R-module.
(1) If U = {0̄, 2̄, 4̄}, then it is clear that 2 ∈ (U :R M). So GTU (M \ U) is
the complete graph K3 (α = 3, β = 2).
(2) If U = {0̄, 3̄}, then it is clear that 2 6∈ (U :R M). Thus GTU (M \ U) is
the complete bipartite graph K2,2 (α = 2, β = 3).
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Example 3.7 Let R = Z, M = Z× Z.
(a) If U = 2Z × 4Z, then it is clear that 2 ∈ (U :R M), so GTU (M \ U) is
a union of complete graphs.
(b) If U = 5Z × 10Z, then 2 /∈ (U :R M), then GTU (M \ U) is a union of
complete bipartite graphs.

By the following theorem, we determine when GTU (M \ U) is either
complete or connected.

Theorem 3.8 Let M be a module over a commutative ring R and U be a
prime submodule of M . Then
(1) GTU (M \ U) is complete if and only if either |M/U | = 2 or |M/U | =
|M | = 3.
(2) GTU (M \U) is connected if and only if either |M/U | = 2 or |M/U | = 3.
(3) GTU (M \ U) (and hence GTU (U) and GTU (M)) is totally disconnected
if and only if U = {0} and 2 ∈ (U :R M).

Proof. (1) Let GTU (M \U) be a complete subgraph of GTU (M). Then by
Theorem 3.5, GTU (M \U) is a single kα or k1,1. If GTU (M \U) is kα, then
β − 1 = 1. Hence β = 2 and therefore |M/U | = 2. If GTU (M \ U) is k1,1,
then β−1

2 = 1 and α = 1. Thus β = 3 and α = 1, therefore |M/U | = 3 and
U = {0}, hence |M/U | = |M | = 3.
Conversely, let |M/U | = 2 and M/U = {U, x + U} where x 6∈ U . Then
x + U = −x + U ∈ M/U gives 2x ∈ U . Thus 2 ∈ (U :R M). Now, we
show that GTU (M \ U) is complete. Let m,m′ ∈ M \ U . Then m + m′ =
(m + x) + (m′ + x) − 2x ∈ U . Therefore GTU (M \ U) is complete. Now ,
let |M/U | = |M | = 3. In this case, we show that 2 6∈ (U :R M). Suppose
not. Then 2m ∈ U for all m ∈ M . Thus 2(m + U) = 0M/U for all m ∈ M
which is a contradiction, since M/U is a cyclic group with order 3. Thus
2 6∈ (U :R M) and hence GTU (M \ U) is complete. Then, every case leads
to GTU (M \ U) is complete.
(2) Let GTU (M \ U) be connected. Then by Theorem 3.5, GTU (M \ U) is
a single kα or kα,α. Thus by Theorem 3.5, if 2 ∈ (U :R M), then β − 1 = 1
and so |M/U | = 2 and if 2 6∈ (U :R M), then β−1

2 = 1 and hence |M/U | = 3.
Conversely, by part(1) above we may assume that |M/U | = 3. We claim that
2 6∈ (U :R M). Otherwise 2M ⊆ U . Suppose that M/U = {U, x+U, y+U}
where x, y 6∈ U . Since M/U is a cyclic group with order 3, we conclude
that x + y ∈ U and hence x, y are adjacent that is a contradiction since
GTU (M \ U) is union 3− 1 = 2 disjoint subgraph x+ U and y + U . There-
fore 2 6∈ (U :R M). So by Theorem 3.5, GTU (M \U) is a single Kα,α. Hence
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is connected.
(3) GTU (M \U) is totally disconnected if and only if it is a disjoint union of
K1’s. So by Theorem 3.5, GTU (M \ U) is totally disconnected if and only
if 2 ∈ (U :R M), |U | = 1 and |M/U | = 1. 2

By Theorem 3.8, the next theorem gives a more explicit description of
the diameter of GTU (M \ U).

Theorem 3.9 Let M be a module over a commutative ring R such that
U is a prime submodule of M . Then diam(GTU (M \ U)) = 0, 1, 2,∞. In
particular, if GTU (M \ U) is connected, then diam(GTU (M \ U)) ≤ 2.

Proof. Suppose that GTU (M \ U) is connected. Then GTU (M \ U) is a
singleton, a complete graph or a complete bipartite graph by Theorem 3.5.
Hence diam(GTU (M \ U)) ≤ 2. 2

Theorem 3.10 Let M be a module over a commutative ring R such that U
is a prime submodule of M .
(1) diam(GTU (M \ U)) = 0 if and only if U = {0} and |M | = 2.
(2) diam(GTU (M \ U)) = 1 if and only if either U 6= {0} and |M/U | = 2
or U = {0} and |M | = 3.
(3) diam(GTU (M \ U)) = 2 if and only if U 6= {0} and |M/U | = 3.
(4) Otherwise, diam(GTU (M \ U)) =∞.

Proof. These results follow from Theorem 3.5 and Theorem 3.8. 2

Theorem 3.11 Let M be a module over a commutative ring R such that
U is a prime submodule of M . Then gr(GTU (M \ U)) = 3, 4 or ∞. In
particular, gr(GTU (M \ U)) ≤ 4 if GTU (M \ U) contains a cycle.

Proof. Let GTU (M \U) contains a cycle. Then since GTU (M \U) is disjoint
union of either complete or complete bipartite graphs by Theorem 3.8, it
must contain either a 3-cycle or 4-cycle. Thus gr(GTU (M \ U)) ≤ 4. 2

Theorem 3.12 Let M be a module over a commutative ring R such that U
is a prime submodule of M .
(1) (a) gr(GTU (M \ U)) = 3 if and only if 2 ∈ (U :R M) and |U | ≥ 3.
(b) gr(GTU (M \ U)) = 4 if and only if 2 6∈ (U :R M) and |U | ≥ 2.
(c) Otherwise, gr(GTU (M \ U)) =∞.
(2) (a) gr(GTU (M)) = 3 if and only if |U | ≥ 3.
(b) gr(GTU (M)) = 4 if and only if 2 6∈ (U :R M) and |U | = 2.
(c) Otherwise, gr(GTU (M)) =∞.
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Proof. Apply Theorem 3.1, Theorem 3.5 and Theorem 3.11. 2

Example 3.13 Let R = Z6 and M = R as an R-module. Let U = {0̄, 2̄}.
Then |U | = 2 and 2 ∈ (U : M). It is clear that diam(GTU (M)) =
gr(GTU (M)) =∞.

4 The case when U is not a submodule of M

In this section we study GTU (M) when the multiplicative-prime subset U
is not a submodule of M . Since U is always closed under multiplication by
elements of R, this just means that 0 ∈ U and there are distinct x, y ∈ U
such that x+ y ∈M \ U . We first begin with the following theorem.

Theorem 4.1 Let M be a module over a commutative ring R such that U
is a multiplicative-prime subset of M that is not a submodule of M . Then
the following hold:
(1) GTU (U) is connected with diam(GTU (U)) = 2.
(2) Some vertex of GTU (U) is adjacent to a vertex of GTU (M \ U). In
particular, the subgraphs GTU (U) and GTU (M \ U) are not disjoint.
(3) If GTU (M \ U) is connected, then GTU (M) is connected.

Proof. (1) Let m ∈ U∗ = U \{0}. Then m is adjacent to 0. Thus m−0−n
is a path in GTU (U) of length two between any two distinct m,n ∈ U∗.
Moreover, there exist nonadjacent m,n ∈ U∗ since U is not a submodule of
M ; thus diam(GTU (U)) = 2.
(2) There exist distinct m,n ∈ U∗ such that m + n 6∈ U . Then −m ∈ U
and m+n ∈ U are adjacent vertices in GTU (M). Finally, the”in particular”
statement is clear.
(3) Since GTU (U) and GTU (M \ U) are connected and there is an edge
between GTU (U) and GTU (M \ U), so GTU (M) is connected. 2

We determine when GTU (M) is connected and compute diam(GTU (M))
with the following theorem.

Theorem 4.2 Let M be a module over a commutative ring R such that U
is a multiplicative-prime subset of M that is not a submodule of M . Then
GTU (M) is connected if only if M =< U > (that is, M =< a1, a2, . . . , ak >
for some a1, a2, . . . , ak ∈ U).

Proof. Suppose that GTU (M) is connected, and m ∈ M . Then there
exist a path 0 −m1 −m2 − . . . −mn −m from 0 to m in GTU (M). Thus

Galaxy
Text Box
159



m1,m1+m2, ...,mn+m ∈ U . Hence m ∈< m1,m1+m2, ...,mn−1+mn,mn+
m >⊆< U >; thus M =< U >. Conversely, suppose that M =< U >. We
show that for each 0 6= m ∈ M , there exist a path in GTU (M) from 0
to m. By assumption, there are elements m1,m2, ...,mn ∈ U such that
m = m1 +m2 + ...+mn. Set x0 = 0 and xk = (−1)n+k(m1 +m2 + ...+mk)
for each integer k with 1 ≤ k ≤ n. Then xk + xk+1 = (−1)n+k+1mk+1 ∈ U
for each integer k with 0 ≤ k ≤ n−1, and thus 0−x1−x2−...−xn−1−xn = m
is a path from 0 to m in GTU (M) of length at most n. Now let u,w ∈ M .
Then by the preceding argument, there are paths from u to 0 and 0 to w in
GTU (M); hence there is a path from u to w in GTU (M). Thus, GTU (M) is
connected. 2

Theorem 4.3 Let M be a module over a commutative ring R such that U
is a multiplicative-prime subset of M that is not a submodule of M , and
let M =< U > (that is , GTU (M) is connected). Let n ≥ 2 be the least
integer such that M =< m1,m2, ...,mn > for some m1,m2, ...,mn ∈ U .
Then diam(GTU (M)) ≤ n. In particular, if M is a cyclic R-module, then
diam(GTU (M)) = n.

Proof. Let m and m′ be distinct elements in M . We show that there exist
a path from m to m′ in GTU (M) with length at most n. By hypothesis,
we can write m =

∑n
i=1 rimi and m′ =

∑n
i=1 simi for some ri, si ∈ R.

Define x0 = m and xk = (−1)k(
∑n

i=k+1 rimi +
∑k

i=1 simi), so xk + xk+1 =

(−1)kmk+1(rk+1 − sk+1) ∈ U for each integer k with 1 ≤ k ≤ n − 1. If we
define xn = m′, then m− x1 − x2 − ...− xn−1 −m′ is a path from m to m′

in GTU (M) with length at most n.
Finally, assume thatM =< w >. Let 0−y1−y2−...−ym−1−w be a path from
0 to w in GTU (M) with length m. Thus y1, y1 + y2, ..., ym−1 + w ∈< U >,
and hence w ∈< y1, y1 + y2, ..., ym−1 + w >⊆ U . Thus m ≥ n, as required.
2

Theorem 4.4 Let M be a module over a commutative ring R such that U
is a multiplicative-prime subset of M that is not a submodule of M . Let
n ≥ 2 be the least integer such that M =< m1,m2, ...,mn > for some
m1,m2, ...,mn ∈ U .
(1) If M is a cyclic module with generator m, then diam(GTU (M)) =
d(0,m).
(2) If diam(GTU (M)) = n and M is a cyclic R-module with generator m,
then diam(GTU (M \ U)) ≥ n− 2.
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Proof. (1) This follows from Theorem 4.3.
(2) Since diam(GTU (M)) = d(0,m) = n, by part (1) above, let 0 −m1 −
...−mn−1−m be a shortest path from 0 to m in GTU (M). Clearly, m1 ∈ U .
If mi ∈ U for some i with 2 ≤ i ≤ n − 1, then 0 − mi − ... − mn−1 − m
is a path from 0 to m of length less than n in GTU (M), which is a contra-
diction. Thus mi ∈ GTU (M \ U) for each integer i with 2 ≤ i ≤ n − 1.
Therefore, m2 −m3 − ... −mn−1 −m is a shortest path from m2 to m in
GTU (M \U), and it has length n−2. Thus diam(GTU (M \U)) ≥ n−2. 2

LetM be a module over a commutative ringR such that U is a multiplicative-
prime subset of M . Recall that two submodules L and K of M are called
co-maximal if M = L + K. Note that if a proper subset U of M contains
two co-maximal submodules of M , then U is not a submodule of M .

Theorem 4.5 Let M be a finitely generated R-module and n ≥ 2 be the least
integer such that M =< m1,m2, ...,mn > for some m1, ...,mn ∈ M . Let U
be a multiplicative-prime subset of M such that U contains two co-maximal
submodules of M . Then GTU (M) is connected with diam(GTU (M)) ≤ 2n.

Proof. Let L,K ⊆ U be co-maximal submodules of M . Then M = L+K;
so mi = xi + yi for some xi ∈ L and yi ∈ K for every i = 1, 2, ..., n.
Hence M =< x1, ..., xn, y1, ..., yn >. Thus GTU (M) is connected with
diam(GTU (M)) ≤ 2n by Theorem 4.3 and Theorem 4.2. 2

Theorem 4.6 Let M be a cyclic R-module and let U be a multiplicative-
prime subset of M that is not a submodule of M . If S = R \ (U :R M), then
GTS−1U (S−1M) is connected with diam(GTS−1U (S−1M)) ≤ 2.

Proof. Let M = Rm. There exist u,w ∈ U such that u + w 6∈ U , since U
is not a submodule of M . By Proposition 2.4, U is a union of prime sub-
modules, so there are prime submodules N and L of M contained in U with
u ∈ N \ L and w ∈ L \N . Then u = rm and w = sm for some r, s ∈ R. So
(r+ s)m = u+w 6∈ U ; then r+ s 6∈ (U :R M). Thus r+ s ∈ S. This implies
that m/1 = (r + s)m/(r + s) = (u/(r + s)) + (w/(r + s)) ∈ S−1L+ S−1N .
Thus the prime submodules S−1L and S−1N are co-maximal in S−1M ; so
the result follows from Theorem 4.5. 2

Now, by the following theorem we provide a proof for the converse of [1.
Theorem 4.5 (4)] when M is a cyclic R-module.
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Theorem 4.7 Let M be a module over a commutative ring R such that U
is a multiplicative-prime subset of M that is not a submodule of M .
(1) Either gr(GTU (U)) = 3 or gr(GTU (U)) =∞.
(2) gr(GTU (M)) = 3 if and only if gr(GTU (U)) = 3.
(3) If gr(GTU (M)) = 4, then gr(GTU (U)) =∞.
(4) If M is a cyclic R-module and gr(GTU (U)) =∞, then gr(GTU (M)) = 4.
(5) If Nil(R) 6= 0 and 2 ∈ (0 :R M), then gr(GTU (M \ U)) = 3, 4or∞.
(6) If 2 6∈ (U :R M), then gr(GTU (M \ U)) = 3, 4or∞.

Proof. (1) If m+m′ ∈ U for some distinct m,m′ ∈ U∗, then 0−m−m′−0
is a 3-cyclic in gr(GTU (U)); so gr(GTU (U)) = 3. Otherwise, m+m′ ∈M \U
for all distinct m,m′ ∈ U . Therefore, in this case, each m ∈ U∗ is adjacent
to 0, and no two distinct m,m′ ∈ U∗ are adjacent. Thus gr(GTU (U)) is a
star graph with center 0; hence gr(GTU (U)) =∞.
(2) It suffices to show that gr(GTU (U)) = 3 when gr(GTU (M)) = 3. If
2m 6= 0 for some u ∈ U∗, then 0 − u − (−u) − 0 is a 3-cycle in U . Thus
we may assume that 2m = 0 for some m ∈ U . Let m−m1 −m2 −m be a
3-cycle in GTU (M). Then m+m1,m1 +m2,m2 +m ∈ U . One can see that
m+m1 6= 0 and m+m2 6= 0. So 0−m+m1 −m+m2 − 0 is a 3-cycle in
GTU (U).
(3) If gr(GTU (M)) = 4, then gr(GTU (M)) 6= 3 by part (2) above. So
gr(GTU (M)) =∞ by part (1) above .
(4) Since U is not a submodule of M , so U 6= M . Then U =

⋃
i∈I Ni,

where each Ni is a submodule of M by Proposition 2.4, then |I| ≥ 2. If
gr(GTU (U)) = ∞, then x + y ∈ M \ U for all distinct elements x, y ∈ U∗.
So |Ni| = 2 for every i ∈ I. Hence the intersection of any two distinct Ni’s
is {0} and so |I| = 2. So U = N1 ∪ N2 for prime submodules N1 and N2

of M with N1 ∩ N2 = 0 and |N1| = |N2| = 2. Thus we may assume that
N1 = {0, x} and N2 = {0, y} where 2x = 2y = 0. So |U | = 3 and x+ y 6∈ U .
Thus 0−x− (x+y)−y−0 is a 4-cycle in GTU (M). Then gr(GTU (M)) ≤ 4.
Hence gr(GTU (M)) = 4 by part (2) above.
(5) Let 0 6= r ∈ Nil(R). Assume that GTU (M \ U) contains a cycle, so
there is a path x − y − z in GTU (M \ U). If x and z are adjacent vertices
in GTU (M \U), then we are done. So we may assume that x and z are not
adjacent in GTU (M \U). Since (U :R M) is a multiplicative-prime subset of
R, so (U :R M) =

⋃
i∈I Pi for distinct prime ideals Pi of R by Proposition

2.4 and [12, Theorem 2]. So 0 6= r ∈ Nil(R) ⊆
⋂
i∈I Pi. Thus r ∈ (U :R M).

So rx, ry, rz ∈ U and rx+x, ry+y and rz+z are distinct elements of M \U .
Clearly 2m = 0 for every m ∈ M by assumption. We have split the proof
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into four cases:
Case 1. ry + y 6= z and rz + z 6= y. If ry + y + z ∈ U , then (ry + y) −
y − z − (ry + y) is a 3-cycle in GTU (M \ U). If rz + z + y ∈ U , then
(rz + z)− z − y − (rz + z) is a 3-cycle in GTU (M \ U). So we may assume
that ry + y + z, rz + z + y /∈ U . Then (ry + y)− y − z − (rz + z)− (ry + y)
is a 4-cycle in GTU (M \ U).
Case 2. ry + y = z and rz + z 6= y. Since rz + z + y = r(z + y) ∈ U , so
(rz + z)− z − y − (rz + z) is a 3-cycle in GTU (M \ U).
Case 3. ry + y 6= z and rz + z = y. By an argument like that the Case 2,
(ry + y)− y − z − (ry + y) is a 3-cycle in GTU (M \ U).
Case 4. ry + y = z and rz + z = y. If rx + x + y ∈ U , then (rx + x) −
x − y − (rx + x) is a 3-cycle in GTU (M \ U). If ry + y + x ∈ U , then
(ry + y)− y − x− (ry + y) is a 3-cycle in GTU (M \ U). So we may assume
that ry+ y+ x, rx+ x+ y /∈ U . Thus (rx+ x)− x− y− (ry+ y)− (rx+ x)
is a 4-cycle in GTU (M \ U).
(6) Assume that GTU (M \U) contains a cycle, so there is a path m−m1−m2

in GTU (M \U). We may assume that m+m2 6∈ U . Since m 6= m2, so either
m + m1 6= 0 or m1 + m2 6= 0. Assume that m + m1 6= 0. If 2m = 0, then
m ∈ U , since 2 6∈ (U :R M) and U is a multiplicative-prime subset of M .
Thus m−m1 − (−m1)− (−m)−m is a 4-cycle in GTU (M \ U). 2

Example 4.8 (1) Let R = Z6 and M = R as an R-module. Let U =
{0̄, 2̄, 3̄, 4̄}. Then U = 〈2̄〉∪〈3̄〉. So, diam(GTU (M)) = 2 and gr(GTU (M)) =
3.
(2) Let R = Z60 and M = R as an R-module. Let U = 〈2̄〉 ∪ 〈3̄〉 ∪ 〈5̄〉. It is
clear that diam(GTU (M)) = 2 and gr(GTU (M)) = 3.

Theorem 4.9 Let M be a cyclic R-module and U be a proper multiplicative-
prime subset of M which is not a submodule of M . Let U =

⋃
i∈I Ni for

prime submodule Ni of M . Suppose that a− b− c is a path of length two in
GTU (M \ U) for distinct vertices a, b, c ∈M \ U .
(1) If 2k ∈ U for some k ∈ {a, b, c} and

⋂
iNi 6= {0}, then gr(GTU (M \

U)) = 3.
(2) If 2k = 0 for some k ∈ {a, b, c} and 2 /∈ (0 :R M) then gr(GTU (M\U)) =
3.
(3) If 2k /∈ U for every k ∈ {a, b, c}, then gr(GTU (M \ U)) ≤ 4.

Proof. (1) Suppose that 2k ∈ U for some k ∈ {a, b, c} and there is a
0 6= h ∈

⋂
iNi. Assume 2a ∈ U . If b 6= a + h, then a − b − (a + h) − a is a

cycle of length three in GTU (M \ U). Hence, assume that b = a+ h. Since
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(a+h) + c = b+ c ∈ U and h ∈
⋂
iNi, we have a+ c ∈ U . Thus a− b− c−a

is a cycle of length three in GTU (M \ U). Assume 2b ∈ U . If c 6= b + h,
then b − c − (b + h) − b is a cycle of length three in GTU (M \ U). So, let
c = b+h. Then a− b− (b+h)−a is a cycle of length three in GTU (M \U).
Assume 2c ∈ U . If b 6= c + h, then b − c − (c + h) − b is a cycle of length
three in GTU (M \ U). Thus, let b = c + h. Since a + (c + h) = a + b ∈ U
and h ∈

⋂
iNi, we have a+ c ∈ U . Hence a− b− c− a is a cycle of length

three in GTU (M \ U). Thus gr(GTU (M \ U)) = 3.
(2) Suppose that 2k = 0 for some k ∈ {a, b, c} and 2 /∈ (0 :R M). Thus 2 6= 0.
Since k /∈ Ni for every i ∈ I, so 2 ∈ (Ni :R M). Hence 0 6= 2M ⊆

⋂
i∈I Ni.

Therefor gr(GTU (M \ U)) = 3 by part(1) above.
(3) Suppose 2k /∈ U for every k ∈ {a, b, c}. Then z 6= −z for every z ∈
{a, b, c}. Hence there are distinct x, y ∈ {a, b, c} such that y 6= −x. Thus
x−y− (−y)− (−x)−x is a 4 cycle in GTU (M \U); So gr(GTU (M \U)) ≤ 4.
2

Theorem 4.10 Let M be a module over a commutative ring R such that U
is a multiplicative-prime subset of M that is not a submodule of M and H =
(U :R M). If GTH(R) is connected, then GTU (M) is connected. Moreover
if diam(GTH(R)) = n, then diam(GTU (M)) ≤ 2n.

Proof. Let m ∈ M and GTH(R) be connected. Then diam(GTH(R)) =
d(0, 1) = n by [5, Corollary 3.5]. Then there exists a path 0 − r1 − r2 −
... − rn−1 − 1 from 0 to 1 of length n such that ri−1 + ri ∈ H for each
i = 2, ..., n − 1. So (ri−1 + ri)M ⊆ U for each i = 2, ..., n − 1. Thus
0 − r1m − r2m − ... − rn−1m −m is a path from 0 to m of length at most
n in GTU (M). The ”moreover” statement follows directly from the above
arguments.
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