# The total graph of a module with respect to multiplicative-prime subsets 

F. Esmaeili Khalil Saraei, H. Heydarinejad Astaneh, R. Navidinia


#### Abstract

Let $M$ be a module over a commutative ring $R$ and $U$ a nonempty proper subset of $M$. In this paper, a generalization of the total graph $T(\Gamma(M))$, denoted by $T\left(\Gamma_{U}(M)\right)$ is presented, where $U$ is a multiplicativeprime subset of $M$. It is the graph with all elements of $M$ as vertices, and for two distinct elements $m, n \in M$, the vertices $m$ and $n$ are adjacent if and only if $m+n \in U$. The main purpose of this paper is to extend the definitions and properties given in [1] and [10] to a more general case.


Key words: Total graph; prime submodule; multiplicative-prime subset. Mathematics Subject Classification: 13C13, 05C75, 13A15

## 1 Introduction

Throughout of this paper $R$ is a commutative ring with nonzero identity and $M$ is a unitary $R$-module. The concept of the graph of zero-divisors of $R$ was first introduced in [8] and [2]. Recently, there has been considerable attention in associating graphs with algebraic structures (see [3],[4],[6],[7], [9] and [11]). Anderson and Badawi in [5] defined the notion of a multiplicativeprime subset of a commutative ring $R$. It is a nonempty proper $H$ of $R$ which satisfies the following two properties: (i) $a b \in H$ for every $a \in H$ and $b \in R$; (ii) if $r s \in H$ for some $r, s \in R$, then either $r \in H$ or $s \in H$. For any multiplicative-prime subset $H$ of $R$, they introduced the notion of a generalized total graph $G T_{H}(R)$ with vertices in $R$ and for any two vertices $x, y \in R$, they are adjacent if and only if $x+y \in H$. Let $R$ be a commutative ring and $U$ be a nonempty subset of an $R$-module $M$. The subset $\{r \in R: r M \subseteq U\}$ will be denoted by $\left(U:_{R} M\right)$ or $(U: M)$. It is clear that if $U$ is a submodule of $M$, then $(U: M)$ is an ideal of $R$. We say
that a nonempty subset $U$ of $M$ is a multiplicative-prime subset of $M$ if the following two conditions hold: (i) $r m \in U$ for every $r \in R$ and $m \in U$; (ii) if $s x \in U$ for some $s \in R$ and $x \in M$, then $x \in U$ or $s \in(U: M)$. Note that if $U$ is a submodule of $M$, then $U$ is necessarily a prime submodule of $M$.

In the present paper, we introduce and investigate the generalized total graph of $M$, denoted by $G T_{U}(M)$, as a (undirected) graph with all elements of $M$ as vertices, and for two distinct elements $m, n \in M$, the vertices $m$ and $n$ are adjacent if and only if $m+n \in U$ where $U$ is a multiplicativeprime subset of $M$. Let $G T_{U}(U)$ be the (induced) subgraph of $G T_{U}(M)$ with vertex set $U$, and let $G T_{U}(M \backslash U)$ be the (induced) subgraph $G T_{U}(M)$ with vertices consisting of $M \backslash U$. The study of $G T_{U}(M)$ breaks naturally into two cases depending on whether or not $U$ is a submodule of $M$. In the second section, we obtain some properties concerning $U$. In the third section, we consider the case when $U$ is a submodule of $M$; in the forth section, we do the case when $U$ is not a submodule of $M$. For every case, we characterize the girths and diameters of $G T_{U}(M), G T_{U}(U)$ and $G T_{U}(M \backslash U)$.

We begin with some notation and definitions. For a graph $\Gamma$, by $E(\Gamma)$ and $V(\Gamma)$, we mean the set of all edges and vertices, respectively. We recall that a graph is connected if there exists a path connecting any two of it's distinct vertices. At the other extreme, we say that a graph is totally disconnected if no two vertices of this graph are adjacent. The distance between two distinct vertices $a$ and $b$, denoted by $\mathrm{d}(a, b)$, is the length of a shortest path connecting them (if such a path does not exist, then $d(a, b)=\infty$. We also define $d(a, a)=0$. The diameter of a graph $\Gamma$, denoted by $\operatorname{diam}(\Gamma)$, is equal to $\sup \{d(a, b): a, b \in V(\Gamma)\}$. A graph is complete if it is connected with diameter less than or equal to one. The girth of a graph $\Gamma$, denoted $\operatorname{gr}(\Gamma)$, is the length of a shortest cycle in $\Gamma$, provided $\Gamma$ contains a cycle; otherwise; $\operatorname{gr}(\Gamma)=\infty$. We denote the complete graph on $n$ vertices by $K^{n}$ and the complete bipartite graph on $m$ and $n$ vertices by $K^{m, n}$ (we allow $m$ and $n$ to be infinite cardinals). We will sometimes call a $K^{1, m}$ a star graph. For a graph $\Gamma$, the degree of a vertex $v$ in $\Gamma$, denoted $\operatorname{deg}(v)$, is the number of edges of $\Gamma$ incident with $v$. For a nonnegative integer $k$, a graph is called $k$-regular if every vertex has degree $k$. We say that two (induced) subgraphs $\Gamma_{1}$ and $\Gamma_{2}$ of $\Gamma$ are disjoint if $\Gamma_{1}$ and $\Gamma_{2}$ have no common vertices and no vertices of $\Gamma_{1}$ is adjacent(in $\Gamma$ ) to some vertex of $\Gamma_{2}$.

## 2 Multiplicative-prime subsets of a module

We devote this section to the multiplicative-prime subsets of an $R$-module $M$. Throughout this paper, we assume that every multiplicatively closed proper subset $S$ of $R$ contains 1 , but does not contain 0 . We first begin with the following lemma.

Lemma 2.1 Let $U$ be a proper multiplicative-prime subset of $M$. Then the following hold:
(1) $(U: M)$ is a multiplicative-prime subset of $R$.
(2) $S=R \backslash(U: M)$ is a multiplicatively closed subset of $R$.

Proof. Let $r \in R$ and $s \in(U: M)$. Then $r s M \subseteq s M \subseteq U$. So $r s \in(U$ : $M)$. Now, suppose that $a b \in(U: M)$ and $a \notin(U: M)$ for some $a, b \in R$. It suffices to show that $b \in(U: M)$. There exists $m \in M \backslash U$ such that $a m \notin U$. Since $a b m \in U$ and $U$ is a multiplicative-prime subset of $M$, thus $b \in(U: M)$.
(2) Since $U$ is a proper subset of $M$ so it is clear that $1 \in S$. Let $r, s \in S$. Then $r \notin(U: M)$ and $s \notin(U: M)$. So $r s \notin(U: M)$ since $(U: M)$ is a multiplicative-prime subset of $R$.
Now, we have the following Definition from [13, Definition 1].
Definition 2.2 Let $S$ be a multiplicatively closed subset of a ring $R$ and $M$ an $R$-module.
(1) A non-empty subset $S^{*}$ of $M$ is said to be $S$-closed if $s x \in S^{*}$ for every $s \in S$ and $x \in S^{*}$.
(2) An $S$-closed subset $S^{*}$ is said to be saturated if whenever $r m \in S^{*}$ for some $r \in R$ and $m \in M$, then $r \in S$ and $m \in S^{*}$.

Proposition 2.3 Let $U$ be a proper multiplicative-prime subset of $M$ and $S=R \backslash(U: M)$. Then $S^{*}=M \backslash U$ is a saturated $S$-closed subset of $M$.

Proof. First suppose that $s \in S$ and $x \in S^{*}$. It is clear that $s x \notin U$, since $U$ is a multiplicative-prime of $M$. Then $S^{*}$ is $S$-closed. Now suppose that $r m \in S^{*}$ for some $r \in R$ and $m \in M$, then $r m \notin U$. Since $U$ is a multiplicative-prime subset of $M$, if $m \in U$, then $r m \in U$ which is a contradiction. So $m \in S^{*}=M \backslash U$. Now, suppose that $r \in(U: M)$. So $r m \in r M \subseteq U$ which is a contradiction. Thus $r \in S=R \backslash(U: M)$. So $S^{*}$ is a saturated $S$-closed subset of $M$.

Proposition 2.4 Let $M$ be a cyclic $R$-module and $U$ be a proper multiplicativeprime subset of $M$. Then $U$ is a union of prime submodules $N_{i}, i \in I$, of $M$ and $(U: M)$ is a union of prime ideals $P_{i}=\left(N_{i}: M\right)$ for each $i \in I$.

Proof. The proof is clear by Proposition 2.3 and [13, Theorem 4.8].
Proposition 2.5 Let $U$ be a proper multiplicative-prime subset of $M$ and $S=R \backslash(U: M)$. Then
(1) $S^{-1}\left(U:_{R} M\right)=\left(S^{-1} U:_{S^{-1} R} S^{-1} M\right)$.
(2) $S^{-1} U$ is a multiplicative-prime subset of $S^{-1} M$.

Proof. (1) It suffices to show that $\left(S^{-1} U:_{S^{-1} R} S^{-1} M\right) \subseteq S^{-1}\left(U:_{R} M\right)$. Let $r / s \in\left(S^{-1} U:{ }_{S^{-1} R} S^{-1} M\right)$ such that $r \in R$ and $s \in S$ and let $m \in M$. Then $(r / s)(m / 1) \in S^{-1} U$. There exist $u \in U$ and $t \in S$ such that $r m / s=$ $u / t$. Then $t^{\prime} t r m=t^{\prime} s u$ for some $t^{\prime} \in S$. It follows that $r m \in U$, since $t^{\prime} t \in S=R \backslash(U: M)$. Thus $r \in\left(U:_{R} M\right)$ and so $r / s \in S^{-1}\left(U:_{R} M\right)$.
(2) It is clear that $(r / s)(m / t)=r s / t m \in S^{-1} U$ for every $r / s \in S^{-1} R$ and $m / t \in S^{-1} U$. Now, let that $(a / s)(x / t) \in S^{-1} U$ for some $a / s \in S^{-1} R$ and $x / t \in S^{-1} M$. Then $a x / s t=u / s^{\prime}$ for some $s^{\prime} \in S$ and $u \in U$. So $s^{\prime \prime} s^{\prime} a x=s^{\prime \prime} s t u$ for some $s^{\prime \prime} \in S$. Hence $a x \in U$ since $S$ is a multiplicatively closed subset of $R$ and $U$ is a multiplicative-prime subset of $M$. So either $a \in\left(U:_{R} M\right)$ or $u \in U$, then the result is clear by part (1) above.

## 3 The case when $U$ is a submodule of $M$

In this section, we study the case when $U$ is a (prime) submodule of $M$. If $U=M$, then it is clear that $G T_{U}(M)$ is a complete graph and $G T_{U}(M)$ is a disconnected graph when $U=0$ and $|M| \geq 2$. So we may assume that $U \neq 0$ and $U \neq M$.

Theorem 3.1 Let $M$ be a module over a commutative ring $R$ and $U$ be a prime submodule of $M$. Then $G T_{U}(U)$ is a complete subgraph of $G T_{U}(M)$ and is disjoint from $G T_{U}(M \backslash U)$. In particular, $G T_{U}(U)$ is connected and $G T_{U}(R)$ is disconnected.

Proof. It is clear by the definitions.
Theorem 3.2 Let $M$ be a module over a commutative ring $R$ and $U$ be $a$ prime submodule of $M$. Then the following hold:
(1) Suppose that $G$ is an induced subgraph of $G T_{U}(M \backslash U)$ and let $m$ and $m^{\prime}$ be distinct vertices of $G$ that are connected by a path in $G$. Then there exists
a path in $G$ of length 2 between $m$ and $m^{\prime}$. In particular, if $G T_{U}(M \backslash U)$ is connected, then $\operatorname{diam}\left(G T_{U}(M \backslash U)\right) \leq 2$.
(2) Let $m$ and $m^{\prime}$ be distinct elements of $G T_{U}(M \backslash U)$ that are connected by a path. If $m+m^{\prime} \notin U$ then $m-(-m)-m^{\prime}$ and $m-\left(-m^{\prime}\right)-m^{\prime}$ are paths of length 2 between $m$ and $m^{\prime}$ in $G T_{U}(M \backslash U)$.

Proof. (1) Let $m_{1}, m_{2}, m_{3}$ and $m_{4}$ are distinct vertices of $G$. It suffices to show that if there is a path $m_{1}-m_{2}-m_{3}-m_{4}$ from $m_{1}$ to $m_{4}$, then $m_{1}$ and $m_{4}$ are adjacent. Now, $m_{1}+m_{2}, m_{2}+m_{3}, m_{3}+m_{4} \in U$ gives $m_{1}+m_{4}=$ $\left(m_{1}+m_{2}\right)-\left(m_{2}+m_{3}\right)-\left(m_{3}+m_{4}\right) \in U$. Thus $m_{1}$ and $m_{4}$ are adjacent. It's clear that if $G T_{U}(M \backslash U)$ is connected, then $\operatorname{diam}\left(G T_{U}(M \backslash U)\right) \leq 2$.
(2) Since $m, m^{\prime} \notin U$ and $m+m^{\prime} \notin U$, there exists $w \in G T_{U}(M \backslash U)$ such that $m-w-m^{\prime}$ is a path of length 2 by part (1) above. Thus $w+m, w+m^{\prime} \in U$ and hence $m-m^{\prime}=(m+w)-\left(w+m^{\prime}\right) \in U$. Also, since $m, m^{\prime} \notin U$, we must have $m \neq-m^{\prime}$ and $m^{\prime} \neq-m^{\prime}$. Thus $m-\left(-m^{\prime}\right)-m^{\prime}$ is a path from $m$ to $m^{\prime}$ in $G T_{U}(M \backslash U)$.

Theorem 3.3 Let $M$ be a module over a commutative ring $R$ and $U$ be $a$ prime submodule of $M$. Then the following statement are equivalent:
(1) $G T_{U}(M \backslash U)$ is connected.
(2) Either $m+m^{\prime} \in U$ or $m-m^{\prime} \in U$ (but not both) for all $m, m^{\prime} \in M \backslash U$.
(3) Either $m+m^{\prime} \in U$ or $m+2 m^{\prime} \in U$ for all $m, m^{\prime} \in M \backslash U$.

In particular, if (3) is satisfied, then either $2 m \in U$ or $3 m \in U$ (but not both) for all $m \in M \backslash U$.

Proof. (1) $\Longrightarrow$ (2) Let $m, m^{\prime} \in M \backslash U$ be such that $m+m^{\prime} \notin U$. If $m=m^{\prime}$, then $m-m^{\prime} \in U$. Otherwise $m-\left(-m^{\prime}\right)-m^{\prime}$ is a path from $m$ to $m^{\prime}$ by Theorem 3.2 (2). Then $m-m^{\prime} \in U$.
$(2) \Longrightarrow(3)$ Let $m, m^{\prime} \in M \backslash U$ be distinct elements of $M$ such that $m+m^{\prime} \notin$ $U$. Thus $\left(m+m^{\prime}\right)+m^{\prime} \in U$ or $\left(m+m^{\prime}\right)-m^{\prime} \in U$ by assumption. If $\left(m+m^{\prime}\right)-m^{\prime} \in U$, then $m \in U$, that is a contradiction. Therefore, $\left(m+m^{\prime}\right)+m^{\prime}=m+2 m^{\prime} \in U$. In particular, $m+m=2 m \in U$ or $m+2 m=3 m \in U$ for all $m \in M \backslash U$. Both $2 m$ and $3 m$ can't be in $U$, since $m=3 m-2 m \in U$ is a contradiction.
(3) $\Longrightarrow(1)$ Let $m, m^{\prime} \in M \backslash U$ be distinct elements of $M$ such that $m+m^{\prime} \notin$ $U$. By hypothesis $m+2 m^{\prime} \in U$ and we get $2 m^{\prime} \notin U$. Thus $3 m^{\prime} \in U$ by assumption. Moreover, since $m+m^{\prime} \notin U$ and $3 m^{\prime} \in U$, hence $m \neq 2 m^{\prime}$. Therefore $m-\left(2 m^{\prime}\right)-m^{\prime}$ is a path from $m$ to $m^{\prime}$ in $G T_{U}(M \backslash U)$. Thus $G T_{U}(M \backslash U)$ is connected.

Example 3.4 Let $R=Z_{4}$ denote the ring of integers modulo 4 and let $M=Z_{8}$ as an $R$-module. Let $U=2 Z_{8}=\{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}$. It is clear that $2 \in\left(U:_{R} M\right)$. Now $\overline{5}+\overline{2}, \overline{5}-\overline{2} \notin U$. So $G T_{U}(M \backslash U)$ is not connected by Theorem 3.3.

Now, we give the main theorem of this section. Since $G T_{U}(U)$ is a complete subgraph of $G T_{U}(M)$ by Theorem 3.1, the next theorem gives a complete description of $G T_{U}(M)$. We allow $\alpha$ and $\beta$ to be infinite, then of course $\beta-1=\frac{\beta-1}{2}=\beta$.
Theorem 3.5 Let $M$ be a module over a commutative ring $R$ and $U$ be $a$ prime submodule of $M$ and let $\alpha=|U|$ and $|M / U|=\beta$.
(1) If $2 \in\left(U:_{R} M\right)$, then $G T_{U}(M \backslash U)$ is the union of $\beta-1$ disjoint $k^{\alpha}$ 's.
(2) If $2 \notin\left(U:_{R} M\right)$, then $G T_{U}(M \backslash U)$ is the union of $\frac{\beta-1}{2}$ disjoint $k^{\alpha, \alpha}$ 's.

Proof. (1) We first note that $m+U \subseteq M \backslash U$ for all $m \notin U$. Now, let $2 \in\left(U:_{R} M\right)$ and $m+n_{1}, m+n_{2} \in m+U$ for some $n_{1}, n_{2} \in U$. Then $\left(m+n_{1}\right)+\left(m+n_{2}\right)=2 m+\left(n_{1}+n_{2}\right) \in U$, since $U$ is a submodule of $M$ and $2 \in$ $\left(U:_{R} M\right)$. So each coset $m+U$ induces a complete subgraph of $G T_{U}(M \backslash U)$. Moreover, distinct cosets form disjoint subgraphs of $G T_{U}(M \backslash U)$, since if $m+n$ and $m^{\prime}+n^{\prime}$ are adjacent for some $m, m^{\prime} \in M \backslash U$ and $n, n^{\prime} \in U$, then $m+m^{\prime}=(m+n)+\left(m^{\prime}+n^{\prime}\right)-\left(n+n^{\prime}\right) \in U$. Then $m-m^{\prime}=\left(m+m^{\prime}\right)-2 m^{\prime} \in U$ that gives $m+U=m^{\prime}+U$. Thus $G T_{U}(M \backslash U)$ is the union of $\beta-1$ disjoint (induced) subgraphs $m+U$, each of which is $k^{\alpha}$ where $\alpha=|U|=|m+U|$. (2) Let $m \in M \backslash U$ and $2 \notin\left(U:_{R} M\right)$. We claim that no two distinct elements in $m+U$ are adjacent. Suppose not. Let $m+m_{1}, m+m_{2} \in m+U$ are adjacent for some $m_{1}, m_{2} \in U$. Then $\left(m+m_{1}\right)+\left(m+m_{2}\right)=2 m+\left(m_{1}+m_{2}\right) \in U$. This implies $2 m \in U$, since $U$ is a prime submodule of $M$, we have $2 \in\left(U:_{R} M\right)$ which is a contradiction. Thus $(m+U) \cup(-m+U)$ is a complete bipartite (induced) subgraph of $G T_{U}(M \backslash U)$.
Moreover, if $m+x_{1}$ is adjacent to $m^{\prime}+x_{2}$ for some $m, m^{\prime} \in M \backslash U$ and $x_{1}, x_{2} \in U$, then $m+x_{1}+m^{\prime}+x_{2} \in U$, and hence $m+m^{\prime}=m+x_{1}+m^{\prime}+$ $x_{2}-\left(x_{1}+x_{2}\right) \in U$. Therefore $m+U=-m^{\prime}+U$. Thus $G T_{U}(M \backslash U)$ is the union of $\frac{\beta-1}{2}$ disjoint subgraph $(m+U) \bigcup(-m+U)$, each of which is a $k^{\alpha, \alpha}$, Where $\alpha=|U|=|m+U|$.

Example 3.6 Let $R=Z_{12}$ and $M=Z_{6}$ as an $R$-module.
(1) If $U=\{\overline{0}, \overline{2}, \overline{4}\}$, then it is clear that $2 \in\left(U:_{R} M\right)$. So $G T_{U}(M \backslash U)$ is the complete graph $K^{3}(\alpha=3, \beta=2)$.
(2) If $U=\{\overline{0}, \overline{3}\}$, then it is clear that $2 \notin\left(U:_{R} M\right)$. Thus $G T_{U}(M \backslash U)$ is the complete bipartite graph $K^{2,2} \quad(\alpha=2, \beta=3)$.

Example 3.7 Let $R=\mathbb{Z}, M=\mathbb{Z} \times \mathbb{Z}$.
(a) If $U=2 Z \times 4 Z$, then it is clear that $2 \in\left(U:_{R} M\right)$, so $G T_{U}(M \backslash U)$ is a union of complete graphs.
(b) If $U=5 Z \times 10 Z$, then $2 \notin\left(U:_{R} M\right)$, then $G T_{U}(M \backslash U)$ is a union of complete bipartite graphs.

By the following theorem, we determine when $G T_{U}(M \backslash U)$ is either complete or connected.

Theorem 3.8 Let $M$ be a module over a commutative ring $R$ and $U$ be $a$ prime submodule of $M$. Then
(1) $G T_{U}(M \backslash U)$ is complete if and only if either $|M / U|=2$ or $|M / U|=$ $|M|=3$.
(2) $G T_{U}(M \backslash U)$ is connected if and only if either $|M / U|=2$ or $|M / U|=3$.
(3) $G T_{U}(M \backslash U)$ (and hence $G T_{U}(U)$ and $G T_{U}(M)$ ) is totally disconnected if and only if $U=\{0\}$ and $2 \in\left(U:_{R} M\right)$.

Proof. (1) Let $G T_{U}(M \backslash U)$ be a complete subgraph of $G T_{U}(M)$. Then by Theorem 3.5, $G T_{U}(M \backslash U)$ is a single $k^{\alpha}$ or $k^{1,1}$. If $G T_{U}(M \backslash U)$ is $k^{\alpha}$, then $\beta-1=1$. Hence $\beta=2$ and therefore $|M / U|=2$. If $G T_{U}(M \backslash U)$ is $k^{1,1}$, then $\frac{\beta-1}{2}=1$ and $\alpha=1$. Thus $\beta=3$ and $\alpha=1$, therefore $|M / U|=3$ and $U=\{0\}$, hence $|M / U|=|M|=3$.
Conversely, let $|M / U|=2$ and $M / U=\{U, x+U\}$ where $x \notin U$. Then $x+U=-x+U \in M / U$ gives $2 x \in U$. Thus $2 \in\left(U:_{R} M\right)$. Now, we show that $G T_{U}(M \backslash U)$ is complete. Let $m, m^{\prime} \in M \backslash U$. Then $m+m^{\prime}=$ $(m+x)+\left(m^{\prime}+x\right)-2 x \in U$. Therefore $G T_{U}(M \backslash U)$ is complete. Now, let $|M / U|=|M|=3$. In this case, we show that $2 \notin\left(U:_{R} M\right)$. Suppose not. Then $2 m \in U$ for all $m \in M$. Thus $2(m+U)=0_{M / U}$ for all $m \in M$ which is a contradiction, since $M / U$ is a cyclic group with order 3 . Thus $2 \notin\left(U:_{R} M\right)$ and hence $G T_{U}(M \backslash U)$ is complete. Then, every case leads to $G T_{U}(M \backslash U)$ is complete.
(2) Let $G T_{U}(M \backslash U)$ be connected. Then by Theorem 3.5, $G T_{U}(M \backslash U)$ is a single $k^{\alpha}$ or $k^{\alpha, \alpha}$. Thus by Theorem 3.5, if $2 \in\left(U:_{R} M\right)$, then $\beta-1=1$ and so $|M / U|=2$ and if $2 \notin\left(U:_{R} M\right)$, then $\frac{\beta-1}{2}=1$ and hence $|M / U|=3$. Conversely, by part(1) above we may assume that $|M / U|=3$. We claim that $2 \notin\left(U:_{R} M\right)$. Otherwise $2 M \subseteq U$. Suppose that $M / U=\{U, x+U, y+U\}$ where $x, y \notin U$. Since $M / U$ is a cyclic group with order 3 , we conclude that $x+y \in U$ and hence $x, y$ are adjacent that is a contradiction since $G T_{U}(M \backslash U)$ is union 3-1 $=2$ disjoint subgraph $x+U$ and $y+U$. Therefore $2 \notin\left(U:_{R} M\right)$. So by Theorem 3.5, $G T_{U}(M \backslash U)$ is a single $K^{\alpha, \alpha}$. Hence
is connected.
(3) $G T_{U}(M \backslash U)$ is totally disconnected if and only if it is a disjoint union of $K^{1}$ 's. So by Theorem $3.5, G T_{U}(M \backslash U)$ is totally disconnected if and only if $2 \in\left(U:_{R} M\right),|U|=1$ and $|M / U|=1$.

By Theorem 3.8, the next theorem gives a more explicit description of the diameter of $G T_{U}(M \backslash U)$.

Theorem 3.9 Let $M$ be a module over a commutative ring $R$ such that $U$ is a prime submodule of $M$. Then $\operatorname{diam}\left(G T_{U}(M \backslash U)\right)=0,1,2, \infty$. In particular, if $G T_{U}(M \backslash U)$ is connected, then $\operatorname{diam}\left(G T_{U}(M \backslash U)\right) \leq 2$.
Proof. Suppose that $G T_{U}(M \backslash U)$ is connected. Then $G T_{U}(M \backslash U)$ is a singleton, a complete graph or a complete bipartite graph by Theorem 3.5. Hence $\operatorname{diam}\left(G T_{U}(M \backslash U)\right) \leq 2$.

Theorem 3.10 Let $M$ be a module over a commutative ring $R$ such that $U$ is a prime submodule of $M$.
(1) $\operatorname{diam}\left(G T_{U}(M \backslash U)\right)=0$ if and only if $U=\{0\}$ and $|M|=2$.
(2) $\operatorname{diam}\left(G T_{U}(M \backslash U)\right)=1$ if and only if either $U \neq\{0\}$ and $|M / U|=2$ or $U=\{0\}$ and $|M|=3$.
(3) $\operatorname{diam}\left(G T_{U}(M \backslash U)\right)=2$ if and only if $U \neq\{0\}$ and $|M / U|=3$.
(4) Otherwise, $\operatorname{diam}\left(G T_{U}(M \backslash U)\right)=\infty$.

Proof. These results follow from Theorem 3.5 and Theorem 3.8.
Theorem 3.11 Let $M$ be a module over a commutative ring $R$ such that $U$ is a prime submodule of $M$. Then $\operatorname{gr}\left(G T_{U}(M \backslash U)\right)=3,4$ or $\infty$. In particular, $\operatorname{gr}\left(G T_{U}(M \backslash U)\right) \leq 4$ if $G T_{U}(M \backslash U)$ contains a cycle.

Proof. Let $G T_{U}(M \backslash U)$ contains a cycle. Then since $G T_{U}(M \backslash U)$ is disjoint union of either complete or complete bipartite graphs by Theorem 3.8, it must contain either a 3 -cycle or 4 -cycle. Thus $\operatorname{gr}\left(G T_{U}(M \backslash U)\right) \leq 4$.

Theorem 3.12 Let $M$ be a module over a commutative ring $R$ such that $U$ is a prime submodule of $M$.
(1) (a) $\operatorname{gr}\left(G T_{U}(M \backslash U)\right)=3$ if and only if $2 \in\left(U:_{R} M\right)$ and $|U| \geq 3$.
(b) $\operatorname{gr}\left(G T_{U}(M \backslash U)\right)=4$ if and only if $2 \notin\left(U:_{R} M\right)$ and $|U| \geq 2$.
(c) Otherwise, $\operatorname{gr}\left(G T_{U}(M \backslash U)\right)=\infty$.
(2) (a) $\operatorname{gr}\left(G T_{U}(M)\right)=3$ if and only if $|U| \geq 3$.
(b) $\operatorname{gr}\left(G T_{U}(M)\right)=4$ if and only if $2 \notin\left(U:_{R} M\right)$ and $|U|=2$.
(c) Otherwise, $\operatorname{gr}\left(G T_{U}(M)\right)=\infty$.

Proof. Apply Theorem 3.1, Theorem 3.5 and Theorem 3.11.
Example 3.13 Let $R=Z_{6}$ and $M=R$ as an $R$-module. Let $U=\{\overline{0}, \overline{2}\}$. Then $|U|=2$ and $2 \in(U: M)$. It is clear that $\operatorname{diam}\left(G T_{U}(M)\right)=$ $\operatorname{gr}\left(G T_{U}(M)\right)=\infty$.

## 4 The case when $U$ is not a submodule of $M$

In this section we study $G T_{U}(M)$ when the multiplicative-prime subset $U$ is not a submodule of $M$. Since $U$ is always closed under multiplication by elements of $R$, this just means that $0 \in U$ and there are distinct $x, y \in U$ such that $x+y \in M \backslash U$. We first begin with the following theorem.

Theorem 4.1 Let $M$ be a module over a commutative ring $R$ such that $U$ is a multiplicative-prime subset of $M$ that is not a submodule of $M$. Then the following hold:
(1) $G T_{U}(U)$ is connected with $\operatorname{diam}\left(G T_{U}(U)\right)=2$.
(2) Some vertex of $G T_{U}(U)$ is adjacent to a vertex of $G T_{U}(M \backslash U)$. In particular, the subgraphs $G T_{U}(U)$ and $G T_{U}(M \backslash U)$ are not disjoint.
(3) If $G T_{U}(M \backslash U)$ is connected, then $G T_{U}(M)$ is connected.

Proof. (1) Let $m \in U^{*}=U \backslash\{0\}$. Then $m$ is adjacent to 0 . Thus $m-0-n$ is a path in $G T_{U}(U)$ of length two between any two distinct $m, n \in U^{*}$. Moreover, there exist nonadjacent $m, n \in U^{*}$ since $U$ is not a submodule of $M$; thus $\operatorname{diam}\left(G T_{U}(U)\right)=2$.
(2) There exist distinct $m, n \in U^{*}$ such that $m+n \notin U$. Then $-m \in U$ and $m+n \in U$ are adjacent vertices in $G T_{U}(M)$. Finally, the"in particular" statement is clear.
(3) Since $G T_{U}(U)$ and $G T_{U}(M \backslash U)$ are connected and there is an edge between $G T_{U}(U)$ and $G T_{U}(M \backslash U)$, so $G T_{U}(M)$ is connected.
We determine when $G T_{U}(M)$ is connected and compute $\operatorname{diam}\left(G T_{U}(M)\right)$ with the following theorem.

Theorem 4.2 Let $M$ be a module over a commutative ring $R$ such that $U$ is a multiplicative-prime subset of $M$ that is not a submodule of $M$. Then $G T_{U}(M)$ is connected if only if $M=<U>$ (that is, $M=<a_{1}, a_{2}, \ldots, a_{k}>$ for some $\left.a_{1}, a_{2}, \ldots, a_{k} \in U\right)$.

Proof. Suppose that $G T_{U}(M)$ is connected, and $m \in M$. Then there exist a path $0-m_{1}-m_{2}-\ldots-m_{n}-m$ from 0 to $m$ in $G T_{U}(M)$. Thus
$m_{1}, m_{1}+m_{2}, \ldots, m_{n}+m \in U$. Hence $m \in<m_{1}, m_{1}+m_{2}, \ldots, m_{n-1}+m_{n}, m_{n}+$ $m>\subseteq<U>$; thus $M=<U>$. Conversely, suppose that $M=<U>$. We show that for each $0 \neq m \in M$, there exist a path in $G T_{U}(M)$ from 0 to $m$. By assumption, there are elements $m_{1}, m_{2}, \ldots, m_{n} \in U$ such that $m=m_{1}+m_{2}+\ldots+m_{n}$. Set $x_{0}=0$ and $x_{k}=(-1)^{n+k}\left(m_{1}+m_{2}+\ldots+m_{k}\right)$ for each integer $k$ with $1 \leq k \leq n$. Then $x_{k}+x_{k+1}=(-1)^{n+k+1} m_{k+1} \in U$ for each integer $k$ with $0 \leq k \leq n-1$, and thus $0-x_{1}-x_{2}-\ldots-x_{n-1}-x_{n}=m$ is a path from 0 to $m$ in $G T_{U}(M)$ of length at most $n$. Now let $u, w \in M$. Then by the preceding argument, there are paths from $u$ to 0 and 0 to $w$ in $G T_{U}(M)$; hence there is a path from $u$ to $w$ in $G T_{U}(M)$. Thus, $G T_{U}(M)$ is connected.

Theorem 4.3 Let $M$ be a module over a commutative ring $R$ such that $U$ is a multiplicative-prime subset of $M$ that is not a submodule of $M$, and let $M=\left\langle U>\right.$ (that is, $G T_{U}(M)$ is connected). Let $n \geq 2$ be the least integer such that $M=<m_{1}, m_{2}, \ldots, m_{n}>$ for some $m_{1}, m_{2}, \ldots, m_{n} \in U$. Then $\operatorname{diam}\left(G T_{U}(M)\right) \leq n$. In particular, if $M$ is a cyclic $R$-module, then $\operatorname{diam}\left(G T_{U}(M)\right)=n$.

Proof. Let $m$ and $m^{\prime}$ be distinct elements in $M$. We show that there exist a path from $m$ to $m^{\prime}$ in $G T_{U}(M)$ with length at most $n$. By hypothesis, we can write $m=\sum_{i=1}^{n} r_{i} m_{i}$ and $m^{\prime}=\sum_{i=1}^{n} s_{i} m_{i}$ for some $r_{i}, s_{i} \in R$. Define $x_{0}=m$ and $x_{k}=(-1)^{k}\left(\sum_{i=k+1}^{n} r_{i} m_{i}+\sum_{i=1}^{k} s_{i} m_{i}\right)$, so $x_{k}+x_{k+1}=$ $(-1)^{k} m_{k+1}\left(r_{k+1}-s_{k+1}\right) \in U$ for each integer $k$ with $1 \leq k \leq n-1$. If we define $x_{n}=m^{\prime}$, then $m-x_{1}-x_{2}-\ldots-x_{n-1}-m^{\prime}$ is a path from $m$ to $m^{\prime}$ in $G T_{U}(M)$ with length at most $n$.
Finally, assume that $M=\langle w\rangle$. Let $0-y_{1}-y_{2}-\ldots-y_{m-1}-w$ be a path from 0 to $w$ in $G T_{U}(M)$ with length $m$. Thus $\left.y_{1}, y_{1}+y_{2}, \ldots, y_{m-1}+w \in<U\right\rangle$, and hence $w \in<y_{1}, y_{1}+y_{2}, \ldots, y_{m-1}+w>\subseteq U$. Thus $m \geq n$, as required.

Theorem 4.4 Let $M$ be a module over a commutative ring $R$ such that $U$ is a multiplicative-prime subset of $M$ that is not a submodule of $M$. Let $n \geq 2$ be the least integer such that $M=<m_{1}, m_{2}, \ldots, m_{n}>$ for some $m_{1}, m_{2}, \ldots, m_{n} \in U$.
(1) If $M$ is a cyclic module with generator $m$, then $\operatorname{diam}\left(G T_{U}(M)\right)=$ $d(0, m)$.
(2) If $\operatorname{diam}\left(G T_{U}(M)\right)=n$ and $M$ is a cyclic $R$-module with generator $m$, then $\operatorname{diam}\left(G T_{U}(M \backslash U)\right) \geq n-2$.

Proof. (1) This follows from Theorem 4.3.
(2) Since $\operatorname{diam}\left(G T_{U}(M)\right)=d(0, m)=n$, by part (1) above, let $0-m_{1}-$ $\ldots-m_{n-1}-m$ be a shortest path from 0 to $m$ in $G T_{U}(M)$. Clearly, $m_{1} \in U$. If $m_{i} \in U$ for some $i$ with $2 \leq i \leq n-1$, then $0-m_{i}-\ldots-m_{n-1}-m$ is a path from 0 to $m$ of length less than $n$ in $G T_{U}(M)$, which is a contradiction. Thus $m_{i} \in G T_{U}(M \backslash U)$ for each integer $i$ with $2 \leq i \leq n-1$. Therefore, $m_{2}-m_{3}-\ldots-m_{n-1}-m$ is a shortest path from $m_{2}$ to $m$ in $G T_{U}(M \backslash U)$, and it has length $n-2$. Thus $\operatorname{diam}\left(G T_{U}(M \backslash U)\right) \geq n-2$.

Let $M$ be a module over a commutative ring $R$ such that $U$ is a multiplicativeprime subset of $M$. Recall that two submodules $L$ and $K$ of $M$ are called co-maximal if $M=L+K$. Note that if a proper subset $U$ of $M$ contains two co-maximal submodules of $M$, then $U$ is not a submodule of $M$.

Theorem 4.5 Let $M$ be a finitely generated $R$-module and $n \geq 2$ be the least integer such that $M=<m_{1}, m_{2}, \ldots, m_{n}>$ for some $m_{1}, \ldots, m_{n} \in M$. Let $U$ be a multiplicative-prime subset of $M$ such that $U$ contains two co-maximal submodules of $M$. Then $G T_{U}(M)$ is connected with $\operatorname{diam}\left(G T_{U}(M)\right) \leq 2 n$.

Proof. Let $L, K \subseteq U$ be co-maximal submodules of $M$. Then $M=L+K$; so $m_{i}=x_{i}+y_{i}$ for some $x_{i} \in L$ and $y_{i} \in K$ for every $i=1,2, \ldots, n$. Hence $M=<x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}>$. Thus $G T_{U}(M)$ is connected with $\operatorname{diam}\left(G T_{U}(M)\right) \leq 2 n$ by Theorem 4.3 and Theorem 4.2.

Theorem 4.6 Let $M$ be a cyclic $R$-module and let $U$ be a multiplicativeprime subset of $M$ that is not a submodule of $M$. If $S=R \backslash\left(U:_{R} M\right)$, then $G T_{S^{-1} U}\left(S^{-1} M\right)$ is connected with $\operatorname{diam}\left(G T_{S^{-1} U}\left(S^{-1} M\right)\right) \leq 2$.

Proof. Let $M=R m$. There exist $u, w \in U$ such that $u+w \notin U$, since $U$ is not a submodule of $M$. By Proposition $2.4, U$ is a union of prime submodules, so there are prime submodules $N$ and $L$ of $M$ contained in $U$ with $u \in N \backslash L$ and $w \in L \backslash N$. Then $u=r m$ and $w=s m$ for some $r, s \in R$. So $(r+s) m=u+w \notin U$; then $r+s \notin\left(U:_{R} M\right)$. Thus $r+s \in S$. This implies that $m / 1=(r+s) m /(r+s)=(u /(r+s))+(w /(r+s)) \in S^{-1} L+S^{-1} N$. Thus the prime submodules $S^{-1} L$ and $S^{-1} N$ are co-maximal in $S^{-1} M$; so the result follows from Theorem 4.5.

Now, by the following theorem we provide a proof for the converse of [1. Theorem 4.5 (4)] when $M$ is a cyclic $R$-module.

Theorem 4.7 Let $M$ be a module over a commutative ring $R$ such that $U$ is a multiplicative-prime subset of $M$ that is not a submodule of $M$.
(1) Either $\operatorname{gr}\left(G T_{U}(U)\right)=3$ or $\operatorname{gr}\left(G T_{U}(U)\right)=\infty$.
(2) $\operatorname{gr}\left(G T_{U}(M)\right)=3$ if and only if $\operatorname{gr}\left(G T_{U}(U)\right)=3$.
(3) If $\operatorname{gr}\left(G T_{U}(M)\right)=4$, then $\operatorname{gr}\left(G T_{U}(U)\right)=\infty$.
(4) If $M$ is a cyclic $R$-module and $\operatorname{gr}\left(G T_{U}(U)\right)=\infty$, then $\operatorname{gr}\left(G T_{U}(M)\right)=4$.
(5) If $\operatorname{Nil}(R) \neq 0$ and $2 \in\left(0:_{R} M\right)$, then $\operatorname{gr}\left(G T_{U}(M \backslash U)\right)=3$, 4or $\infty$.
(6) If $2 \notin\left(U:_{R} M\right)$, then $\operatorname{gr}\left(G T_{U}(M \backslash U)\right)=3,4$ or $\infty$.

Proof. (1) If $m+m^{\prime} \in U$ for some distinct $m, m^{\prime} \in U^{*}$, then $0-m-m^{\prime}-0$ is a 3-cyclic in $g r\left(G T_{U}(U)\right)$; so $g r\left(G T_{U}(U)\right)=3$. Otherwise, $m+m^{\prime} \in M \backslash U$ for all distinct $m, m^{\prime} \in U$. Therefore, in this case, each $m \in U^{*}$ is adjacent to 0 , and no two distinct $m, m^{\prime} \in U^{*}$ are adjacent. Thus $g r\left(G T_{U}(U)\right)$ is a star graph with center 0 ; hence $g r\left(G T_{U}(U)\right)=\infty$.
(2) It suffices to show that $\operatorname{gr}\left(G T_{U}(U)\right)=3$ when $\operatorname{gr}\left(G T_{U}(M)\right)=3$. If $2 m \neq 0$ for some $u \in U^{*}$, then $0-u-(-u)-0$ is a 3 -cycle in $U$. Thus we may assume that $2 m=0$ for some $m \in U$. Let $m-m_{1}-m_{2}-m$ be a 3 -cycle in $G T_{U}(M)$. Then $m+m_{1}, m_{1}+m_{2}, m_{2}+m \in U$. One can see that $m+m_{1} \neq 0$ and $m+m_{2} \neq 0$. So $0-m+m_{1}-m+m_{2}-0$ is a 3 -cycle in $G T_{U}(U)$.
(3) If $\operatorname{gr}\left(G T_{U}(M)\right)=4$, then $\operatorname{gr}\left(G T_{U}(M)\right) \neq 3$ by part (2) above. So $\operatorname{gr}\left(G T_{U}(M)\right)=\infty$ by part (1) above .
(4) Since $U$ is not a submodule of $M$, so $U \neq M$. Then $U=\bigcup_{i \in I} N_{i}$, where each $N_{i}$ is a submodule of $M$ by Proposition 2.4, then $|I| \geq 2$. If $\operatorname{gr}\left(G T_{U}(U)\right)=\infty$, then $x+y \in M \backslash U$ for all distinct elements $x, y \in U^{*}$. So $\left|N_{i}\right|=2$ for every $i \in I$. Hence the intersection of any two distinct $N_{i}$ 's is $\{0\}$ and so $|I|=2$. So $U=N_{1} \cup N_{2}$ for prime submodules $N_{1}$ and $N_{2}$ of $M$ with $N_{1} \cap N_{2}=0$ and $\left|N_{1}\right|=\left|N_{2}\right|=2$. Thus we may assume that $N_{1}=\{0, x\}$ and $N_{2}=\{0, y\}$ where $2 x=2 y=0$. So $|U|=3$ and $x+y \notin U$. Thus $0-x-(x+y)-y-0$ is a 4 -cycle in $G T_{U}(M)$. Then $g r\left(G T_{U}(M)\right) \leq 4$. Hence $g r\left(G T_{U}(M)\right)=4$ by part (2) above.
(5) Let $0 \neq r \in \operatorname{Nil}(R)$. Assume that $G T_{U}(M \backslash U)$ contains a cycle, so there is a path $x-y-z$ in $G T_{U}(M \backslash U)$. If $x$ and $z$ are adjacent vertices in $G T_{U}(M \backslash U)$, then we are done. So we may assume that $x$ and $z$ are not adjacent in $G T_{U}(M \backslash U)$. Since $\left(U:_{R} M\right)$ is a multiplicative-prime subset of $R$, so $\left(U:_{R} M\right)=\bigcup_{i \in I} P_{i}$ for distinct prime ideals $P_{i}$ of $R$ by Proposition 2.4 and $\left[12\right.$, Theorem 2]. So $0 \neq r \in \operatorname{Nil}(R) \subseteq \bigcap_{i \in I} P_{i}$. Thus $r \in\left(U:_{R} M\right)$. So $r x, r y, r z \in U$ and $r x+x, r y+y$ and $r z+z$ are distinct elements of $M \backslash U$. Clearly $2 m=0$ for every $m \in M$ by assumption. We have split the proof
into four cases:
Case 1. $r y+y \neq z$ and $r z+z \neq y$. If $r y+y+z \in U$, then $(r y+y)-$ $y-z-(r y+y)$ is a 3-cycle in $G T_{U}(M \backslash U)$. If $r z+z+y \in U$, then $(r z+z)-z-y-(r z+z)$ is a 3 -cycle in $G T_{U}(M \backslash U)$. So we may assume that $r y+y+z, r z+z+y \notin U$. Then $(r y+y)-y-z-(r z+z)-(r y+y)$ is a 4 -cycle in $G T_{U}(M \backslash U)$.
Case 2. $r y+y=z$ and $r z+z \neq y$. Since $r z+z+y=r(z+y) \in U$, so $(r z+z)-z-y-(r z+z)$ is a 3-cycle in $G T_{U}(M \backslash U)$.
Case 3. $r y+y \neq z$ and $r z+z=y$. By an argument like that the Case 2, $(r y+y)-y-z-(r y+y)$ is a 3-cycle in $G T_{U}(M \backslash U)$.
Case 4. $r y+y=z$ and $r z+z=y$. If $r x+x+y \in U$, then $(r x+x)-$ $x-y-(r x+x)$ is a 3 -cycle in $G T_{U}(M \backslash U)$. If $r y+y+x \in U$, then $(r y+y)-y-x-(r y+y)$ is a 3 -cycle in $G T_{U}(M \backslash U)$. So we may assume that $r y+y+x, r x+x+y \notin U$. Thus $(r x+x)-x-y-(r y+y)-(r x+x)$ is a 4 -cycle in $G T_{U}(M \backslash U)$.
(6) Assume that $G T_{U}(M \backslash U)$ contains a cycle, so there is a path $m-m_{1}-m_{2}$ in $G T_{U}(M \backslash U)$. We may assume that $m+m_{2} \notin U$. Since $m \neq m_{2}$, so either $m+m_{1} \neq 0$ or $m_{1}+m_{2} \neq 0$. Assume that $m+m_{1} \neq 0$. If $2 m=0$, then $m \in U$, since $2 \notin\left(U:_{R} M\right)$ and $U$ is a multiplicative-prime subset of $M$. Thus $m-m_{1}-\left(-m_{1}\right)-(-m)-m$ is a 4 -cycle in $G T_{U}(M \backslash U)$.

Example 4.8 (1) Let $R=Z_{6}$ and $M=R$ as an $R$-module. Let $U=$ $\{\overline{0}, \overline{2}, \overline{3}, \overline{4}\}$. Then $U=\langle\overline{2}\rangle \cup\langle\overline{3}\rangle$. So, $\operatorname{diam}\left(G T_{U}(M)\right)=2$ and $\operatorname{gr}\left(G T_{U}(M)\right)=$ 3.
(2) Let $R=Z_{60}$ and $M=R$ as an $R$-module. Let $U=\langle\overline{2}\rangle \cup\langle\overline{3}\rangle \cup\langle\overline{5}\rangle$. It is clear that $\operatorname{diam}\left(G T_{U}(M)\right)=2$ and $g r\left(G T_{U}(M)\right)=3$.

Theorem 4.9 Let $M$ be a cyclic $R$-module and $U$ be a proper multiplicativeprime subset of $M$ which is not a submodule of $M$. Let $U=\bigcup_{i \in I} N_{i}$ for prime submodule $N_{i}$ of $M$. Suppose that $a-b-c$ is a path of length two in $G T_{U}(M \backslash U)$ for distinct vertices $a, b, c \in M \backslash U$.
(1) If $2 k \in U$ for some $k \in\{a, b, c\}$ and $\bigcap_{i} N_{i} \neq\{0\}$, then $\operatorname{gr}\left(G T_{U}(M \backslash\right.$ $U)=3$.
(2) If $2 k=0$ for some $k \in\{a, b, c\}$ and $2 \notin\left(0:_{R} M\right)$ then $\operatorname{gr}\left(G T_{U}(M \backslash U)\right)=$ 3.
(3) If $2 k \notin U$ for every $k \in\{a, b, c\}$, then $\operatorname{gr}\left(G T_{U}(M \backslash U)\right) \leq 4$.

Proof. (1) Suppose that $2 k \in U$ for some $k \in\{a, b, c\}$ and there is a $0 \neq h \in \bigcap_{i} N_{i}$. Assume $2 a \in U$. If $b \neq a+h$, then $a-b-(a+h)-a$ is a cycle of length three in $G T_{U}(M \backslash U)$. Hence, assume that $b=a+h$. Since
$(a+h)+c=b+c \in U$ and $h \in \bigcap_{i} N_{i}$, we have $a+c \in U$. Thus $a-b-c-a$ is a cycle of length three in $G T_{U}(M \backslash U)$. Assume $2 b \in U$. If $c \neq b+h$, then $b-c-(b+h)-b$ is a cycle of length three in $G T_{U}(M \backslash U)$. So, let $c=b+h$. Then $a-b-(b+h)-a$ is a cycle of length three in $G T_{U}(M \backslash U)$. Assume $2 c \in U$. If $b \neq c+h$, then $b-c-(c+h)-b$ is a cycle of length three in $G T_{U}(M \backslash U)$. Thus, let $b=c+h$. Since $a+(c+h)=a+b \in U$ and $h \in \bigcap_{i} N_{i}$, we have $a+c \in U$. Hence $a-b-c-a$ is a cycle of length three in $G T_{U}(M \backslash U)$. Thus $g r\left(G T_{U}(M \backslash U)\right)=3$.
(2) Suppose that $2 k=0$ for some $k \in\{a, b, c\}$ and $2 \notin\left(0:_{R} M\right)$. Thus $2 \neq 0$. Since $k \notin N_{i}$ for every $i \in I$, so $2 \in\left(N_{i}:_{R} M\right)$. Hence $0 \neq 2 M \subseteq \bigcap_{i \in I} N_{i}$. Therefor $\operatorname{gr}\left(G T_{U}(M \backslash U)\right)=3$ by part(1) above.
(3) Suppose $2 k \notin U$ for every $k \in\{a, b, c\}$. Then $z \neq-z$ for every $z \in$ $\{a, b, c\}$. Hence there are distinct $x, y \in\{a, b, c\}$ such that $y \neq-x$. Thus $x-y-(-y)-(-x)-x$ is a 4 cycle in $G T_{U}(M \backslash U)$; So $g r\left(G T_{U}(M \backslash U)\right) \leq 4$.

Theorem 4.10 Let $M$ be a module over a commutative ring $R$ such that $U$ is a multiplicative-prime subset of $M$ that is not a submodule of $M$ and $H=$ $\left(U:_{R} M\right)$. If $G T_{H}(R)$ is connected, then $G T_{U}(M)$ is connected. Moreover if $\operatorname{diam}\left(G T_{H}(R)\right)=n$, then $\operatorname{diam}\left(G T_{U}(M)\right) \leq 2 n$.
Proof. Let $m \in M$ and $G T_{H}(R)$ be connected. Then $\operatorname{diam}\left(G T_{H}(R)\right)=$ $d(0,1)=n$ by [5, Corollary 3.5]. Then there exists a path $0-r_{1}-r_{2}-$ $\ldots-r_{n-1}-1$ from 0 to 1 of length $n$ such that $r_{i-1}+r_{i} \in H$ for each $i=2, \ldots, n-1$. So $\left(r_{i-1}+r_{i}\right) M \subseteq U$ for each $i=2, \ldots, n-1$. Thus $0-r_{1} m-r_{2} m-\ldots-r_{n-1} m-m$ is a path from 0 to $m$ of length at most $n$ in $G T_{U}(M)$. The "moreover" statement follows directly from the above arguments.

## Acknowledgments

The authors would like to thank the referee(s) for valuable comments and suggestions which have improved the paper.

## References

[1] A. Abbasi and Sh. Habibi, The total graph of a module over a commutative ring with respect to proper submodules, Journal of Algebra and It's Applications. 11(3) (2012), 1250048.
[2] D. D. Anderson and M. Naseer, Beck's coloring of a commutative ring, J. Algebra, 159 (1993), 500-514.
[3] D. F. Anderson, M. C. Axtell and J. A. Stickles, Jr., Zero-divisor graphs in commutative rings, commutative Algebra, Noetherian and Non-Noetherian Perspectives, eds. M. Fontana, S. E. Kabbaj, B. Olberding and I. Swanson (Springer-Verlag, New York, 2011), pp. 23-45.
[4] D. F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra, 320 (2008), 2706-2719.
[5] D. F. Anderson and A. Badawi, The generalized total graph of a commutative ring, J. Algebra Appl., 12 (2013), 1250212.
[6] D. F. Anderson and P. F. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 437-447.
[7] D. F. Anderson and S. B. Mulay, On the diameter and girth of a zero-divisor graph, J. Pure Appl. Algebra, 210 (2007), 543-550.
[8] I. Beck, Coloring of a commutative ring, J. Algebra, 116 (1988), 208-226.
[9] S. Ebrahimi Atani and F. Esmaeili Khalil Saraei, The total graph of a commutative semiring, An. St. Univ. Ovidius Constanta, 21(2) (2013), 21-33.
[10] S. Ebrahimi Atani and S. Habibi, The total torsion element graph of a module over a commutative ring, An. St. Univ. Ovidius Constant, 19(1) (2011), 23-34.
[11] F. Esmaeili Khalil Saraei, The total torsion element graph without the zero element of modules over commutative rings, J. Korean Math. Soc., 51(4) (2014), 721-734.
[12] I. Kaplansky, Commutative Rings, rev. ed., University of Chicago Press, Chicago, 1974.
[13] Ch. Lu, Union of prime submodules, Huston Journal of Mathematics, 23(2) (1997), 203-213.

Fatemeh Esmaeili Khalil Saraei
Faculty of Fouman,

College of Engineering, University of Tehran, P.O. Box 43515-1155, Fouman 43516-66456, Guilan, Iran.
E-mail: f.esmaeili.kh@ut.ac.ir

Haleh Heydarinejad Astaneh
Department of Mathematics,
Faculty of mathematical sciences, University of Guilan, P.O.Box 1914, Rasht,Iran.

E-mail: haleh.heydarinejad@gmail.com
Raheleh Navidinia
Department of Mathematics,
Faculty of mathematical sciences, University of Guilan, P.O.Box 1914, Rasht,Iran.

E-mail: rahelenavidinia@yahoo.com

