EDGE-TO-VERTEX DETOUR MONOPHONIC NUMBER OF A GRAPH

A.P. SANTHAKUMARAN, P. TITUS AND K. GANESAMOORTHY

Abstract

For a connected graph $G=(V, E)$ of order at least three, the monophonic distance $d_{m}(u, v)$ is the length of a longest $u-v$ monophonic path in G. For subsets A and B of V, the monophonic distance $d_{m}(A, B)$ is defined as $d_{m}(A, B)=\min \left\{d_{m}(x, y)\right.$: $x \in A, y \in B\}$. A $u-v$ path of length $d_{m}(A, B)$ is called an $A-B$ detour monophonic path joining the sets $A, B \subseteq V$, where $u \in A$ and $v \in B$. A set $S \subseteq E$ is called an edge-to-vertex detour monophonic set of G if every vertex of G is incident with an edge of S or lies on a detour monophonic joining a pair of edges of S. The edge-to-vertex detour monophonic number $d m_{e v}(G)$ of G is the minimum order of its edge- to-vertex detour monophonic sets and any edge-to-vertex detour monophonic set of order $d m_{e v}(G)$ is an edge-to-vertex detour monophonic basis of G. Certain general properties of these concepts are studied. It is shown that for each pair of integers k and q with $2 \leq k \leq q$, there exists a connected graph G of order $q+1$ and size q with $d m_{e v}(G)=k$.

Mathematics Subject Classification (2010): 05C12
Key words: monophonic distance, detour monophonic path, edge-to-vertex detour monophonic set, edge-to-vertex detour monophonic basis, edge-to-vertex detour monophonic number.

1. Introduction

By a graph $G=(V, E)$ we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q, respectively. For basic graph theoretic terminology we refer to Harary [1,5]. For vertices x and y in a connected graph G, the distance $d(x, y)$ is the length of a shortest $x-y$ path in G. An $x-y$ path of length $d(x, y)$ is called an $x-y$ geodesic. The neighborhood of a vertex v is the set $N(v)$ consisting of all vertices u which are adjacent with v. A vertex v is an extreme vertex if the subgraph induced by its neighbors is complete.

The detour distance $D(u, v)$ between two vertices u and v in G is the length of a longest $u-v$ path in G. An $u-v$ path of length $D(u, v)$ is called an $u-v$ detour. It is known that D is a metric on the vertex set V of G. The closed detour interval $I_{D}[x, y]$ consists of x, y, and all the vertices in some $x-y$ detour of G. For $S \subseteq V, I_{D}[S]$ is the union of the sets $I_{D}[x, y]$ for all $x, y \in S$. A set S of vertices is a detour set if $I_{D}[S]=V$, and the minimum cardinality of a detour set is the detour number $d n(G)$. The concept of detour number was introduced in $[2,3]$ and further studied in $[3,4]$.

A chord of a path P is an edge joining two non-adjacent vertices of P. A path P is called monophonic if it is a chordless path. A longest $x-y$ monophonic path is called an $x-y$ detour monophonic path. A set S of vertices of a graph G is a detour monophonic
set if each vertex v of G lies on an $x-y$ detour monophonic path for some $x, y \in S$. The minimum cardinality of a detour monophonic set of G is the detour monophonic number of G and is denoted by $\operatorname{dm}(G)$. The detour monophonic number of a graph was introduced in [9] and further studied in [10].

An edge detour monophonic set of G is a set S of vertices such that every edge of G lies on a detour monophonic path joining some pair of vertices in S. The edge detour monophonic number of G is the minimum cardinality of its edge detour monophonic sets and is denoted by $e d m(G)$. An edge detour monophonic set of cardinality $\operatorname{edm}(G)$ is an $e d m$-set of G. The edge detour monophonic number of a graph was introduced and studied in [8].

For any two vertices u and v in a connected graph G, the monophonic distance $d_{m}(u, v)$ from u to v is defined as the length of a longest $u-v$ monophonic path in G. The monophonic eccentricity $e_{m}(v)$ of a vertex v in G is $e_{m}(v)=\max \left\{d_{m}(v, u): u \in V(G)\right\}$. The monophonic radius, $\operatorname{rad}_{m} G$ of G is $\operatorname{rad}_{m}(G)=\min \left\{e_{m}(v): v \in V(G)\right\}$ and the monophonic diameter, $\operatorname{diam}_{m} G$ of G is $\operatorname{diam}_{m}(G)=\max \left\{e_{m}(v): v \in V(G)\right\}$. A vertex u in G is a monophonic eccentric vertex of a vertex v in G if $e_{m}(v)=d_{m}(u, v)$. The monophonic distance was introduced in [6] and further studied in [7].

Throughout this paper G denotes a connected graph with at least three vertices.

2. Edge-to-vertex detour monophonic number

Definition 2.1. Let $G=(V, E)$ be a connected graph with at least three vertices. For subsets A and B of V, the monophonic distance $d_{m}(A, B)$ is defined as $d_{m}(A, B)=$ $\min \left\{d_{m}(x, y): x \in A, y \in B\right\}$. A $u-v$ detour monophonic path of length $d_{m}(A, B)$ is called an $A-B$ detour monophonic path joining the sets A and B, where $u \in A$ and $v \in B$. For $A=\{u, v\}$ and $B=\{z, w\}$ with $u v$ and $z w$ edges, we write an $A-B$ detour monophonic path as $u v-z w$ detour monophonic path, and $d_{m}(A, B)$ as $d_{m}(u v, z w)$.

Figure 2.1: G
Example 2.2. For the graph G given in Figure 2.1, with $A=\left\{v_{1}, v_{2}\right\}$ and $B=\left\{v_{4}, v_{5}\right\}$, $P: v_{1}, v_{3}, v_{4}$ is the only $v_{1}-v_{4}$ detour monophonic path; $Q: v_{1}, v_{3}, v_{4}, v_{5}$ and R : $v_{1}, v_{3}, v_{6}, v_{5}$ are the only $v_{1}-v_{5}$ detour monophonic paths; $P^{\prime}: v_{2}, v_{3}, v_{4}$ is the only $v_{2}-v_{4}$ detour monophonic path, $Q^{\prime}: v_{2}, v_{3}, v_{4}, v_{5}$ and $R^{\prime}: v_{2}, v_{3}, v_{6}, v_{5}$ are the only $v_{2}-v_{5}$ detour monophonic paths. Hence $d_{m}(A, B)=2$ and $P: v_{1}, v_{3}, v_{4}$ and $P^{\prime}: v_{2}, v_{3}, v_{4}$ are the only two $A-B$ detour monophonic paths.

Definition 2.3. Let $G=(V, E)$ be a connected graph with at least three vertices. A set $S \subseteq E$ is called an edge-to-vertex detour monophonic set of G if every vertex of G is incident with an edge of S or lies on a detour monophonic path joining a pair of edges of S. The edge-to-vertex detour monophonic number $d m_{e v}(G)$ of G is the minimum cardinality of its edge-to-vertex detour monophonic sets and any edge-to-vertex detour monophonic set of cardinality $d m_{e v}(G)$ is an edge-to-vertex detour monophonic basis of G.

Example 2.4. For the graph G given in Figure 2.2, the four $v_{1} v_{2}-v_{4} v_{5}$ detour monophonic paths are $P_{1}: v_{1}, v_{2}, v_{3}, v_{4}, P_{2}: v_{1}, v_{6}, v_{5}, v_{4}, Q_{1}: v_{2}, v_{3}, v_{4}, v_{5}$ and $Q_{2}: v_{2}, v_{1}, v_{6}, v_{5}$, each of length 3 so that $d_{m}\left(v_{1} v_{2}, v_{4} v_{5}\right)=3$. Since the vertices v_{3} and v_{6} lie on the $v_{1} v_{2}-v_{4} v_{5}$ detours monophonic paths P_{1} and P_{2} respectively, $S_{1}=\left\{v_{1} v_{2}, v_{4} v_{5}\right\}$ is an edge-to-vertex detour monophonic basis of G so that $d m_{e v}(G)=2$. Also $S_{2}=\left\{v_{2} v_{3}, v_{5} v_{6}\right\}$ and $S_{3}=\left\{v_{3} v_{4}, v_{1} v_{6}\right\}$ are edge-to-vertex detour monophonic bases of G. Thus there can be more than one edge-to-vertex detour monophonic basis for a graph.

Figure 2.2: G
It is clear that an edge-to-vertex detour monophonic set needs at least two edges, and the set of all edges of G is an edge-to-vertex detour monophonic set of G. Hence the following proposition is trivial.

Proposition 2.5. For any connected graph G of size $q \geq 2,2 \leq d m_{e v}(G) \leq q$.
For the star $K_{1}, q(q \geq 2)$, it is clear that the set of all edges is the unique edge-tovertex detour monophonic set so that $d m_{e v}\left(K_{1, q}\right)=q$. The set of two end-edges of a path $P_{n}(n \geq 3)$ is its unique edge-to-vertex detour monophonic basis so that $d m_{e v}\left(P_{n}\right)=2$. Thus the bounds in Proposition 2.5 are sharp.

Definition 2.6. An edge e in a graph G is an edge-to-vertex detour monophonic edge in G if e belongs to every edge-to-vertex detour monophonic basis of G. If G has a unique edge-to-vertex detour monophonic basis S, then every edge in S is an edge-to-vertex detour monophonic edge of G.

Figure 2.3: G

Example 2.7. For the graph G given in Figure 2.3, $S=\left\{v_{1} v_{2}, v_{5} v_{6}\right\}$ is the unique edge-to-vertex detour monophonic basis of G so that both the edges in S are edge-to-vertex detour monophonic edge of G. For the graph G given in Figure 2.1, it is easily verified that no two element subset of E is an edge-to-vertex detour monophonic set of G. Also, it is clear that $S_{1}=\left\{v_{1} v_{3}, v_{2} v_{3}, v_{4} v_{5}\right\}$ and $S_{2}=\left\{v_{1} v_{3}, v_{2} v_{3}, v_{5} v_{6}\right\}$ are the only edge-to-vertex detour monophonic bases of G so that the edges $v_{1} v_{3}, v_{2} v_{3}$ are the edge-to-vertex detour monophonic edges of G.

An edge of a connected graph G is called an extreme edge of G if one of its ends is an extreme vertex of G.

Theorem 2.8. If v is an extreme vertex of a non-complete connected graph G, then every edge-to-vertex detour monophonic set of G contains at least one extreme edge that is incident with v.

Proof. Let v be an extreme vertex of G. Let $e_{1}, e_{2}, \ldots, e_{k}$ be the edges incident with v. Let S be any edge-to-vertex detour monophonic set of G. We claim that $e_{i} \in S$ for some $i(1 \leq i \leq k)$. Otherwise, $e_{i} \notin S$ for any $i(1 \leq i \leq k)$. Since S is an edge-to-vertex detour monophonic set and the vertex v is not incident with any element of S, v lies on a detour monophonic path joining two elements say $x, y \in S$. Let $x=v_{1} v_{2}$ and $y=v_{l} v_{m}$. Then $v \neq v_{1}, v_{2}, v_{l}, v_{m}$ and since G is non-complete, $d_{m}(x, y) \geq 2$. Let u and w be the neighbors of v on P. Then u and w are not adjacent and so v is not an extreme vertex, which is a contradiction. Therefore, $e_{i} \in S$ for some $i(1 \leq i \leq k)$.

Figure 2.4: G
Remark 2.9. For the graph G given in Figure 2.4, $S=\left\{v_{1} v_{5}, v_{3} v_{4}\right\}$ is an edge-to-vertex detour monophonic set of G, which does not contain the extreme edge $v_{1} v_{2}$. Thus all the extreme edges of a graph need not belong to an edge-to-vertex detour monophonic set of G.

In the following theorem we show that there are certain edges in a connected graph G that are edge-to-vertex detour monophonic edges of G.

Corollary 2.10. Every end-edge of a connected graph G belongs to every edge-to-vertex detour monophonic set of G. Also if the set S of all end-edges of G is an edge-to-vertex detour monophonic set, then S is the unique edge-to-vertex detour monophonic basis for G.

Proof. This follows from Theorem 2.8. If S is the set of all end-edges of G, then by the first part of this corollary $d m_{e v}(G) \geq|S|$. Since S is an edge-to-vertex detour monophonic
set of $G, d m_{e v}(G) \leq|S|$. Hence $d m_{e v}(G)=|S|$ and S is the unique edge-to-vertex detour monophonic basis for G.
Corollary 2.11. If T is a tree with k end-edges, then $d m_{e v}(T)=k$.
Corollary 2.12. For any connected graph G with k end-edges, $\max \{2, k\} \leq d m_{e v}(G) \leq q$.
Proof. This follows from Proposition 2.5 and Corollary 2.10.
For a cutvertex v in a connected graph G and a component H of $G-v$, the subgraph H and the vertex v together with all edges joining v and $V(H)$ is called a branch of G at v.

Theorem 2.13. Let G be a connected graph with cutvertices and S an edge-to-vertex detour monophonic set of G. Then every branch of G contains an element of S.

Proof. Assume that there is a branch B of G at a cutvertex v such that B contains no element of S. Then by Corollary 2.10, B does not contain any end-edge of G. Hence it follows that no vertex of B is an endvertex of G. Let u be any vertex of B (note that $|V(B)| \geq 2$). Then u is not incident with any end-edge of G and so u lies on a $e-f$ detour monophonic path $P: u_{1}, u_{2}, \ldots, u, \ldots, u_{t}$ where u_{1} is an end of e, u_{t} is an end of f and $e, f \in S$. Since v is a cutvertex of G, the $u_{1}-u$ and $u-u_{t}$ subpaths of P both contain v and so P is not a path, which is a contradiction. Hence every branch of G contains an element of S.

Corollary 2.14. Let G be a connected graph with cut-edges and S an edge-to-vertex detour monophonic set of G. Then every branch of G contains an element of S.
Corollary 2.15. Let G be a connected graph with cut-edges and S an edge-to- vertex detour monophonic set of G. Then for any cut-edge e of G, which is not an end-edge, each component of $G-e$ contains an element of S.

Proof. Let $e=u v$. Let G_{1} and G_{2} be the two components of $G-e$ such that $u \in V\left(G_{1}\right)$ and $v \in V\left(G_{2}\right)$. Since u and v are cutvertices of G, the result follows from Theorem 2.13 .

Corollary 2.16. If G is a connected graph with $k \geq 2$ endblocks, then $d m_{e v}(G) \geq k$.
Corollary 2.17. If G is a connected graph with a cutvertex v and the number of components of $G-v$ is r, then $d m_{e v}(G) \geq r$.
Remark 2.18. By Corollary 2.16, if S is an edge-to-vertex detour monophonic set of a graph G, then every endblock of G must contain at least one element of S. However, it is possible that some blocks of G that are not endblocks must contain an element of S as well. For example, consider the graph G given in Figure 2.5, where the cycle $C_{5}: x, y, t, w, s, x$ is a block of G that is not an endblock. By Corollary 2.10, every edge-to-vertex detour monophonic set of G must contain $u s$ and $t v$. Since the $u s-t v$ detour monophonic path does not contain the vertex w, it follows that $\{u s, t v\}$ is not an edge-to-vertex detour monophonic set of G. Thus every edge-to-vertex detour monophonic set of G must contain at least one edge from the block C_{5}.

Figure 2.5: G
Theorem 2.19. Let G be a connected graph with cut-edges. Then no cut-edge which is not an end-edge in G belongs to any edge-to-vertex detour monophonic basis of G.

Proof. Suppose that S is an edge-to-vertex detour monophonic basis that contains a cutedge $e=u v$ which is not an end-edge of G. Let G_{1}, G_{2} be the two components of $G-e$ such that $u \in G_{1}$ and $v \in G_{2}$. Then by Corollary 2.15, each of G_{1} and G_{2} contains an element of S. Let $S^{\prime}=S-\{u v\}$. We show that S^{\prime} is an edge-to-vertex detour monophonic set of G. Since S is an edge-to-vertex detour monophonic set of G and $u v \in S$, let s be any vertex of G that lies on a detour monophonic path P joining the edges, say $x y$ and $u v$ of S. We may assume that $x y \in E\left(G_{1}\right)$ and so $V(P) \subseteq V\left(G_{1}\right)$. Let P_{1} be the $x y-u v$ detour monophonic path that contains the vertex s and P_{2} be any $u v-w z$ detour monophonic path in G, where $w z \in E\left(G_{2}\right) \cap S$. Then, since $u v$ is a cut-edge of G, the detour monophonic path P_{1} followed by the edge $u v$ and the detour monophonic path P_{2} is an $x y-w z$ detour monophonic path which contains the vertex s. Thus we have shown that a vertex that lies on a detour monophonic path joining a pair of edges $x y$ and $u v$ of S also lies on a detour monophonic path joining a pair of edges $x y$ and $w z$ of S^{\prime}. Hence it follows that S^{\prime} is an edge-to-vertex detour monophonic set of G. Since $\left|S^{\prime}\right|=|S|-1$, this contradicts that S is an edge-to-vertex detour monophonic basis of G. Thus the result is proved.

3. Edge-to-Vertex Detour Monophonic Numbers of Some Standard Graphs

Theorem 3.1. For p even, a set S of edges of $G=K_{p}(p \geq 4)$ is an edge-to-vertex detour monophonic basis of K_{p} if and only if S consists of $p / 2$ independent edges.

Proof. Let S be any set of $p / 2$ independent edges of K_{p}. Since each vertex of K_{p} is incident with an edge of S, it follows that $d m_{e v}(G) \leq p / 2$. If $d m_{e v}(G)<p / 2$, then there exists an edge-to-vertex detour monophonic set S^{\prime} of K_{p} such that $\left|S^{\prime}\right|<p / 2$. Therefore, there exists at least one vertex v of K_{p} such that v is not incident with any edge of S^{\prime}. Since $d_{m}(e, f)=1$ if e and f are independent edges, it follows that v is neither incident with any edge of S^{\prime} nor lies on a detour monophonic path joining a pair of edges of S^{\prime} and so S^{\prime} is not an edge-to-vertex detour monophonic set of G, which is a contradiction. Thus S is an edge-to-vertex detour monophonic basis of K_{p}.

Conversely, let S be an edge-to-vertex detour monophonic basis of K_{p}. Let S^{\prime} be any set of $p / 2$ independent edges of K_{p}. Then as in the first part of this theorem, S^{\prime} is an edge-to-vertex detour monophonic basis of K_{p}. Therefore, $|S|=p / 2$. If S is not independent, then there exists a vertex v of K_{p} such that v is not incident with any edge
of S and it follows that S is not an edge-to-vertex detour monophonic set of G, which is a contradiction. Therefore, S consists of $p / 2$ independent edges.

Corollary 3.2. For the complete graph $K_{p}(p \geq 4)$ with p even, $d m_{e v}(K p)=p / 2$.
For any real $x,\lceil x\rceil$ denotes the smallest integer greater than or equal to x.
Theorem 3.3. For the complete graph $G=K_{p}(p \geq 3)$ with p odd, $d m_{e v}(G)=\frac{p+1}{2}$.
Proof. Let S be any set of $\frac{p-1}{2}$ independent edges of G. Then there exists a unique vertex v which is not incident with an edge of S. Let S_{1} be the union of S and an edge incident with v. Then S_{1} is an edge-to-vertex detour monophonic set of G so that $d m_{e v}(G) \leq \frac{p-1}{2}+1$. Now, if $d m_{e v}(G) \leq \frac{p-1}{2}$, then let S_{2} be an edge-to-vertex detour monophonic set of G such that $\left|S_{2}\right| \leq \frac{p-1}{2}$. Then there exists a vertex u such that u is not incident with any edge of S_{2}. Obviously, u does not lie on a detour monophonic path joining a pair of edges of S_{2}, which is a contradiction to S_{2} an edge-to-vertex detour monophonic set of G. Hence $d m_{e v}(G)=\frac{p-1}{2}+1=\frac{p+1}{2}$.

Corollary 3.4. For the complete graph $K_{p}(p \geq 3), d m_{e v}\left(K_{p}\right)=\left\lceil\frac{p}{2}\right\rceil$.
Two vertices u and v of G are called antipodal if $d(u, v)=\operatorname{diam} G$, where $\operatorname{diam} G$ is the usual diameter of the graph G.

Theorem 3.5. For the cycle $C_{p}(p \geq 3), d m_{e v}\left(C_{p}\right)= \begin{cases}2 & \text { if } p \neq 5 \\ 3 & \text { if } p=5 .\end{cases}$
Proof. For $p=3, C_{p}=K_{3}$ and any set of two edges is an edge-to-vertex detour monophonic basis and so $d m_{e v}(G)=2$.

Let $p \geq 4$ and $p \neq 5$. Let $C_{p}: v_{1}, v_{2}, v_{3}, \ldots, v_{k}, v_{k+1}, v_{k+2}, \ldots, v_{p}, v_{1}$ be the cycle of order p such that v_{k+1} is the unique antipodal vertex of v_{1} if p is even; and v_{k+1} and v_{k+2} are the antipodal vertices of v_{1} if p is odd. Then it is easily checked that $S=\left\{v_{1} v_{2}, v_{k+1} v_{k+2}\right\}$ is an edge-to-vertex detour monophonic set of C_{p} so that $d m_{e v}\left(C_{p}\right)=2$.

For $p=5$, it is easily seen that no 2 -element subset of edges of C_{5} is an edge-to-vertex detour monophonic set of C_{5} since $d_{m}(e, f)=1$ if e and f are two independent edges in C_{5}. Also, since $S=\left\{v_{1} v_{2}, v_{2} v_{3}, v_{4} v_{5}\right\}$ is an edge-to-vertex detour monophonic set of C_{5}, it follows that $d m_{e v}\left(C_{5}\right)=3$.

4. Monophonic Diameter and Edge-to-Vertex Detour Monophonic Number

Theorem 4.1. For each pair of integers k and q with $2 \leq k \leq q$, there exists a connected graph G of order $q+1$ and size q with $d m_{e v}(G)=k$.

Proof. For $2 \leq k \leq q$, let P be a path of order $q-k+3$. Then the graph G obtained from P by adding $k-2$ new vertices to P and joining them to any cutvertex of P is a tree of order $q+1$ and size q with k end-edges and so by Corollary 2.11, $d m_{e v}(G)=k$.

Proposition 2.5 shows that if G is a connected graph of size $q \geq 2$, then $2 \leq d m_{e v}(G) \leq$ q. Indeed, by Theorem 4.1, for each pair k, q of integers with $2 \leq k \leq q$, there is a tree of size q with edge-to-vertex detour monophonic number k. An improved upper bound for the edge-to-vertex detour monophonic number of a graph can be given in terms of its size q and detour monophonic diameter. For convenience, we denote the detour monophonic diameter $\operatorname{diam}_{m}(G)$ by d_{m} itself.
Theorem 4.2. If G is a connected graph of size q and monophonic diameter d_{m}, then $d m_{e v}(G) \leq q-d_{m}+2$.

Proof. Let u and v be vertices of G such that $d_{m}(u, v)=d_{m}$ and let $P: u=$ $v_{0}, v_{1}, v_{2}, \ldots, v_{d_{m}-1}, v_{d_{m}}=v$ be a $u-v$ detour monophonic path of length d_{m}. Let $S=(E(G)-E(P)) \cup\left\{u v_{1}, v_{d_{m}-1} v\right\}$. Then it is clear that S is an edge-to-vertex detour monophonic set of G so that $d m_{e v}(G) \leq|S|=q-d_{m}+2$.

We give below a characterization theorem for trees.
Theorem 4.3. For any tree T of size $q \geq 2$ and monophonic diameter $d_{m}, d m_{e v}(T)=$ $q-d_{m}+2$ if only if T is a caterpillar.
Proof. Let T be any tree of size $q \geq 2$ and $P: v_{0}, v_{1}, \ldots, v_{d_{m}-1}, v_{d_{m}}$ be a monophonic diameteral path of T. Let $e_{1}, e_{2}, \ldots, e_{d_{m}-1}, e_{d_{m}}$ be the edges of P, where $e_{i}=v_{i-1} v_{i}(1 \leq i \leq$ $\left.d_{m}\right), k$ the number of end-edges of T and l the number of internal edges of T other than $e_{2}, \ldots, e_{d_{m}-1}$. Then $k+l+d_{m}-2=q$. By Corollary 2.11, $d m_{e v}(T)=k=q-d_{m}-l+2$. Hence $d m_{e v}(T)=k=q-d_{m}+2$ if and only if $l=0$, if and only if all the internal edges of T lie on the monophonic diameteral path P, if and only if T is a caterpillar.
Corollary 4.4. For a wounded spider T of size $q \geq 2, d m_{e v}(T)=q-d_{m}+2$ if and only if T is obtained from $K_{1, t}(t \geq 2)$ by subdividing at most two of its edges.
Proof. Since a wounded spider T is a caterpillar if and only if T is obtained from $K_{1, t}(t \geq 2)$ by subdividing at most two of its edges, the result follows from Theorem 4.3.

References

[1] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood City, CA, 1990.
[2] G. Chartrand, H. Escuadro, and P. Zhang, Detour Distance in Graphs, J. Combin. Math. Combin. Comput. 53 (2005) 75-94.
[3] G. Chartrand, G.L. Johns, and P. Zhang, The Detour Number of a Graph, Utilitas Mathematica 64 (2003) 97-113.
[4] G. Chartrand, G.L. Johns, and P. Zhang, On the Detour Number and Geodetic Number of a Graph, Ars Combinatoria 72 (2004) 3-15.
[5] F. Harary, Graph Theory, Addison-Wesley, 1969.
[6] A.P. Santhakumaran and P. Titus, Monophonic distance in graphs, Discrete Mathematics, Algorithms and Applications, Vol. 3, No. 2 (2011) 159-169.
[7] A.P. Santhakumaran and P. Titus, A Note on Monophonic Distance in Graphs, Discrete Mathematics, Algorithms and Applications, DOI: 10.1142/S1793830912500188, Vol.4, No.2, 2012.
[8] A.P. Santhakumaran, P. Titus, K. Ganesamoorthy and P. Balakrishnan, Edge Detour Monophonic Number of a Graph, Proyecciones Journal of Mathematics, Vol. 32, No. 2 (2013) 183-198.
[9] P. Titus, K. Ganesamoorthy and P. Balakrishnan, The Detour Monophonic Number of a Graph, J. Combin. Math. Combin. Comput. 83 (2013) 179-188.
[10] P. Titus and K. Ganesamoorthy, On the Detour Monophonic Number of a Graph, Ars Combinatoria, to appear.

Department of Mathematics, Hindustan University, Hindustan Institute of Technology and Science, Chennai - 603 103, India

E-mail address: apskumar1953@yahoo.co.in
Department of Mathematics, University College of Engineering Nagercoil, Anna University, Tirunelveli Region, Nagercoil - 629 004, India

E-mail address: titusvino@yahoo.com
Department of Mathematics, University V.O.C. College of Engineering, Anna University, Tirunelveli Region, Tuticorin - 628 008, India

E-mail address: kvgm_2005@yahoo.co.in

