CONTINUITY OF SUPERPOSITION OPERATORS ON DOUBLE SEQUENCES SPACES OF MADDOX $C_{r 0}(p)$

BíRSEN SAĞIR AND NIHAN GÜNGÖR

Abstract

Sağır and Güngör [15] defined the superposition operator P_{g} where g : $\mathbb{N}^{2} \times \mathbb{R} \rightarrow \mathbb{R}$ by $P_{g}\left(\left(x_{k s}\right)\right)=g\left(k, s, x_{k s}\right)$ for all real double sequences $\left(x_{k s}\right)$. Chew \& Lee [4] and Petranuarat \& Kemprasit [12] characterized $P_{g}: c_{0} \rightarrow l_{1}$ and $P_{g}: c_{0} \rightarrow l_{q}$ where $1 \leq q<\infty$, respectively. Sağır and Güngör [16] gave the necessary and sufficient conditions for the continuity of the superposition operator P_{g} acting from the double sequences space $C_{r 0}$ into \mathcal{L}_{p} where $1 \leq p<\infty$. In this study, we have generalized P_{g} acting from the double sequences space of Maddox $C_{r 0}(p)$ into $\mathcal{L}(q)$ where $p=\left(p_{k s}\right)$ and $q=\left(q_{k s}\right)$ are bounded double sequences of positive numbers. The main aim of this study is to give the necessary and sufficient conditions for the continuity of $P_{g}: C_{r 0}(p) \rightarrow \mathcal{L}(q)$.

Mathematics Subject Classification (2010): 47H30; 46A45
Keywords: superposition operators, continuity, double sequences space, regularly convergent

Article history:

Received 15 January 2015
Received in revised form 4 May 2015
Accepted 8 May 2015

1. INTRODUCTION

Let \mathbb{R} be the set of all real numbers, \mathbb{N} be the set of all natural numbers, $\mathbb{N}^{2}=\mathbb{N} \times \mathbb{N}$ and Ω denotes the space of all real double sequences which is the vector space with coordinatewise addition and scalar multiplication. Let any sequence $x=\left(x_{k s}\right) \in \Omega$. If for any $\varepsilon>0$ there exist $N \in \mathbb{N}$ and $l \in \mathbb{R}$ such that $\left|x_{k s}-l\right|<\varepsilon$ for all $k, s \geq N$, then we call that the double sequence $x=\left(x_{k s}\right)$ is convergent in the sense of Pringsheim and denoted by $p-\lim x_{k s}=l$. If the double sequence $x=\left(x_{k s}\right)$ converges in the sense of Pringsheim and, in addition, the limits that $\lim _{k} x_{k s}$ and $\lim _{s} x_{k s}$ exist, then it is called regularly convergent and denoted by $r-\lim x_{k s}$. The space $C_{r 0}(p)$ is defined by

$$
C_{r 0}(p)=\left\{x=\left(x_{k s}\right) \in \Omega: r-\lim _{k, s \rightarrow \infty}\left|x_{k s}\right|^{p_{k s}}=0\right\}
$$

where $p=\left(p_{k s}\right)$ is a bounded sequence of positive numbers and $\|\cdot\|_{C_{r 0}(p)}: C_{r 0}(p) \rightarrow \mathbb{R}$ is defined by

$$
\|x\|_{C_{r 0}(p)}=\sup _{k, s \in \mathbb{N}}\left|x_{k s}\right|^{\frac{p_{k s}}{M_{1}}} .
$$

where $M_{1}=\max \left\{1, \sup _{k, s \in \mathbb{N}} p_{k s}\right\}$. The Maddox space $M_{u}(p)$ is defined by

$$
M_{u}(p):=\left\{x=\left(x_{k s}\right) \in \Omega: \sup _{k, s \in \mathbb{N}}\left|x_{k s}\right|^{p_{k s}}<\infty\right\}
$$

where $p=\left(p_{k s}\right)$ is a bounded sequence of positive numbers. The function $\|\cdot\|_{M_{u}(p)}: M_{u}(p) \rightarrow \mathbb{R}$ is defined by

$$
\|x\|_{M_{u}(p)}=\sup \left|x_{k s}\right|^{\frac{p_{k_{s}}}{M_{1}}}
$$

where $M_{1}=\max \left\{1, \sup _{k, s \in \mathbb{N}} p_{k s}\right\}$. The Maddox space $\mathcal{L}(q)$ is defined by

$$
\mathcal{L}(q)=\left\{x=\left(x_{k s}\right) \in \Omega: \sum_{k, s=1}^{\infty}\left|x_{k s}\right|^{q_{k s}}<\infty\right\}
$$

where $q=\left(q_{k s}\right)$ is a bounded sequence of positive numbers. Let $\|\cdot\|_{\mathcal{L}(q)}: \mathcal{L}(q) \rightarrow \mathbb{R}$ is defined by

$$
\|x\|_{\mathcal{L}(q)}=\sum_{k, s=1}^{\infty}\left|x_{k s}\right|^{\frac{q_{k s}}{M_{2}}}
$$

where $M_{2}=\max \left\{1, \sup _{k, s \in \mathbb{N}} q_{k s}\right\}$. Let $X \in\left\{C_{r 0}(p), M_{u}(p), \mathcal{L}(q)\right\}$, then we can see easily show that the following properties hold:

$$
\begin{align*}
\|x\|_{X} & \geq 0 \\
\|x\|_{X} & =0 \Leftrightarrow x=0 \\
\|x\|_{X} & =\|-x\|_{X} \tag{1.1}\\
\|x+y\|_{X} & \leq\|x\|_{X}+\|y\|_{X}
\end{align*}
$$

for all $x, y \in X$. If we take $d: X \times X \rightarrow \mathbb{R}$ defined by $d(x, y)=\|x-y\|_{X}$, then it follows from the above properties that d is a metric on X. The space \mathcal{L}_{p} is defined by

$$
\mathcal{L}_{p}:=\left\{x=\left(x_{k s}\right) \in \Omega: \sum_{k, s=1}^{\infty}\left|x_{k s}\right|^{p}<\infty\right\}
$$

where $1 \leq p<\infty$. \mathcal{L}_{p} is a Banach space with the norm $\|x\|_{p}=\left(\sum_{k, s=1}^{\infty}\left|x_{k s}\right|^{p}\right)^{\frac{1}{p}}$. It is known that $\mathcal{L}_{1} \subset C_{r 0}(p) \subset M_{u}(p)$ and $\mathcal{L}(q) \subset M_{u}(q)$. The sequence $e^{k s}$ is defined as

$$
e_{i j}^{k s}= \begin{cases}1, & (k, s)=(i, j) \\ 0, & \text { otherwise }\end{cases}
$$

If we consider the sequence $s_{n m}$ defined by $s_{n m}=\sum_{k=1}^{n} \sum_{s=1}^{m} x_{k s}(n, m \in \mathbb{N})$, then the pair of $\left(\left(x_{n m}\right),\left(s_{n m}\right)\right)$ is called a double series. Also $\left(x_{n m}\right)$ is called the general term of the series and $\left(s_{n m}\right)$ is called the sequence of partial sums. Let v be convergence notions, i.e., in the sense of Pringsheim or regularly convergent. If the sequence of partial sums $\left(s_{n m}\right)$ is convergent to a real number s in v-sense, i.e.

$$
v-\lim _{n, m} \sum_{k=1}^{n} \sum_{s=1}^{m} x_{k s}=s
$$

then the series $\left(\left(x_{n m}\right),\left(s_{n m}\right)\right)$ is called v-convergent and the sum of the series equals to s. It's denoted by

$$
\sum_{k, s=1}^{\infty} x_{k s}=s
$$

It is known that if the series is v-convergent, then the v-limit of the general term of the series equals to zero. The remaining term of the series $\sum_{k=1}^{\infty} \sum_{s=1}^{\infty} x_{k s}$ is defined by

$$
\begin{equation*}
R_{n m}=\sum_{k=1}^{n-1} \sum_{s=m}^{\infty} x_{k s}+\sum_{k=n}^{\infty} \sum_{s=1}^{m-1} x_{k s}+\sum_{k=n s=m}^{\infty} \sum_{k s}^{\infty} x_{k s} \tag{1.2}
\end{equation*}
$$

We will denote the formula (1.2) briefly with

$$
\sum_{\max \{k, s\} \geq N} x_{k s}
$$

for $n=m=N$. It is known that if the series is v-convergent, then the v-limit of the remaining term of the series is zero. For more details on double sequences and series, one can referee [1], [2], [3], [8], [10],,[11], [14],,[18] and the references therein.

We extend the definition of superposition operator for the double sequences spaces as follows. Let X, Y be two double sequences spaces. A superposition operator P_{g} on X is a mapping from X into Ω defined by $P_{g}(x)=\left(g\left(k, s, x_{k s}\right)\right)_{k, s=1}^{\infty}$ where the function $g: \mathbb{N}^{2} \times \mathbb{R} \rightarrow \mathbb{R}$ satisfies
(1) $g(k, s, 0)=0$ for all $k, s \in \mathbb{N}$.

If $P_{g}(x) \in Y$ for all $x \in X$, we say that P_{g} acts from X into Y and write $P_{g}: X \rightarrow Y$ [15]. Moreover, we shall assume the additionally some of the following conditions:
(2) $g(k, s,$.$) is continuous for all k, s \in \mathbb{N}$.
$\left(2^{\prime}\right) g(k, s,$.$) is bounded on every bounded subset of \mathbb{R}$ for all $k, s \in \mathbb{N}$.
It is obvious that if the function $g(k, s,$.$) satisfies the propety (2), then g$ satisfies $\left(2^{\prime}\right)$.
Continuity of the superposition operators on sequences spaces are discussed by some authors [4], [5], [7], [9], [12], [13],[17]. In [4], Chew and Lee gave necessary and sufficient conditions for the continuity of the superposition operator acting from the sequences space c_{0} into l_{1}. In [12], Petranuarat and Kemprasit characterized necessary and sufficient conditions for continuity of the superposition operator acting from the sequences space c_{0} into l_{q} with $1 \leq q<\infty$. Sağır and Güngör [16] gave necessary and sufficient conditions for the continuity of the superposition operator acting from the double sequences space $C_{r 0}$ into \mathcal{L}_{q} with $1 \leq q<\infty$.

In this paper, we characterize the superposition operator acting from the double sequences space of Maddox $C_{r 0}(p)$ into \mathcal{L}_{1} under the hypothesis that the function $g(k, s,$.$) satisfies \left(2^{\prime}\right)$. We discuss the continuity of the superposition operator P_{g} by using the methods in [4], [12]. Then by using the methods developed in [12], we generalize our works as the superposition operator acting from the space $C_{r 0}(p)$ into $\mathcal{L}(q)$ without assuming that the function $g(k, s,$.$) satisfies \left(2^{\prime}\right)$.

2. SUPERPOSITION OPERATORS OF $C_{r 0}(p)$ INTO \mathcal{L}_{1}

Theorem 2.1. Assume $g: \mathbb{N}^{2} \times \mathbb{R} \rightarrow \mathbb{R}$ satisfies $\left(2^{\prime}\right)$. Then $P_{g}: C_{r 0}(p) \rightarrow \mathcal{L}_{1}$ if and only if there exist $\alpha>0$ and $\left(c_{k s}\right)_{k, s=1}^{\infty} \in \mathcal{L}_{1}$ such that

$$
|g(k, s, t)| \leq c_{k s} \text { whenever }|t| \leq \alpha
$$

for all $k, s \in \mathbb{N}$.
Proof. Assume that there exist $\alpha>0$ and $\left(c_{k s}\right)_{k, s=1}^{\infty} \in \mathcal{L}_{1}$ such that $|g(k, s, t)| \leq c_{k s}$ whenever $|t| \leq \alpha$ for all $k, s \in \mathbb{N}$. Let $x=\left(x_{k s}\right) \in C_{r 0}(p)$. Hence $p-\lim \left|x_{k s}\right|^{p_{k s}}=0$ and the limits that $\lim _{k \rightarrow \infty}\left|x_{k s}\right|^{p_{k s}}$ and
$\lim _{s \rightarrow \infty}\left|x_{k s}\right|^{p_{k s}}$ exist. Therefore there exists $N \in \mathbb{N}$ such that $\left|x_{k s}\right| \leq \alpha$ for all $k, s \in \mathbb{N}$ with $\max \{k, s\} \geq N$. Then, we find

$$
\sum_{\max \{k, s\} \geq N}\left|g\left(k, s, x_{k s}\right)\right| \leq \sum_{\max \{k, s\} \geq N} c_{k s} \leq \sum_{k, s=1}^{\infty}\left|c_{k s}\right|<\infty
$$

So, we get $P_{g}(x)=g\left(k, s, x_{k s}\right) \in \mathcal{L}_{1}$.
Conversely, suppose that $P_{g}: C_{r 0}(p) \rightarrow \mathcal{L}_{1}$. The sets $A(\alpha)$ and $B(k, s, \alpha)$ are defined as

$$
A(\alpha)=\left\{t \in \mathbb{R}:|t|^{\frac{p_{k s}}{M_{1}}} \leq \min \left\{\alpha^{\frac{1}{M_{1}}}, \alpha^{\frac{p_{k s}}{M_{1}}}\right\}\right\}
$$

and

$$
B(k, s, \alpha)=\sup \{|g(k, s, t)|: t \in A(\alpha)\}
$$

for all $k, s \in \mathbb{N}$ and $\alpha>0$. So, we see that $|g(k, s, t)| \leq B(k, s, \alpha)$ whenever $|t| \leq \alpha$. We will show that there is $\alpha_{1}>0$ such that $\left(B\left(k, s, \alpha_{1}\right)\right)_{k, s=1}^{\infty} \in \mathcal{L}_{1}$. Assume the contrary, that is, $\sum_{k, s=1}^{\infty} B(k, s, \alpha)=\infty$ for all $\alpha>0$. Therefore $\sum_{k, s=1}^{\infty} B\left(k, s, \frac{1}{i}+\frac{1}{j}\right)=\infty$ for each $i, j \in \mathbb{N}$. Then there exist two sequences of positive integers $n_{0}=0<n_{1}<n_{2}<\cdots<n_{i}<\cdots$ and $m_{0}=0<m_{1}<m_{2}<\cdots<m_{j}<\cdots$ such that

$$
\begin{equation*}
\sum_{k=n_{i-1}+1}^{n_{i}} \sum_{s=m_{j-1}+1}^{m_{j}} B\left(k, s, \frac{1}{i}+\frac{1}{j}\right)>1 \tag{2.1}
\end{equation*}
$$

for each $i, j \in \mathbb{N}$. Let $i, j \in \mathbb{N}$ be fixed. Since g satisfies $\left(2^{\prime}\right)$, we see that $B\left(k, s, \frac{1}{i}+\frac{1}{j}\right)<\infty$ for all $i, j \in \mathbb{N}$ with $n_{i-1}+1 \leq k \leq n_{i}$ and $m_{j-1}+1 \leq s \leq m_{j}$. Then, there exists $x_{k s} \in A\left(\frac{1}{i}+\frac{1}{j}\right)$ such that

$$
\begin{equation*}
B\left(k, s, \frac{1}{i}+\frac{1}{j}\right)<\left|g\left(k, s, x_{k s}\right)\right|+2^{-(i+j)} \tag{2.2}
\end{equation*}
$$

for each $k, s \in \mathbb{N}$ satisfying $n_{i-1}+1 \leq k \leq n_{i}$ and $m_{j-1}+1 \leq s \leq m_{j}$. So, we find

$$
\begin{aligned}
r^{2} & <\sum_{i=1}^{r} \sum_{j=1}^{r}\left(\sum_{k=n_{i-1}+1}^{n_{i}} \sum_{s=m_{j-1}+1}^{m_{j}} B\left(k, s, \frac{1}{i}+\frac{1}{j}\right)\right) \\
& <\sum_{k=1}^{n_{r}} \sum_{s=1}^{m_{r}}\left|g\left(k, s, x_{k s}\right)\right|+\sum_{k=1}^{n_{r}} \sum_{s=1}^{m_{r}} 2^{-(i+j)} \\
& <\sum_{k=1}^{n_{r}} \sum_{s=1}^{m_{r}}\left|g\left(k, s, x_{k s}\right)\right|+\sum_{k=1}^{\infty} \sum_{s=1}^{\infty} 2^{-(i+j)}
\end{aligned}
$$

by using (2.1) and (2.2). Therefore we obtain that

$$
\sum_{k=1}^{\infty} \sum_{s=1}^{\infty}\left|g\left(k, s, x_{k s}\right)\right|=\sum_{i=1}^{\infty} \sum_{j=1}^{\infty}\left(\sum_{k=n_{i-1}+1 s=m_{j-1}+1}^{n_{i}} \sum_{m_{j}}\left|g\left(k, s, x_{k s}\right)\right|\right)=\infty
$$

Hence we get $g\left(k, s, x_{k s}\right) \notin \mathcal{L}_{1}$. Since $x_{k s} \in A\left(\frac{1}{i}+\frac{1}{j}\right)$ whenever $n_{i-1}+1 \leq k \leq n_{i}$ and $m_{j-1}+1 \leq s \leq$ m_{j}, we find $\left|x_{k s}\right|^{p_{k s}} \leq \frac{1}{i}+\frac{1}{j}$. Hence, we obtain $x=\left(x_{k s}\right) \in C_{r 0}(p)$. This contradicts the assumption that $P_{g}: C_{r 0}(p) \rightarrow \mathcal{L}_{1}$. Then there exists $\alpha_{1}>0$ such that $\left(B\left(k, s, \alpha_{1}\right)\right)_{k, s=1}^{\infty} \in \mathcal{L}_{1}$. If we put $c_{k s}=B\left(k, s, \alpha_{1}\right)$ for all $k, s \in \mathbb{N}$, this completes the proof.

Theorem 2.2. If $P_{g}: C_{r 0}(p) \rightarrow \mathcal{L}_{1}$, then P_{g} is continuous on $C_{r 0}(p)$ if and only if $g(k, s,$.$) is$ continuous on \mathbb{R} for all $k, s \in \mathbb{N}$.

Proof. Suppose that P_{g} is continuous on $C_{r 0}(p)$. Let $k, s \in \mathbb{N}, t_{0} \in \mathbb{R}$ and $\varepsilon>0$. Since P_{g} is continuous at $t_{0} e^{(n m)} \in C_{r 0}(p)$, there exists $\delta>0$ such that

$$
\begin{equation*}
\left\|z-t_{0} e^{(n m)}\right\|_{C_{r 0}(p)}<\delta \text { implies }\left\|P_{g}(z)-P_{g}\left(t_{0} e^{(n m)}\right)\right\|_{1}<\varepsilon \tag{2.3}
\end{equation*}
$$

for all $z=\left(z_{k s}\right) \in C_{r 0}(p)$. Let $t \in \mathbb{R}$ such that $\left|t-t_{0}\right|<\delta^{\frac{M_{1}}{p_{k s}}}$ and $y=\left(y_{k s}\right)$ defined by

$$
y_{k s}=\left\{\begin{array}{lc}
t, & (k, s)=(n, m) \\
0, & \text { otherwise }
\end{array}\right.
$$

So $y=\left(y_{k s}\right) \in C_{r 0}(p)$ and we have $\left\|y-t_{0} e^{(n m)}\right\|_{C_{r 0}(p)}=\left|t-t_{0}\right|^{\frac{p_{k s}}{M_{1}}}<\delta$. From (2.3), we find

$$
\left|g(k, s, t)-g\left(k, s, t_{0}\right)\right|=\left\|P_{g}(y)-P_{g}\left(t_{0} e^{(n m)}\right)\right\|_{1}<\varepsilon .
$$

Therefore, the function $g(k, s,$.$) is continuous on \mathbb{R}$ for each $k, s \in \mathbb{N}$.
Conversely, assume that the function $g(k, s,$.$) is continuous on \mathbb{R}$ for each $k, s \in \mathbb{N}$. We will show that P_{g} is continuous on $C_{r 0}(p)$. Let $x=\left(x_{k s}\right) \in C_{r 0}(p)$ and $\varepsilon>0$. Since g satisfies (2^{\prime}), then P_{g} acts from $C_{r 0}(p)$ to \mathcal{L}_{1} by Theorem 2.1. Hence, there exist $\alpha>0$ and $\left(c_{k s}\right) \in \mathcal{L}_{1}$ such that

$$
\begin{equation*}
|g(k, s, t)| \leq c_{k s} \text { whenever }|t| \leq \alpha \tag{2.4}
\end{equation*}
$$

for all $k, s \in \mathbb{N}$. Since $\left(x_{k s}\right) \in C_{r 0}(p) \subset M_{u}(p)$ and $\left(c_{k s}\right) \in \mathcal{L}_{1}$, there exists $N \in \mathbb{N}$ such that

$$
\left|x_{k s}\right| \leq \frac{\alpha}{2} \text { for all } k, s \in \mathbb{N} \text { with } \max \{k, s\} \geq N
$$

and

$$
\sum_{\max \{k, s\} \geq N} c_{k s}<\frac{\varepsilon}{3} .
$$

So, $\left|x_{k s}\right| \leq \alpha$ for all $k, s \in \mathbb{N}$ with $\max \{k, s\} \geq N$. From (2.4), we write $\left|g\left(k, s, x_{k s}\right)\right| \leq c_{k s}$ for all $k, s \in \mathbb{N}$ with $\max \{k, s\} \geq N$. Hence, we have

$$
\begin{equation*}
\sum_{\max \{k, s\} \geq N}\left|g\left(k, s, x_{k s}\right)\right| \leq \sum_{\max \{k, s\} \geq N} c_{k s}<\frac{\varepsilon}{3} . \tag{2.5}
\end{equation*}
$$

Since $g(k, s,$.$) is continuous at x_{k s}$ for all $k, s \in\{1,2, \ldots, N-1\}$, there exists $\delta>0$ with $\delta=$ $\min \left\{1,\left(\frac{\alpha}{2}\right)^{\frac{p_{k}}{M_{1}}}\right\}$ such that

$$
\begin{equation*}
\left|t-x_{k s}\right|<\delta^{\frac{M_{1}}{p_{k s}}} \text { implies }\left|g(k, s, t)-g\left(k, s, x_{k s}\right)\right|<\frac{\varepsilon}{3(N-1)} \tag{2.6}
\end{equation*}
$$

for any $t \in \mathbb{R}$. Let $z=\left(z_{k s}\right) \in C_{r 0}(p)$ be such that $\|z-x\|_{C_{r 0}(p)}<\delta$. Thus,

$$
\left|z_{k s}-x_{k s}\right|^{\frac{p_{k s}}{M_{1}}} \leq \sup _{k, s \in \mathbb{N}}\left|z_{k s}-x_{k s}\right|^{\frac{p_{k s}}{M_{1}}}=\|z-x\|_{C_{r 0}(p)}<\delta
$$

for each $k, s \in \mathbb{N}$. By using (2.6), we find

$$
\left|g\left(k, s, z_{k s}\right)-g\left(k, s, x_{k s}\right)\right|<\frac{\varepsilon}{3(N-1)}
$$

for all $k, s \in\{1,2, \ldots, N-1\}$. Hence, we have

$$
\begin{equation*}
\sum_{k, s=1}^{N-1}\left|g\left(k, s, z_{k s}\right)-g\left(k, s, x_{k s}\right)\right|<\frac{\varepsilon}{3} . \tag{2.7}
\end{equation*}
$$

Since $\left|z_{k s}\right| \leq\left|z_{k s}-x_{k s}\right|+\left|x_{k s}\right|<\delta^{\frac{M_{1}}{p_{k s}}}+\frac{\alpha}{2} \leq \frac{\alpha}{2}+\frac{\alpha}{2}=\alpha$ for all $k, s \in \mathbb{N}$ with $\max \{k, s\} \geq N$, we find that $\left|g\left(k, s, z_{k s}\right)\right| \leq c_{k s}$ for all $k, s \in \mathbb{N}$ with $\max \{k, s\} \geq N$ from (2.4). Hence, we have

$$
\sum_{\max \{k, s\} \geq N}\left|g\left(k, s, z_{k s}\right)\right| \leq \sum_{\max \{k, s\} \geq N} c_{k s}<\frac{\varepsilon}{3}
$$

So, we obtain

$$
\begin{aligned}
\left\|P_{g}(z)-P_{g}(x)\right\|= & \sum_{k, s=1}^{\infty}\left|g\left(k, s, z_{k s}\right)-g\left(k, s, x_{k s}\right)\right| \\
\leq & \sum_{k, s=1}^{N-1}\left|g\left(k, s, z_{k s}\right)-g\left(k, s, x_{k s}\right)\right|+\sum_{\max \{k, s\} \geq N}\left|g\left(k, s, z_{k s}\right)\right|+ \\
& +\sum_{\max \{k, s\} \geq N}\left|g\left(k, s, x_{k s}\right)\right| \\
< & \varepsilon
\end{aligned}
$$

by using (2.5) and (2.7). This completes the proof.
Example 2.3. Let $g: \mathbb{N}^{2} \times \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
g(k, s, t)=\frac{|t|^{\frac{p_{k s}}{M_{1}}}}{4^{k+s}}
$$

for all $k, s \in \mathbb{N}$ and for all $t \in \mathbb{R}$. Since $g(k, s,$.$) is continuous on \mathbb{R}$ for all $k, s \in \mathbb{N}$, then g satisfies (2^{\prime}). Let $\alpha=1$ and $|t| \leq 1$. Then for all $k, s \in \mathbb{N}$,

$$
\begin{aligned}
|g(k, s, t)| & =\frac{|t|^{\frac{p_{k s}}{M_{1}}}}{4^{k+s}} \\
& \leq \frac{1}{4^{k+s}}
\end{aligned}
$$

Since $\sum_{k, s=1}^{\infty} \frac{1}{4^{k+s}}<\infty$, we put $c_{k s}=\frac{1}{4^{k+s}}$ for all $k, s \in \mathbb{N}$. By Theorem 2.1, we find that $P_{g}: C_{r 0}(p) \rightarrow \mathcal{L}_{1}$. Since $g(k, s,$.$) is continuous on \mathbb{R}$ for all $k, s \in \mathbb{N}$, then the superposition operator P_{g} is continuous on $C_{r 0}(p)$ by Theorem 2.2.

3. SUPERPOSITION OPERATORS OF $C_{r 0}(p)$ INTO $\mathcal{L}(q)$

In this section, by using the methods developed in [12] we extend our theorems proved in Section 2 to the superposition operator acting from the space $C_{r 0}(p)$ into $\mathcal{L}(q)$ where $p=\left(p_{k s}\right)$ and $q=\left(q_{k s}\right)$ are bounded double sequences of positive numbers. For characterization of the superposition operator $P_{g}: C_{r 0}(p) \rightarrow \mathcal{L}(q)$, we will use the following proposition.

Proposition 3.1. Let X be a double sequences space. If $\mathcal{L}_{1} \subseteq X$ and $P_{g}: X \rightarrow M_{u}(q)$, then there exist $N \in \mathbb{N}$ and $\alpha>0$ such that $(g(k, s, .))_{\max \{k, s\} \geq N}^{\infty}$ is uniformly bounded on $[-\alpha, \alpha]$ ([6]).

Theorem 3.2. Let $g: \mathbb{N}^{2} \times \mathbb{R} \rightarrow \mathbb{R}$. Then $P_{g}: C_{r 0}(p) \rightarrow \mathcal{L}(q)$ if and only if there exist $N \in \mathbb{N}$ and $\alpha>0$ such that

$$
\begin{equation*}
\sum_{\max \{k, s\} \geq N} \sup _{|t| \leq \alpha^{\frac{1}{p_{k s}}}}|g(k, s, t)|^{\frac{q_{k s}}{M_{2}}}<\infty \tag{3.1}
\end{equation*}
$$

Proof. Suppose that P_{g} acts from $C_{r 0}(p)$ to $\mathcal{L}(q)$. Since $\mathcal{L}_{1} \subset C_{r 0}(p)$ and $\mathcal{L}(q) \subset M_{u}(q)$, by Proposition 3.1 we see that there exist $N \in \mathbb{N}$ and $\alpha>0$ such that $(g(k, s, .))_{\max \{k, s\}>N}^{\infty}$ is uniformly bounded on $\left[-\alpha^{\frac{1}{p_{k s}}}, \alpha^{\frac{1}{p_{k s}}}\right]$. Therefore, $\sup _{|t| \leq \alpha^{\frac{1}{p_{k s}}}}|g(k, s, t)|^{\frac{q_{k s}}{M_{2}}}<\infty$ for all $k, s \in \mathbb{N}$ with $\max \{k, s\} \geq N$. We define $B(k, s, \beta)$ by

$$
\begin{equation*}
B(k, s, \beta)=\sup _{|t| \leq \beta}|g(k, s, t)|^{\frac{q_{k s}}{M_{2}}} \tag{3.2}
\end{equation*}
$$

for all $\beta \in \mathbb{R}$ with $0<\beta \leq \alpha^{\frac{1}{p_{k s}}}$. We assert that $\sum_{\max \{k, s\} \geq N} B(k, s, \beta)<\infty$ for some $\beta \in \mathbb{R}$ with $0<\beta \leq$ $\alpha^{\frac{1}{p_{k s}}}$. To show that this is the case, we assume the contrary. Therefore, $\sum_{\max \{k, s\} \geq N} B\left(k, s, \alpha^{\frac{1}{p_{k s}}}\left(\frac{1}{i}+\frac{1}{j}\right)\right)=$ ∞ for all $i, j \in \mathbb{N}$. Hence, there exist $n^{\prime}>n$ and $m^{\prime}>m$ such that

$$
\sum_{k=n}^{n^{\prime}} \sum_{s=1}^{m^{\prime}-1} B\left(k, s, \alpha^{\frac{1}{p_{k s}}}\left(\frac{1}{i}+\frac{1}{j}\right)\right)+\sum_{k=1}^{n^{\prime}-1} \sum_{s=m}^{m^{\prime}} B\left(k, s, \alpha^{\frac{1}{p_{k s}}}\left(\frac{1}{i}+\frac{1}{j}\right)\right)+\sum_{k=n s=m}^{n^{\prime}} \sum^{m^{\prime}} B\left(k, s, \alpha^{\frac{1}{p_{k s}}}\left(\frac{1}{i}+\frac{1}{j}\right)\right)>1
$$

for all $i, j \in \mathbb{N}$ and $n, m \geq N$. Then, there exist two subsequences $\left(n_{k}\right)_{k=1}^{\infty}$ of $(n)_{n=1}^{\infty}$ and $\left(m_{k}\right)_{k=1}^{\infty}$ of $(m)_{m=1}^{\infty}$ such that

$$
\begin{aligned}
& \sum_{k=n_{i}+1}^{n_{i+1}} \sum_{s=1}^{m_{j+1}-1} B\left(k, s, \alpha^{\frac{1}{p_{k s}}}\left(\frac{1}{i}+\frac{1}{j}\right)\right)+\sum_{k=1}^{n_{i+1}-1} \sum_{s=m_{j}+1}^{m_{j+1}} B\left(k, s, \alpha^{\frac{1}{p_{k s}}}\left(\frac{1}{i}+\frac{1}{j}\right)\right)+ \\
& +\sum_{k=n_{i}+1}^{n_{i+1}} \sum_{1 s=m_{j}+1}^{m_{j+1}} B\left(k, s, \alpha^{\frac{1}{p_{k s}}}\left(\frac{1}{i}+\frac{1}{j}\right)\right) \\
& 1
\end{aligned}
$$

for all $i, j \in \mathbb{N}$ and $n>n_{1}, m>m_{1}$. We put $\mathcal{F}=\left\{(k, s): k \leq n_{1}\right.$ and $\left.s \leq m_{1}\right\}$. If $(k, s) \in \mathcal{F}$, we take $x_{k s}=0$. If $k>n_{1}$ and $s>m_{1}$, then there exist $i \in \mathbb{N}$ and $j \in \mathbb{N}$ such that $n_{i}<k \leq n_{i+1}$ and $m_{j}<s \leq m_{j+1}$. Hence, there exists $x_{k s} \in\left[-\alpha^{\frac{1}{p_{k s}}}\left(\frac{1}{i}+\frac{1}{j}\right), \alpha^{\frac{1}{p_{k s}}}\left(\frac{1}{i}+\frac{1}{j}\right)\right]$ such that

$$
\begin{equation*}
0 \leq B\left(k, s, \alpha^{\frac{1}{p_{k s}}}\left(\frac{1}{i}+\frac{1}{j}\right)\right)<\left|g\left(k, s, x_{k s}\right)\right|^{\frac{q_{k s}}{M_{2}}}+2^{-(k+s)} \tag{3.3}
\end{equation*}
$$

from (3.2). Therefore, it is obvious that $x_{k s} \in C_{r 0}(p)$. By using (3.3), we write

$$
\begin{aligned}
r^{2}< & \sum_{i=1}^{r} \sum_{j=1}^{r}\left(\sum_{k=n_{i}+1}^{n_{i+1}} \sum_{s=1}^{m_{j+1}-1} B\left(k, s, \alpha^{\frac{1}{p_{k s}}}\left(\frac{1}{i}+\frac{1}{j}\right)\right)+\sum_{k=1}^{n_{i+1}-1} \sum_{s=m_{j}+1}^{m_{j+1}} B\left(k, s, \alpha^{\frac{1}{p_{k s}}}\left(\frac{1}{i}+\frac{1}{j}\right)\right)+\right. \\
& \left.+\sum_{k=n_{i}+1}^{n_{i+1}} \sum_{s=m_{j}+1}^{m_{j+1}} B\left(k, s, \alpha^{\frac{1}{p_{k s}}}\left(\frac{1}{i}+\frac{1}{j}\right)\right)\right) \\
= & \sum_{k=n_{1}+1}^{n_{r+1}} \sum_{s=1}^{m_{r+1}-1} B\left(k, s, \alpha^{\frac{1}{p_{k s}}}\left(\frac{1}{i}+\frac{1}{j}\right)\right)+\sum_{k=1}^{n_{r+1}-1} \sum_{s=m_{1}+1}^{m_{r+1}} B\left(k, s, \alpha^{\frac{1}{p_{k s}}}\left(\frac{1}{i}+\frac{1}{j}\right)\right) \\
& +\sum_{k=n_{1}+1 s=m_{1}+1}^{n_{r+1}} \sum_{m_{r+1}}^{m_{r=1}} B\left(k, s, \alpha^{\frac{1}{p_{k s}}}\left(\frac{1}{i}+\frac{1}{j}\right)\right) \\
< & \sum_{k=n_{1}+1}^{n_{r+1}} \sum_{s=1}^{m_{r+1}-1}\left|g\left(k, s, x_{k s}\right)\right|^{q^{q_{k s}}}+\sum_{k=1}^{n_{r+1}-1} \sum_{s=m_{1}+1}^{m_{r+1}}\left|g\left(k, s, x_{k s}\right)\right|^{\frac{q_{k s}}{M_{2}}}+\sum_{k=n_{1}+1}^{n_{r+1}} \sum_{m_{r=m}+1}^{m_{r+1}}\left|g\left(k, s, x_{k s}\right)\right|^{\frac{q_{k s}}{M_{2}}}+ \\
& +\sum_{k=1}^{\infty} \sum_{s=1}^{\infty} 2^{-(k+s)} .
\end{aligned}
$$

for all $r \in \mathbb{N}$. Hence, $\left(g\left(k, s, x_{k s}\right)\right)_{k, s=1}^{\infty} \notin \mathcal{L}(q)$. This is a contradiction, because of $P_{g}: C_{r 0}(p) \rightarrow \mathcal{L}(q)$.
Conversely, suppose that there exist $N \in \mathbb{N}$ and $\alpha>0$ such that

To show that $P_{g}: C_{r 0}(p) \rightarrow \mathcal{L}(q)$, let $x=\left(x_{k s}\right) \in C_{r 0}(p)$. Since $r-\lim \left|x_{k s}\right|^{p_{k s}}=0$, there exists $N^{\prime} \geq N$ such that $\left|x_{k s}\right| \leq \alpha^{\frac{1}{p_{k s}}}$ for all $k, s \in \mathbb{N}$ with $\max \{k, s\} \geq N^{\prime}$. Therefore, we find

$$
\sum_{\max \{k, s\} \geq N^{\prime}}\left|g\left(k, s, x_{k s}\right)\right|^{\frac{q_{k s}}{M_{2}}} \leq \sum_{\max \{k, s\} \geq N^{\prime}|t| \leq \alpha^{\frac{1}{p_{k s}}}} \sup |g(k, s, t)|^{\frac{q_{k s}}{M_{2}}}<\infty
$$

Thus, we get $P_{g}(x)=g\left(k, s, x_{k s}\right) \in \mathcal{L}(q)$.
We need the following proposition to show the continuity of the superposition operator $P_{g}: C_{r 0}(p) \rightarrow$ $\mathcal{L}(q)$.

Proposition 3.3. Let X be a double sequences space containing all finite double sequences, Y be a double sequences space such that $Y \subseteq M_{u}(q)$ and $\|\cdot\|_{X}: X \rightarrow \mathbb{R},\|\cdot\|_{Y}: Y \rightarrow \mathbb{R}$ satisfy the conditions in (1.1). Suppose that
(i) $P_{g}: X \rightarrow Y$,
(ii) there exist $\alpha>0$ such that $\left\|e^{m n}\right\|_{X} \leq \alpha$ for all $m, n \in \mathbb{N}$ and $a \in \mathbb{R}$ with $0<a \leq 1$ such that $\|\lambda x\|_{X}=|\lambda|^{a}\|x\|_{X}$ for all $\lambda \in \mathbb{R}$.
(iii) $\|\cdot\|_{M_{u}(q)} \leq \beta\|\cdot\|_{Y}$ on Y for some $\beta>0$.

If P_{g} is continuous at x, then for any $\varepsilon>0$ there exists $\delta>0$ such that

$$
\left|t-x_{k s}\right|<\delta \text { implies }\left|g(k, s, t)-g\left(k, s, x_{k s}\right)\right|<\varepsilon
$$

for all $k, s \in \mathbb{N}$ and $t \in \mathbb{R}([6])$.
Theorem 3.4. If $P_{g}: C_{r 0}(p) \rightarrow \mathcal{L}(q)$, then P_{g} is continuous on $C_{r 0}(p)$ if and only if $g(k, s,$.$) is$ continuous on \mathbb{R} for all $k, s \in \mathbb{N}$.

Proof. Since the conditions in Proposition 3.3 provided, it's not hard to see that the condition is necessary.

Conversely, let any $x=\left(x_{k s}\right) \in C_{r 0}(p)$ and assume that $g(k, s,$.$) is continuous at x_{k s}$ for all $k, s \in \mathbb{N}$. Hence, by Theorem 3.2 there exist $N_{1} \in \mathbb{N}$ and $\alpha>0$ such that

$$
\begin{equation*}
\sum_{\max \{k, s\} \geq N_{1}|t| \leq \alpha^{\frac{1}{p_{k s}}}} \sup |g(k, s, t)|^{\frac{q_{k s}}{M_{2}}}<\infty \tag{3.4}
\end{equation*}
$$

Since $x=\left(x_{k s}\right) \in C_{r 0}(p)$, there exists $N_{2} \geq N_{1}$ such that $\left|x_{k s}\right| \leq \frac{\alpha^{\frac{1}{p_{k s}}}}{2}$ for all $k, s \in \mathbb{N}$ with max $\{k, s\} \geq$ N_{2}. Let $\varepsilon>0$. From (3.4), we see that

$$
\sum_{k=1}^{N_{1}-1} \sum_{s=N_{1}}^{\infty} \sup _{|t| \leq \alpha^{\frac{1}{p_{k s}}}}|g(k, s, t)|^{\frac{q_{k s}}{M_{2}}}<\infty, \sum_{k=N_{1}}^{\infty} \sum_{s=1}^{N_{1}-1} \sup _{|t| \leq \alpha^{\frac{1}{p_{k s}}}}|g(k, s, t)|^{\frac{q_{k s}}{M_{2}}}<\infty, \sum_{k=N_{1}}^{\infty} \sum_{s=N_{1}|t| \leq \alpha^{\frac{1}{p_{k s}}}}^{\infty} \sup |g(k, s, t)|^{\frac{q_{k s}}{M_{2}}}<\infty
$$

Therefore, there exists $N \in \mathbb{N}$ with $N \geq N_{2}$ such that

$$
\begin{aligned}
& \sum_{k=1}^{N_{1}-1} \sum_{s=N_{|t| \leq \alpha^{p_{k s}}}^{\infty}}^{\infty} \sup _{\frac{1}{p_{k s}}}|g(k, s, t)|^{\frac{q_{k s}}{M_{2}}}<\frac{\varepsilon}{3.2^{\frac{q_{k s}}{M_{2}}+1}} \\
& \sum_{k=N}^{\infty} \sum_{s=1}^{N_{1}-1} \sup _{|t| \leq \alpha^{\frac{1}{p_{k s}}}}|g(k, s, t)|^{\frac{q_{k s}}{M_{2}}}<\frac{\varepsilon}{3.2^{\frac{q_{k s}}{M_{2}}+1}} \\
& \sum_{k=N_{1}}^{N-1} \sum_{s=N}^{\infty} \sup _{|t| \leq \alpha^{\frac{1}{p_{k s}}}}|g(k, s, t)|^{\frac{q_{k s}}{M_{2}}}+\sum_{k=N}^{\infty} \sum_{s=N_{1}}^{N-1} \sup _{|t| \leq \alpha^{\frac{1}{p_{k s}}}}|g(k, s, t)|^{\frac{q_{k s}}{M_{2}}}+\sum_{k=N}^{\infty} \sum_{s=N_{|t| \leq \alpha^{\frac{1}{p_{k s}}}}^{\infty} \sup |g(k, s, t)|^{\frac{q_{k s}}{M_{2}}}<\frac{\varepsilon}{3.2^{\frac{q_{k s}}{M_{2}}+1}} . . ~ . ~ . ~ . ~} .
\end{aligned}
$$

Consequently, we obtain that there exists $N \in \mathbb{N}$ with $N \geq N_{2}$ such that

$$
\begin{equation*}
\sum_{\max \{k, s\} \geq N|t| \leq \alpha^{\frac{1}{p_{k s}}}} \sup |g(k, s, t)|^{\frac{q_{k s}}{M_{2}}}<\frac{\varepsilon}{2^{\frac{q_{k s}}{M_{2}}+1}} \tag{3.5}
\end{equation*}
$$

Since $g(k, s,$.$) is continuous at x_{k s}$ for all $k, s \in\{1,2, \ldots, N-1\}$, there is $\delta \in \mathbb{R}$ with $0<\delta \leq\left(\frac{\alpha}{2^{p_{k s}}}\right)^{\frac{1}{M_{1}}}$ such that

$$
\begin{equation*}
\left|g(k, s, t)-g\left(k, s, x_{k s}\right)\right|<\left[\frac{\varepsilon}{2(N-1)}\right]^{\frac{q_{k s}}{M_{2}}} \text { whenever }\left|t-x_{k s}\right|<\delta^{\frac{M_{1}}{p_{k s}}} \tag{3.6}
\end{equation*}
$$

Let $z=\left(z_{k s}\right) \in C_{r 0}(p)$ satisfying $\|z-x\|_{C_{r 0}(p)}<\delta$. Thus, $\left|z_{k s}-x_{k s}\right|^{\frac{p_{k s}}{M_{1}}} \leq\|z-x\|_{C_{r 0}(p)}<\delta$. From (3.6), we find $\left|g\left(k, s, z_{k s}\right)-g\left(k, s, x_{k s}\right)\right|^{\frac{q_{k s}}{M_{2}}}<\frac{\varepsilon}{2(N-1)}$ for all $k, s \in\{1,2, \ldots, N-1\}$. We write $\left|z_{k s}\right| \leq$ $\left|z_{k s}-x_{k s}\right|+\left|x_{k s}\right|<\delta^{\frac{M_{1}}{p_{k s}}}+\frac{\alpha^{\frac{1}{p_{k s}}}}{2} \leq \frac{\alpha^{\frac{1}{p_{k s}}}}{2}+\frac{\alpha^{\frac{1}{p_{k s}}}}{2}=\alpha^{\frac{1}{p_{k s}}}$ for all $k, s \in \mathbb{N}$ with $\max \{k, s\} \geq N$. We have

$$
\begin{aligned}
&\left|g\left(k, s, z_{k s}\right)-g\left(k, s, x_{k s}\right)\right|^{\frac{q_{k s}}{M_{2}}} \leq 2^{\frac{q_{k s}}{M_{2}}} \max \left\{\left|g\left(k, s, z_{k s}\right)\right|^{\frac{q_{k s}}{M_{2}}},\left|g\left(k, s, x_{k s}\right)\right|^{\frac{q_{k s}}{M_{2}}}\right\} \\
& \leq 2^{\frac{q_{k s}}{M_{2}}} \sup |g(k, s, t)|^{\frac{q_{k s}}{M_{2}}} \\
&|t| \leq \alpha^{\frac{1}{p_{k s}}}
\end{aligned}
$$

for all $k, s \in \mathbb{N}$ with $\max \{k, s\} \geq N$. By using (3.5), we obtain

$$
\sum_{\max \{k, s\} \geq N}\left|g\left(k, s, z_{k s}\right)-g\left(k, s, x_{k s}\right)\right|^{\frac{q_{k s}}{M_{2}}} \leq 2^{\frac{q_{k s}}{M_{2}}} \sum_{\max \{k, s\} \geq N|t| \leq \alpha^{\frac{1}{p_{k s}}}} \sup |g(k, s, t)|^{\frac{q_{k s}}{M_{2}}}<\frac{\varepsilon}{2}
$$

Therefore,

$$
\begin{aligned}
\sum_{k, s=1}^{\infty}\left|g\left(k, s, z_{k s}\right)-g\left(k, s, x_{k s}\right)\right|^{\frac{q_{k s}}{M_{2}}=} & \sum_{k, s=1}^{N-1}\left|g\left(k, s, z_{k s}\right)-g\left(k, s, x_{k s}\right)\right|^{\frac{q_{k s}}{M_{2}}}+ \\
& +\sum_{\max \{k, s\} \geq N}\left|g\left(k, s, z_{k s}\right)-g\left(k, s, x_{k s}\right)\right|^{\frac{q_{k s}}{M_{2}}} \\
< & (N-1) \frac{\varepsilon}{2(N-1)}+\frac{\varepsilon}{2}<\varepsilon
\end{aligned}
$$

Hence, we get $\left\|P_{g}(z)-P_{g}(x)\right\|_{\mathcal{L}(q)}=\sum_{k, s=1}^{\infty} \mid g\left(k, s, z_{k s}\right)-g\left(k, s,\left.x_{k s}\right|^{\frac{q_{k s}}{M_{2}}}<\varepsilon\right.$. This completes the proof.

Example 3.5. Let $g: \mathbb{N}^{2} \times \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
g(k, s, t)=\left(\frac{|t|^{p_{k s}}}{2^{k+s}}\right)^{\frac{M_{2}}{q_{k s}}}
$$

for all $k, s \in \mathbb{N}$ and for all $t \in \mathbb{R}$. Let $\alpha=2$ and $|t| \leq 2^{\frac{1}{p_{k s}}}$. Then for all $k, s \in \mathbb{N}$,

$$
\sum_{\max \{k, s\} \geq N} \sup _{|t| \leq 2^{\frac{1}{p_{k s}}}}|g(k, s, t)|^{\frac{q_{k s}}{M_{2}}}=\sum_{\max \{k, s\} \geq N_{|t| \leq 2} \sup _{2^{\frac{1}{p_{k s}}}} \frac{|t|^{p_{k s}}}{2^{k+s}} \leq \sum_{\max \{k, s\} \geq N} \frac{2}{2^{k+s}} \leq \sum_{k, s=1}^{\infty} \frac{2}{2^{k+s}}<\infty . . ~ . ~ . ~}
$$

By Theorem 3.2, we find that $P_{g}: C_{r 0}(p) \rightarrow \mathcal{L}(q)$. Since $g(k, s,$.$) is continuous and bounded on \mathbb{R}$ for all $k, s \in \mathbb{N}$, then the superposition operator P_{g} is continuous on $C_{r 0}(p)$ by Theorem 3.4.

References

[1] Apostol, T.M., Mathematical Analysis, Pearson Education Asia Limited and China Machine Press, (1974).
[2] Basar, F., Sever,Y., The Space Of Double Sequences, Math. J. Okayama Univ., 51 (2009), 149-157.
[3] Başar F., Summability Theory And Its Applications, Bentham Science Publishers, e-books, Monographs, İstanbul, (2002).
[4] Chew T.S., Lee P.Y., Orthogonally Additive Functionals On Sequence Spaces, SEA Bull. Math. 9 (1985), 81-85.
[5] Dedagich F., Zabreiko P.P., Operator Superpositions In The Spaces l_{p}, Sibirskii Matematicheskii Zhurnal, 28 (1987), 86-98.
[6] Güngör N., Sağır B., Continuity Of Superposition Operators On The Double Sequence Spaces Of Maddox $\mathcal{L}(p)$, accepted by İranian Journal Of Science And Technology.
[7] Herawaty E.,The Locally Boundedness Criteria for Superposition Operators on $\ell_{\Phi}(L)$, Applied Mathematical Sciences, 7 (2013), 727-733.
[8] Moricz, F., Extension Of The Spaces c and c_{0} From Single To Double Sequences, Acta Math. Hung., 57 (1-2) (1991), 129-136.
[9] Kolk,E., Raidjoe, A., The Continuity Of Superposition Operators On Some Sequence Spaces Defined By Moduli, Czechoslovak Mathematical Journal, 57 (2007), 777-792.
[10] Limaye B.V., Zeltser M., On The Pringsheim Convergence Of Double Series, Proc. Eston. Aca. Sci., 58,2 (2009), 108-121.
[11] Lindenstrauss I.J., Tzafiri L., Classical Banach Spaces I, Lecture Notes In Math., Newyork,Tokyo: Springer-Verlag, Berlin, Heidelberg, (1983).
[12] Petranuarat S., Kemprasit Y., Superposition Operators On l_{p} And c_{0} Into $l_{q}(1 \leq p, q<\infty)$, Southeast Asian Bulletion of Mathematics, 21 (1997), 139-147.
[13] Pluciennik, R. ,Continuity Of Superposition Operators On wo And W_{0}, Comment. Math. Univ. Carolinae 31(1990), 529-542.
[14] Pringsheim A., Zur Theorie de Zweifach Unendlichen Zahlenfolgen, Math. Ann., 53 (1900), 289-321.
[15] Sağır B., Güngör N., Continuity Of Superposition Operators On The Double Sequence Spaces \mathcal{L}_{p}, accepted by Filomat.
[16] Sağır B., Güngör N., Locally Boundedness And Continuity Of Superposition Operators On The Double Sequence Spaces $C_{r 0}$, J. Computational Analysis And Applications, 19 (2015), 365-377.
[17] Sama-ae, A., Boundedness And Continuity Of Superposition Operator On $E_{r}(p)$ and $F_{r}(p)$, Songklanakarin J. Sci. Technol., 24 (2002), 452-466.
[18] Streit, R. F., The Summation Of Convergent Double Series, Texas Tech University (1972).
Ondokuz Mayis University, Faculty Of Sciences And Arts, Department Of Mathematics, 55139 Kurupelit Samsun/ Turkey

E-mail address: bduyar@omu.edu.tr
Gümüşhane University, Faculty Of Engineering, Department Of Mathematical Engineering, 29100 Gümüşhane / Turkey

E-mail address: nihangungor@gumushane.edu.tr

