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Abstract. Sağır and Güngör [15] defined the superposition operator Pg where g :
N

2 × R → R by Pg ((xks)) = g (k, s, xks) for all real double sequences (xks). Chew &
Lee [4] and Petranuarat & Kemprasit [12] characterized Pg : c0 → l1 and Pg : c0 → lq
where 1 ≤ q < ∞, respectively. Sağır and Güngör [16] gave the necessary and sufficient
conditions for the continuity of the superposition operator Pg acting from the double
sequences space Cr0 into Lp where 1 ≤ p < ∞. In this study, we have generalized Pg

acting from the double sequences space of Maddox Cr0 (p) into L (q) where p = (pks) and
q = (qks) are bounded double sequences of positive numbers. The main aim of this study
is to give the necessary and sufficient conditions for the continuity of Pg : Cr0 (p) → L (q).
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1. INTRODUCTION

Let R be the set of all real numbers, N be the set of all natural numbers, N2 = N× N and Ω denotes
the space of all real double sequences which is the vector space with coordinatewise addition and scalar
multiplication. Let any sequence x = (xks) ∈ Ω . If for any ε > 0 there exist N ∈ N and l ∈ R such
that |xks − l| < ε for all k, s ≥ N , then we call that the double sequence x = (xks) is convergent in the
sense of Pringsheim and denoted by p − limxks = l. If the double sequence x = (xks) converges in the
sense of Pringsheim and, in addition, the limits that lim

k
xks and lim

s
xks exist, then it is called regularly

convergent and denoted by r − limxks. The space Cr0 (p) is defined by

Cr0 (p) =

{

x = (xks) ∈ Ω : r − lim
k,s→∞

|xks|
pks = 0

}

where p = (pks) is a bounded sequence of positive numbers and ‖.‖Cr0(p)
: Cr0 (p) → R is defined by

‖x‖Cr0(p)
= sup

k,s∈N

|xks|
pks
M1 .

where M1 = max

{

1, sup
k,s∈N

pks

}

. The Maddox space Mu (p) is defined by

Mu (p) :=

{

x = (xks) ∈ Ω : sup
k,s∈N

|xks|
pks < ∞

}
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where p = (pks) is a bounded sequence of positive numbers. The function ‖.‖Mu(p)
: Mu (p) → R is

defined by

‖x‖Mu(p)
= sup |xks|

pks
M1

where M1 = max

{

1, sup
k,s∈N

pks

}

. The Maddox space L (q) is defined by

L (q) =







x = (xks) ∈ Ω :

∞
∑

k,s=1

|xks|
qks < ∞







where q = (qks) is a bounded sequence of positive numbers. Let ‖.‖L(q) : L (q) → R is defined by

‖x‖L(q) =

∞
∑

k,s=1

|xks|
qks
M2

where M2 = max

{

1, sup
k,s∈N

qks

}

. Let X ∈ {Cr0 (p) ,Mu (p) ,L (q)}, then we can see easily show that the

following properties hold:

‖x‖X ≥ 0

‖x‖X = 0 ⇔ x = 0

‖x‖X = ‖−x‖X(1.1)

‖x+ y‖X ≤ ‖x‖X + ‖y‖X

for all x, y ∈ X. If we take d : X ×X → R defined by d (x, y) = ‖x− y‖X , then it follows from the above
properties that d is a metric on X. The space Lp is defined by

Lp :=







x = (xks) ∈ Ω :

∞
∑

k,s=1

|xks|
p
< ∞







where 1 ≤ p < ∞. Lp is a Banach space with the norm ‖x‖p =

(

∞
∑

k,s=1

|xks|
p

)
1
p

. It is known that

L1 ⊂ Cr0 (p) ⊂ Mu (p) and L (q) ⊂ Mu (q). The sequence eks is defined as

eksij =

{

1, (k, s) = (i, j)

0, otherwise
.

If we consider the sequence snm defined by snm =
n
∑

k=1

m
∑

s=1
xks (n, m ∈ N), then the pair of ((xnm) , (snm))

is called a double series. Also (xnm) is called the general term of the series and (snm) is called the
sequence of partial sums. Let v be convergence notions, i.e., in the sense of Pringsheim or regularly
convergent. If the sequence of partial sums (snm) is convergent to a real number s in v-sense, i.e.

v − lim
n,m

n
∑

k=1

m
∑

s=1

xks = s,

then the series ((xnm) , (snm)) is called v−convergent and the sum of the series equals to s. It’s denoted
by

∞
∑

k,s=1

xks = s.
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It is known that if the series is v−convergent, then the v−limit of the general term of the series equals

to zero. The remaining term of the series
∞
∑

k=1

∞
∑

s=1
xks is defined by

(1.2) Rnm =

n−1
∑

k=1

∞
∑

s=m

xks +

∞
∑

k=n

m−1
∑

s=1

xks +

∞
∑

k=n

∞
∑

s=m

xks.

We will denote the formula (1.2) briefly with
∑

max{k,s}≥N

xks

for n = m = N . It is known that if the series is v−convergent, then the v−limit of the remain-

ing term of the series is zero. For more details on double sequences and series, one can referee

[1],[2],[3],[8],[10],[11],[14],[18] and the references therein.

We extend the definition of superposition operator for the double sequences spaces as follows. Let

X, Y be two double sequences spaces. A superposition operator Pg on X is a mapping from X into Ω

defined by Pg (x) = (g (k, s, xks))
∞
k,s=1 where the function g : N2 × R → R satisfies

(1) g (k, s, 0) = 0 for all k, s ∈ N.

If Pg (x) ∈ Y for all x ∈ X, we say that Pg acts from X into Y and write Pg : X → Y [15]. Moreover, we

shall assume the additionally some of the following conditions:

(2) g (k, s, .) is continuous for all k, s ∈ N.

(2′) g (k, s, .) is bounded on every bounded subset of R for all k, s ∈ N.

It is obvious that if the function g (k, s, .) satisfies the propety (2), then g satisfies (2′).

Continuity of the superposition operators on sequences spaces are discussed by some authors [4], [5],

[7], [9], [12], [13],[17]. In [4], Chew and Lee gave necessary and sufficient conditions for the continuity of

the superposition operator acting from the sequences space c0 into l1. In [12], Petranuarat and Kemprasit

characterized necessary and sufficient conditions for continuity of the superposition operator acting from

the sequences space c0 into lq with 1 ≤ q < ∞. Sağır and Güngör [16] gave necessary and sufficient

conditions for the continuity of the superposition operator acting from the double sequences space Cr0

into Lq with 1 ≤ q < ∞.

In this paper, we characterize the superposition operator acting from the double sequences space of

Maddox Cr0 (p) into L1 under the hypothesis that the function g (k, s, .) satisfies (2′). We discuss the

continuity of the superposition operator Pg by using the methods in [4], [12]. Then by using the methods

developed in [12], we generalize our works as the superposition operator acting from the space Cr0 (p)

into L (q) without assuming that the function g (k, s, .) satisfies (2′).

2. SUPERPOSITION OPERATORS OF Cr0 (p) INTO L1

Theorem 2.1. Assume g : N2 × R → R satisfies (2′). Then Pg : Cr0 (p) → L1 if and only if there
exist α > 0 and (cks)

∞
k,s=1 ∈ L1 such that

|g (k, s, t)| ≤ cks whenever |t| ≤ α

for all k, s ∈ N.

Proof. Assume that there exist α > 0 and (cks)
∞
k,s=1 ∈ L1 such that |g (k, s, t)| ≤ cks whenever |t| ≤ α

for all k, s ∈ N. Let x = (xks) ∈ Cr0 (p). Hence p− lim |xks|
pks = 0 and the limits that lim

k→∞
|xks|

pks and
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lim
s→∞

|xks|
pks exist. Therefore there exists N ∈ N such that |xks| ≤ α for all k, s ∈ N with max {k, s} ≥ N .

Then, we find
∑

max{k,s}≥N

|g (k, s, xks)| ≤
∑

max{k,s}≥N

cks ≤

∞
∑

k,s=1

|cks| < ∞.

So, we get Pg (x) = g (k, s, xks) ∈ L1.
Conversely, suppose that Pg : Cr0 (p) → L1. The sets A (α) and B (k, s, α) are defined as

A (α) = {t ∈ R : |t|
pks
M1 ≤ min

{

α
1

M1 , α
pks
M1

}}

and
B (k, s, α) = sup {|g (k, s, t)| : t ∈ A (α)}

for all k, s ∈ N and α > 0. So, we see that |g (k, s, t)| ≤ B (k, s, α) whenever |t| ≤ α. We will show that

there is α1 > 0 such that (B (k, s, α1))
∞
k,s=1 ∈ L1. Assume the contrary, that is,

∞
∑

k,s=1

B (k, s, α) = ∞

for all α > 0. Therefore
∞
∑

k,s=1

B
(

k, s, 1
i
+ 1

j

)

= ∞ for each i, j ∈ N. Then there exist two sequences of

positive integers n0 = 0 < n1 < n2 < · · · < ni < · · · and m0 = 0 < m1 < m2 < · · · < mj < · · · such that

(2.1)

ni
∑

k=ni−1+1

mj
∑

s=mj−1+1

B

(

k, s,
1

i
+

1

j

)

> 1

for each i, j ∈ N. Let i, j ∈ N be fixed. Since g satisfies (2′), we see that B
(

k, s, 1
i
+ 1

j

)

< ∞ for all

i, j ∈ N with ni−1 + 1 ≤ k ≤ ni and mj−1 + 1 ≤ s ≤ mj . Then, there exists xks ∈ A
(

1
i
+ 1

j

)

such that

(2.2) B

(

k, s,
1

i
+

1

j

)

< |g (k, s, xks)|+ 2−(i+j)

for each k, s ∈ N satisfying ni−1 + 1 ≤ k ≤ ni and mj−1 + 1 ≤ s ≤ mj . So, we find

r2 <

r
∑

i=1

r
∑

j=1





ni
∑

k=ni−1+1

mj
∑

s=mj−1+1

B

(

k, s,
1

i
+

1

j

)





<

nr
∑

k=1

mr
∑

s=1

|g (k, s, xks)|

nr

+
∑

k=1

mr
∑

s=1

2−(i+j)

<

nr
∑

k=1

mr
∑

s=1

|g (k, s, xks)|+
∞
∑

k=1

∞
∑

s=1

2−(i+j)

by using (2.1) and (2.2). Therefore we obtain that

∞
∑

k=1

∞
∑

s=1

|g (k, s, xks)| =

∞
∑

i=1

∞
∑

j=1





ni
∑

k=ni−1+1

mj
∑

s=mj−1+1

|g (k, s, xks)|



 = ∞.

Hence we get g (k, s, xks) /∈ L1. Since xks ∈ A
(

1
i
+ 1

j

)

whenever ni−1 + 1 ≤ k ≤ ni and mj−1 + 1 ≤ s ≤

mj , we find |xks|
pks ≤ 1

i
+ 1

j
. Hence, we obtain x = (xks) ∈ Cr0 (p). This contradicts the assumption that

Pg : Cr0 (p) → L1. Then there exists α1 > 0 such that (B (k, s, α1))
∞
k,s=1 ∈ L1. If we put cks = B (k, s, α1)

for all k, s ∈ N, this completes the proof. �

Theorem 2.2. If Pg : Cr0 (p) → L1, then Pg is continuous on Cr0 (p) if and only if g (k, s, .) is

continuous on R for all k, s ∈ N.
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Proof. Suppose that Pg is continuous on Cr0 (p). Let k, s ∈ N, t0 ∈ R and ε > 0. Since Pg is continuous

at t0e
(nm) ∈ Cr0 (p), there exists δ > 0 such that

(2.3)
∥

∥

∥
z − t0e

(nm)
∥

∥

∥

Cr0(p)
< δ implies

∥

∥

∥
Pg (z)− Pg

(

t0e
(nm)

)∥

∥

∥

1
< ε

for all z = (zks) ∈ Cr0 (p). Let t ∈ R such that |t− t0| < δ
M1
pks and y = (yks) defined by

yks =

{

t, (k, s) = (n,m)

0, otherwise
.

So y = (yks) ∈ Cr0 (p) and we have
∥

∥y − t0e
(nm)

∥

∥

Cr0(p)
= |t− t0|

pks
M1 < δ. From (2.3), we find

|g (k, s, t)− g (k, s, t0)| =
∥

∥

∥Pg (y)− Pg

(

t0e
(nm)

)∥

∥

∥

1
< ε.

Therefore, the function g (k, s, .) is continuous on R for each k, s ∈ N.
Conversely, assume that the function g (k, s, .) is continuous on R for each k, s ∈ N. We will show that

Pg is continuous on Cr0 (p). Let x = (xks) ∈ Cr0 (p) and ε > 0. Since g satisfies (2′), then Pg acts from
Cr0 (p) to L1 by Theorem 2.1. Hence, there exist α > 0 and (cks) ∈ L1 such that

(2.4) |g (k, s, t)| ≤ cks whenever |t| ≤ α

for all k, s ∈ N. Since (xks) ∈ Cr0 (p) ⊂ Mu (p) and (cks) ∈ L1, there exists N ∈ N such that

|xks| ≤
α

2
for all k, s ∈ N with max {k, s} ≥ N

and
∑

max{k,s}≥N

cks <
ε

3
.

So, |xks| ≤ α for all k, s ∈ N with max {k, s} ≥ N . From (2.4), we write |g (k, s, xks)| ≤ cks for all
k, s ∈ N with max {k, s} ≥ N . Hence, we have

(2.5)
∑

max{k,s}≥N

|g (k, s, xks)| ≤
∑

max{k,s}≥N

cks <
ε

3
.

Since g (k, s, .) is continuous at xks for all k, s ∈ {1, 2, . . . , N − 1}, there exists δ > 0 with δ =

min
{

1,
(

α
2

)

pks
M1

}

such that

(2.6) |t− xks| < δ
M1
pks implies |g (k, s, t)− g (k, s, xks)| <

ε

3 (N − 1)

for any t ∈ R. Let z = (zks) ∈ Cr0 (p) be such that ‖z − x‖Cr0(p)
< δ. Thus,

|zks − xks|

pks
M1

≤ sup
k,s∈N

|zks − xks|

pks
M1

= ‖z − x‖Cr0(p)
< δ

for each k, s ∈ N. By using (2.6), we find

|g (k, s, zks)− g (k, s, xks)| <
ε

3 (N − 1)

for all k, s ∈ {1, 2, . . . , N − 1}. Hence, we have

(2.7)
N−1
∑

k,s=1

|g (k, s, zks)− g (k, s, xks)| <
ε

3
.
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Since |zks| ≤ |zks − xks| + |xks| < δ
M1
pks + α

2 ≤ α
2 + α

2 = α for all k, s ∈ N with max {k, s} ≥ N , we find
that |g (k, s, zks)| ≤ cks for all k, s ∈ N with max {k, s} ≥ N from (2.4). Hence, we have

∑

max{k,s}≥N

|g (k, s, zks)| ≤
∑

max{k,s}≥N

cks <
ε

3
.

So, we obtain

‖Pg (z)− Pg (x)‖ =

∞
∑

k,s=1

|g (k, s, zks)− g (k, s, xks)|

≤

N−1
∑

k,s=1

|g (k, s, zks)− g (k, s, xks)|+
∑

max{k,s}≥N

|g (k, s, zks)|+

+
∑

max{k,s}≥N

|g (k, s, xks)|

< ε

by using (2.5) and (2.7). This completes the proof. �

Example 2.3. Let g : N2 × R → R be defined by

g (k, s, t) =
|t|

pks
M1

4k+s

for all k, s ∈ N and for all t ∈ R. Since g (k, s, .) is continuous on R for all k, s ∈ N, then g satisfies (2′).
Let α = 1 and |t| ≤ 1. Then for all k, s ∈ N,

|g (k, s, t)| =
|t|

pks
M1

4k+s

≤
1

4k+s
.

Since
∞
∑

k,s=1

1
4k+s < ∞, we put cks =

1
4k+s for all k, s ∈ N. By Theorem 2.1, we find that Pg : Cr0 (p) → L1.

Since g (k, s, .) is continuous on R for all k, s ∈ N, then the superposition operator Pg is continuous on

Cr0 (p) by Theorem 2.2.

3. SUPERPOSITION OPERATORS OF Cr0 (p) INTO L (q)

In this section, by using the methods developed in [12] we extend our theorems proved in Section

2 to the superposition operator acting from the space Cr0 (p)into L (q) where p = (pks) and q = (qks)

are bounded double sequences of positive numbers . For characterization of the superposition operator

Pg : Cr0 (p) → L (q), we will use the following proposition.

Proposition 3.1. Let X be a double sequences space. If L1 ⊆ X and Pg : X → Mu (q), then there

exist N ∈ N and α > 0 such that (g (k, s, .))
∞
max{k,s}≥N is uniformly bounded on [−α, α] ([6]).

Theorem 3.2. Let g : N2 × R → R . Then Pg : Cr0 (p) → L (q) if and only if there exist N ∈ N and
α > 0 such that

(3.1)
∑

max{k,s}≥N

sup

|t|≤α
1

pks

|g (k, s, t)|
qks
M2 < ∞.
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Proof. Suppose that Pg acts from Cr0 (p) to L (q). Since L1 ⊂ Cr0 (p) and L (q) ⊂ Mu (q), by Proposition
3.1 we see that there exist N ∈ N and α > 0 such that (g (k, s, .))

∞
max{k,s}≥N is uniformly bounded on

[

−α
1

pks , α
1

pks

]

. Therefore, sup

|t|≤α
1

pks

|g (k, s, t)|
qks
M2 < ∞ for all k, s ∈ N with max {k, s} ≥ N . We define

B (k, s, β) by

(3.2) B (k, s, β) = sup
|t|≤β

|g (k, s, t)|
qks
M2

for all β ∈ R with 0 < β ≤ α
1

pks . We assert that
∑

max{k,s}≥N

B (k, s, β) < ∞ for some β ∈ R with 0 < β ≤

α
1

pks . To show that this is the case, we assume the contrary. Therefore,
∑

max{k,s}≥N

B
(

k, s, α
1

pks

(

1
i
+ 1

j

))

=

∞ for all i, j ∈ N. Hence, there exist n′ > n and m′ > m such that

n′

∑

k=n

m′−1
∑

s=1

B

(

k, s, α
1

pks

(

1

i
+

1

j

))

+

n′−1
∑

k=1

m′

∑

s=m

B

(

k, s, α
1

pks

(

1

i
+

1

j

))

+

n′

∑

k=n

m′

∑

s=m

B

(

k, s, α
1

pks

(

1

i
+

1

j

))

> 1

for all i, j ∈ N and n,m ≥ N . Then, there exist two subsequences (nk)
∞
k=1 of (n)

∞
n=1 and (mk)

∞
k=1 of

(m)
∞
m=1 such that

ni+1
∑

k=ni+1

mj+1−1
∑

s=1

B

(

k, s, α
1

pks

(

1

i
+

1

j

))

+

ni+1−1
∑

k=1

mj+1
∑

s=mj+1

B

(

k, s, α
1

pks

(

1

i
+

1

j

))

+

+

ni+1
∑

k=ni+1

mj+1
∑

s=mj+1

B

(

k, s, α
1

pks

(

1

i
+

1

j

))

> 1

for all i, j ∈ N and n > n1, m > m1. We put F = { (k, s) : k ≤ n1 and s ≤ m1}. If (k, s) ∈ F , we
take xks = 0. If k > n1 and s > m1, then there exist i ∈ N and j ∈ N such that ni < k ≤ ni+1 and

mj < s ≤ mj+1. Hence, there exists xks ∈
[

−α
1

pks

(

1
i
+ 1

j

)

, α
1

pks

(

1
i
+ 1

j

)]

such that

(3.3) 0 ≤ B

(

k, s, α
1

pks

(

1

i
+

1

j

))

< |g (k, s, xks)|
qks
M2 + 2−(k+s)
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from (3.2). Therefore, it is obvious that xks ∈ Cr0 (p). By using (3.3), we write

r2 <
r
∑

i=1

r
∑

j=1





ni+1
∑

k=ni+1

mj+1−1
∑

s=1

B

(

k, s, α
1

pks

(

1

i
+

1

j

))

+

ni+1−1
∑

k=1

mj+1
∑

s=mj+1

B

(

k, s, α
1

pks

(

1

i
+

1

j

))

+

+

ni+1
∑

k=ni+1

mj+1
∑

s=mj+1

B

(

k, s, α
1

pks

(

1

i
+

1

j

))





=

nr+1
∑

k=n1+1

mr+1−1
∑

s=1

B

(

k, s, α
1

pks

(

1

i
+

1

j

))

+

nr+1−1
∑

k=1

mr+1
∑

s=m1+1

B

(

k, s, α
1

pks

(

1

i
+

1

j

))

+

nr+1
∑

k=n1+1

mr+1
∑

s=m1+1

B

(

k, s, α
1

pks

(

1

i
+

1

j

))

<

nr+1
∑

k=n1+1

mr+1−1
∑

s=1

|g (k, s, xks)|
qks
M2 +

nr+1−1
∑

k=1

mr+1
∑

s=m1+1

|g (k, s, xks)|
qks
M2 +

nr+1
∑

k=n1+1

mr+1
∑

s=m1+1

|g (k, s, xks)|
qks
M2 +

+

∞
∑

k=1

∞
∑

s=1

2−(k+s).

for all r ∈ N. Hence, (g (k, s, xks))
∞
k,s=1 /∈ L (q). This is a contradiction, because of Pg : Cr0 (p) → L (q).

Conversely, suppose that there exist N ∈ N and α > 0 such that
∑

max{k,s}≥N

sup

|t|≤α
1

pks

|g (k, s, t)|
qks
M2 < ∞.

To show that Pg : Cr0 (p) → L (q), let x = (xks) ∈ Cr0 (p). Since r− lim |xks|
pks = 0, there exists N ′ ≥ N

such that |xks| ≤ α
1

pks for all k, s ∈ N with max {k, s} ≥ N ′. Therefore, we find
∑

max{k,s}≥N ′

|g (k, s, xks)|
qks
M2 ≤

∑

max{k,s}≥N ′

sup

|t|≤α
1

pks

|g (k, s, t)|
qks
M2 < ∞.

Thus, we get Pg (x) = g (k, s, xks) ∈ L (q). �

We need the following proposition to show the continuity of the superposition operator Pg : Cr0 (p) →

L (q).

Proposition 3.3. Let X be a double sequences space containing all finite double sequences, Y be a
double sequences space such that Y ⊆ Mu (q) and ‖.‖X : X → R, ‖.‖Y : Y → R satisfy the conditions in
(1.1). Suppose that
(i) Pg : X → Y ,
(ii) there exist α > 0 such that ‖emn‖X ≤ α for all m,n ∈ N and a ∈ R with 0 < a ≤ 1 such that
‖λx‖X = |λ|

a
‖x‖X for all λ ∈ R.

(iii) ‖.‖Mu(q)
≤ β ‖.‖Y on Y for some β > 0.

If Pg is continuous at x, then for any ε > 0 there exists δ > 0 such that

|t− xks| < δ implies |g (k, s, t)− g (k, s, xks)| < ε

for all k, s ∈ N and t ∈ R ([6]).

Theorem 3.4. If Pg : Cr0 (p) → L (q), then Pg is continuous on Cr0 (p) if and only if g (k, s, .) is

continuous on R for all k, s ∈ N.
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Proof. Since the conditions in Proposition 3.3 provided, it’s not hard to see that the condition is neces-

sary.
Conversely, let any x = (xks) ∈ Cr0 (p) and assume that g (k, s, .) is continuous at xks for all k, s ∈ N.

Hence, by Theorem 3.2 there exist N1 ∈ N and α > 0 such that

(3.4)
∑

max{k,s}≥N1

sup

|t|≤α
1

pks

|g (k, s, t)|
qks
M2 < ∞.

Since x = (xks) ∈ Cr0 (p), there exists N2 ≥ N1 such that |xks| ≤
α

1
pks

2 for all k, s ∈ N with max {k, s} ≥
N2. Let ε > 0. From (3.4), we see that

N1−1
∑

k=1

∞
∑

s=N1

sup

|t|≤α
1

pks

|g (k, s, t)|
qks
M2 < ∞,

∞
∑

k=N1

N1−1
∑

s=1

sup

|t|≤α
1

pks

|g (k, s, t)|
qks
M2 < ∞,

∞
∑

k=N1

∞
∑

s=N1

sup

|t|≤α
1

pks

|g (k, s, t)|
qks
M2 < ∞.

Therefore, there exists N ∈ N with N ≥ N2 such that

N1−1
∑

k=1

∞
∑

s=N

sup

|t|≤α
1

pks

|g (k, s, t)|
qks
M2 <

ε

3.2
qks
M2

+1

∞
∑

k=N

N1−1
∑

s=1

sup

|t|≤α
1

pks

|g (k, s, t)|
qks
M2 <

ε

3.2
qks
M2

+1

N−1
∑

k=N1

∞
∑

s=N

sup

|t|≤α
1

pks

|g (k, s, t)|
qks
M2 +

∞
∑

k=N

N−1
∑

s=N1

sup

|t|≤α
1

pks

|g (k, s, t)|
qks
M2 +

∞
∑

k=N

∞
∑

s=N

sup

|t|≤α
1

pks

|g (k, s, t)|
qks
M2 <

ε

3.2
qks
M2

+1
.

Consequently, we obtain that there exists N ∈ N with N ≥ N2 such that

(3.5)
∑

max{k,s}≥N

sup

|t|≤α
1

pks

|g (k, s, t)|
qks
M2 <

ε

2
qks
M2

+1
.

Since g (k, s, .) is continuous at xks for all k, s ∈ {1, 2, ..., N − 1}, there is δ ∈ R with 0 < δ ≤
(

α
2pks

)
1

M1

such that

(3.6) |g (k, s, t)− g (k, s, xks)| <

[

ε

2 (N − 1)

]

qks
M2

whenever |t− xks| < δ
M1
pks .

Let z = (zks) ∈ Cr0 (p) satisfying ‖z − x‖Cr0(p)
< δ. Thus, |zks − xks|

pks
M1 ≤ ‖z − x‖Cr0(p)

< δ. From

(3.6), we find |g (k, s, zks)− g (k, s, xks)|
qks
M2 < ε

2(N−1) for all k, s ∈ {1, 2, ..., N − 1}. We write |zks| ≤

|zks − xks|+ |xks| < δ
M1
pks + α

1
pks

2 ≤ α
1

pks

2 + α
1

pks

2 = α
1

pks for all k, s ∈ N with max {k, s} ≥ N . We have

|g (k, s, zks)− g (k, s, xks)|
qks
M2 ≤ 2

qks
M2 max

{

|g (k, s, zks)|
qks
M2 , |g (k, s, xks)|

qks
M2

}

≤ 2
qks
M2 sup

|t|≤α
1

pks

|g (k, s, t)|
qks
M2

for all k, s ∈ N with max {k, s} ≥ N . By using (3.5), we obtain
∑

max{k,s}≥N

|g (k, s, zks)− g (k, s, xks)|
qks
M2 ≤ 2

qks
M2

∑

max{k,s}≥N

sup

|t|≤α
1

pks

|g (k, s, t)|
qks
M2 <

ε

2
.
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Therefore,

∞
∑

k,s=1

|g (k, s, zks)− g (k, s, xks)|
qks
M2 =

N−1
∑

k,s=1

|g (k, s, zks)− g (k, s, xks)|
qks
M2 +

+
∑

max{k,s}≥N

|g (k, s, zks)− g (k, s, xks)|
qks
M2

< (N − 1)
ε

2 (N − 1)
+

ε

2
< ε.

Hence, we get ‖Pg (z)− Pg (x)‖L(q) =
∞
∑

k,s=1

|g (k, s, zks)− g (k, s, xks)|
qks
M2 < ε. This completes the proof.

�

Example 3.5. Let g : N2 × R → R defined by

g (k, s, t) =

(

|t|
pks

2k+s

)

M2
qks

for all k, s ∈ N and for all t ∈ R. Let α = 2 and |t| ≤ 2
1

pks . Then for all k, s ∈ N,

∑

max{k,s}≥N

sup

|t|≤2
1

pks

|g (k, s, t)|
qks
M2 =

∑

max{k,s}≥N

sup

|t|≤2
1

pks

|t|
pks

2k+s
≤

∑

max{k,s}≥N

2

2k+s
≤

∞
∑

k,s=1

2

2k+s
< ∞.

By Theorem 3.2, we find that Pg : Cr0 (p) → L (q). Since g (k, s, .) is continuous and bounded on R for

all k, s ∈ N, then the superposition operator Pg is continuous on Cr0 (p) by Theorem 3.4.
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