CONTINUITY OF SUPERPOSITION OPERATORS ON DOUBLE SEQUENCES SPACES OF MADDOX $C_{r0}(p)$

BİRSEN SAĞIR AND NİHAN GÜNGÖR

ABSTRACT. Sağır and Güngör [15] defined the superposition operator P_g where $g : \mathbb{N}^2 \times \mathbb{R} \to \mathbb{R}$ by $P_g((x_{ks})) = g(k, s, x_{ks})$ for all real double sequences (x_{ks}) . Chew & Lee [4] and Petranuarat & Kemprasit [12] characterized $P_g : c_0 \to l_1$ and $P_g : c_0 \to l_q$ where $1 \leq q < \infty$, respectively. Sağır and Güngör [16] gave the necessary and sufficient conditions for the continuity of the superposition operator P_g acting from the double sequences space C_{r0} into \mathcal{L}_p where $1 \leq p < \infty$. In this study, we have generalized P_g acting from the double sequences of Maddox $C_{r0}(p)$ into $\mathcal{L}(q)$ where $p = (p_{ks})$ and $q = (q_{ks})$ are bounded double sequences of positive numbers. The main aim of this study is to give the necessary and sufficient conditions for the continuity of $P_g : C_{r0}(p) \to \mathcal{L}(q)$.

Mathematics Subject Classification (2010): 47H30; 46A45

Keywords: superposition operators, continuity, double sequences space, regularly convergent

Article history: Received 15 January 2015 Received in revised form 4 May 2015 Accepted 8 May 2015

1. INTRODUCTION

Let \mathbb{R} be the set of all real numbers, \mathbb{N} be the set of all natural numbers, $\mathbb{N}^2 = \mathbb{N} \times \mathbb{N}$ and Ω denotes the space of all real double sequences which is the vector space with coordinatewise addition and scalar multiplication. Let any sequence $x = (x_{ks}) \in \Omega$. If for any $\varepsilon > 0$ there exist $N \in \mathbb{N}$ and $l \in \mathbb{R}$ such that $|x_{ks} - l| < \varepsilon$ for all $k, s \ge N$, then we call that the double sequence $x = (x_{ks})$ is convergent in the sense of Pringsheim and denoted by $p - \lim x_{ks} = l$. If the double sequence $x = (x_{ks})$ converges in the sense of Pringsheim and, in addition, the limits that $\lim_{k} x_{ks}$ and $\lim_{s} x_{ks}$ exist, then it is called regularly convergent and denoted by $r - \lim x_{ks}$. The space $C_{r0}(p)$ is defined by

$$C_{r0}(p) = \left\{ x = (x_{ks}) \in \Omega : r - \lim_{k,s \to \infty} |x_{ks}|^{p_{ks}} = 0 \right\}$$

where $p = (p_{ks})$ is a bounded sequence of positive numbers and $\|.\|_{C_{r0}(p)} : C_{r0}(p) \to \mathbb{R}$ is defined by

$$||x||_{C_{r0}(p)} = \sup_{k,s \in \mathbb{N}} |x_{ks}|^{\frac{p_{ks}}{M_1}}$$

where $M_1 = \max\left\{1, \sup_{k,s\in\mathbb{N}} p_{ks}\right\}$. The Maddox space $M_u(p)$ is defined by $M_u(p) := \left\{x = (x_{ks}) \in \Omega : \sup_{k,s\in\mathbb{N}} |x_{ks}|^{p_{ks}} < \infty\right\}$ where $p = (p_{ks})$ is a bounded sequence of positive numbers. The function $\|.\|_{M_u(p)} : M_u(p) \to \mathbb{R}$ is defined by

$$||x||_{M_u(p)} = \sup |x_{ks}|^{\frac{p_{ks}}{M_1}}$$

where $M_1 = \max\left\{1, \sup_{k,s \in \mathbb{N}} p_{ks}\right\}$. The Maddox space $\mathcal{L}(q)$ is defined by

$$\mathcal{L}(q) = \left\{ x = (x_{ks}) \in \Omega : \sum_{k,s=1}^{\infty} |x_{ks}|^{q_{ks}} < \infty \right\}$$

where $q = (q_{ks})$ is a bounded sequence of positive numbers. Let $\|.\|_{\mathcal{L}(q)} : \mathcal{L}(q) \to \mathbb{R}$ is defined by

$$||x||_{\mathcal{L}(q)} = \sum_{k,s=1}^{\infty} |x_{ks}|^{\frac{q_{ks}}{M_2}}$$

where $M_2 = \max\left\{1, \sup_{k,s\in\mathbb{N}} q_{ks}\right\}$. Let $X \in \{C_{r0}(p), M_u(p), \mathcal{L}(q)\}$, then we can see easily show that the following properties hold:

(1.1)
$$\begin{aligned} \|x\|_{X} &\geq 0 \\ \|x\|_{X} &= 0 \Leftrightarrow x = 0 \\ \|x\|_{X} &= \|-x\|_{X} \\ \|x+y\|_{X} &\leq \|x\|_{X} + \|y\|_{X} \end{aligned}$$

for all $x, y \in X$. If we take $d: X \times X \to \mathbb{R}$ defined by $d(x, y) = ||x - y||_X$, then it follows from the above properties that d is a metric on X. The space \mathcal{L}_p is defined by

$$\mathcal{L}_p := \left\{ x = (x_{ks}) \in \Omega : \sum_{k,s=1}^{\infty} |x_{ks}|^p < \infty \right\}$$

where $1 \leq p < \infty$. \mathcal{L}_p is a Banach space with the norm $||x||_p = \left(\sum_{k,s=1}^{\infty} |x_{ks}|^p\right)^{\frac{1}{p}}$. It is known that $\mathcal{L}_1 \subset C_{r0}(p) \subset M_u(p)$ and $\mathcal{L}(q) \subset M_u(q)$. The sequence e^{ks} is defined as

$$e_{ij}^{ks} = \begin{cases} 1, & (k,s) = (i,j) \\ 0, & \text{otherwise} \end{cases}$$

If we consider the sequence s_{nm} defined by $s_{nm} = \sum_{k=1}^{n} \sum_{s=1}^{m} x_{ks}$ $(n, m \in \mathbb{N})$, then the pair of $((x_{nm}), (s_{nm}))$ is called a double series. Also (x_{nm}) is called the general term of the series and (s_{nm}) is called the sequence of partial sums. Let v be convergence notions, i.e., in the sense of Pringsheim or regularly convergent. If the sequence of partial sums (s_{nm}) is convergent to a real number s in v-sense, i.e.

$$v - \lim_{n,m} \sum_{k=1}^{n} \sum_{s=1}^{m} x_{ks} = s$$

then the series $((x_{nm}), (s_{nm}))$ is called *v*-convergent and the sum of the series equals to *s*. It's denoted by

$$\sum_{k,s=1}^{\infty} x_{ks} = s.$$

It is known that if the series is v-convergent, then the v-limit of the general term of the series equals to zero. The remaining term of the series $\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} x_{ks}$ is defined by

(1.2)
$$R_{nm} = \sum_{k=1}^{n-1} \sum_{s=m}^{\infty} x_{ks} + \sum_{k=n}^{\infty} \sum_{s=1}^{m-1} x_{ks} + \sum_{k=n}^{\infty} \sum_{s=m}^{\infty} x_{ks}$$

We will denote the formula (1.2) briefly with

$$\sum_{\max\{k,s\} \ge N} x_{ks}$$

for n = m = N. It is known that if the series is v-convergent, then the v-limit of the remaining term of the series is zero. For more details on double sequences and series, one can referee [1], [2], [3], [8], [10], [11], [14], [18] and the references therein.

We extend the definition of superposition operator for the double sequences spaces as follows. Let X, Y be two double sequences spaces. A superposition operator P_g on X is a mapping from X into Ω defined by $P_g(x) = (g(k, s, x_{ks}))_{k,s=1}^{\infty}$ where the function $g: \mathbb{N}^2 \times \mathbb{R} \to \mathbb{R}$ satisfies (1) g(k, s, 0) = 0 for all $k, s \in \mathbb{N}$.

If $P_g(x) \in Y$ for all $x \in X$, we say that P_g acts from X into Y and write $P_g: X \to Y$ [15]. Moreover, we shall assume the additionally some of the following conditions:

(2) g(k, s, .) is continuous for all $k, s \in \mathbb{N}$.

(2') g(k, s, .) is bounded on every bounded subset of \mathbb{R} for all $k, s \in \mathbb{N}$.

It is obvious that if the function g(k, s, .) satisfies the property (2), then g satisfies (2').

Continuity of the superposition operators on sequences spaces are discussed by some authors [4], [5], [7], [9], [12], [13], [17]. In [4], Chew and Lee gave necessary and sufficient conditions for the continuity of the superposition operator acting from the sequences space c_0 into l_1 . In [12], Petranuarat and Kemprasit characterized necessary and sufficient conditions for continuity of the superposition operator acting from the sequences space c_0 into l_q with $1 \leq q < \infty$. Sağır and Güngör [16] gave necessary and sufficient conditions for the continuity of the superposition operator acting from the double sequences space C_{r0} into \mathcal{L}_q with $1 \leq q < \infty$.

In this paper, we characterize the superposition operator acting from the double sequences space of Maddox $C_{r0}(p)$ into \mathcal{L}_1 under the hypothesis that the function g(k, s, .) satisfies (2'). We discuss the continuity of the superposition operator P_g by using the methods in [4], [12]. Then by using the methods developed in [12], we generalize our works as the superposition operator acting from the space $C_{r0}(p)$ into $\mathcal{L}(q)$ without assuming that the function g(k, s, .) satisfies (2').

2. SUPERPOSITION OPERATORS OF $C_{r0}(p)$ INTO \mathcal{L}_1

Theorem 2.1. Assume $g : \mathbb{N}^2 \times \mathbb{R} \to \mathbb{R}$ satisfies (2'). Then $P_g : C_{r0}(p) \to \mathcal{L}_1$ if and only if there exist $\alpha > 0$ and $(c_{ks})_{k,s=1}^{\infty} \in \mathcal{L}_1$ such that

$$|g(k,s,t)| \leq c_{ks}$$
 whenever $|t| \leq \alpha$

for all $k, s \in \mathbb{N}$.

Proof. Assume that there exist $\alpha > 0$ and $(c_{ks})_{k,s=1}^{\infty} \in \mathcal{L}_1$ such that $|g(k,s,t)| \leq c_{ks}$ whenever $|t| \leq \alpha$ for all $k, s \in \mathbb{N}$. Let $x = (x_{ks}) \in C_{r0}(p)$. Hence $p - \lim |x_{ks}|^{p_{ks}} = 0$ and the limits that $\lim_{k \to \infty} |x_{ks}|^{p_{ks}}$ and

 $\lim_{s \to \infty} |x_{ks}|^{p_{ks}} \text{ exist. Therefore there exists } N \in \mathbb{N} \text{ such that } |x_{ks}| \leq \alpha \text{ for all } k, s \in \mathbb{N} \text{ with max } \{k, s\} \geq N.$ Then, we find

$$\sum_{\substack{\mathrm{ax}\{k,s\} \ge N \\ k \ge n}} |g(k,s,x_{ks})| \le \sum_{\max\{k,s\} \ge N} c_{ks} \le \sum_{k,s=1}^{\infty} |c_{ks}| < \infty$$

So, we get $P_g(x) = g(k, s, x_{ks}) \in \mathcal{L}_1$.

Conversely, suppose that $P_g: C_{r0}(p) \to \mathcal{L}_1$. The sets $A(\alpha)$ and $B(k, s, \alpha)$ are defined as

$$A(\alpha) = \left\{ t \in \mathbb{R} : |t|^{\frac{p_{ks}}{M_1}} \le \min\left\{ \alpha^{\frac{1}{M_1}}, \alpha^{\frac{p_{ks}}{M_1}} \right\} \right\}$$

and

$$B(k, s, \alpha) = \sup \left\{ |g(k, s, t)| : t \in A(\alpha) \right\}$$

for all $k, s \in \mathbb{N}$ and $\alpha > 0$. So, we see that $|g(k, s, t)| \leq B(k, s, \alpha)$ whenever $|t| \leq \alpha$. We will show that there is $\alpha_1 > 0$ such that $(B(k, s, \alpha_1))_{k,s=1}^{\infty} \in \mathcal{L}_1$. Assume the contrary, that is, $\sum_{k,s=1}^{\infty} B(k, s, \alpha) = \infty$ for all $\alpha > 0$. Therefore $\sum_{k=1}^{\infty} B\left(k, s, \frac{1}{i} + \frac{1}{i}\right) = \infty$ for each $i, j \in \mathbb{N}$. Then there exist two sequences of

for all $\alpha > 0$. Therefore $\sum_{k,s=1}^{\infty} B\left(k,s,\frac{1}{i}+\frac{1}{j}\right) = \infty$ for each $i,j \in \mathbb{N}$. Then there exist two sequences of positive integers $n_0 = 0 < n_1 < n_2 < \cdots < n_i < \cdots$ and $m_0 = 0 < m_1 < m_2 < \cdots < m_j < \cdots$ such that

(2.1)
$$\sum_{k=n_{i-1}+1}^{n_i} \sum_{s=m_{j-1}+1}^{m_j} B\left(k, s, \frac{1}{i} + \frac{1}{j}\right) > 1$$

for each $i, j \in \mathbb{N}$. Let $i, j \in \mathbb{N}$ be fixed. Since g satisfies (2'), we see that $B\left(k, s, \frac{1}{i} + \frac{1}{j}\right) < \infty$ for all $i, j \in \mathbb{N}$ with $n_{i-1} + 1 \leq k \leq n_i$ and $m_{j-1} + 1 \leq s \leq m_j$. Then, there exists $x_{ks} \in A\left(\frac{1}{i} + \frac{1}{j}\right)$ such that

(2.2)
$$B\left(k, s, \frac{1}{i} + \frac{1}{j}\right) < |g(k, s, x_{ks})| + 2^{-(i+j)}$$

for each $k, s \in \mathbb{N}$ satisfying $n_{i-1} + 1 \leq k \leq n_i$ and $m_{j-1} + 1 \leq s \leq m_j$. So, we find

$$r^{2} < \sum_{i=1}^{r} \sum_{j=1}^{r} \left(\sum_{k=n_{i-1}+1}^{n_{i}} \sum_{s=m_{j-1}+1}^{m_{j}} B\left(k, s, \frac{1}{i} + \frac{1}{j}\right) \right)$$

$$< \sum_{k=1}^{n_{r}} \sum_{s=1}^{m_{r}} |g\left(k, s, x_{ks}\right)| + \sum_{k=1}^{n_{r}} \sum_{s=1}^{m_{r}} 2^{-(i+j)}$$

$$< \sum_{k=1}^{n_{r}} \sum_{s=1}^{m_{r}} |g\left(k, s, x_{ks}\right)| + \sum_{k=1}^{\infty} \sum_{s=1}^{\infty} 2^{-(i+j)}$$

by using (2.1) and (2.2). Therefore we obtain that

$$\sum_{k=1}^{\infty} \sum_{s=1}^{\infty} |g(k, s, x_{ks})| = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \left(\sum_{k=n_{i-1}+1}^{n_i} \sum_{s=m_{j-1}+1}^{m_j} |g(k, s, x_{ks})| \right) = \infty.$$

Hence we get $g(k, s, x_{ks}) \notin \mathcal{L}_1$. Since $x_{ks} \in A\left(\frac{1}{i} + \frac{1}{j}\right)$ whenever $n_{i-1} + 1 \leq k \leq n_i$ and $m_{j-1} + 1 \leq s \leq m_j$, we find $|x_{ks}|^{p_{ks}} \leq \frac{1}{i} + \frac{1}{j}$. Hence, we obtain $x = (x_{ks}) \in C_{r0}(p)$. This contradicts the assumption that $P_g: C_{r0}(p) \to \mathcal{L}_1$. Then there exists $\alpha_1 > 0$ such that $(B(k, s, \alpha_1))_{k,s=1}^{\infty} \in \mathcal{L}_1$. If we put $c_{ks} = B(k, s, \alpha_1)$ for all $k, s \in \mathbb{N}$, this completes the proof.

Theorem 2.2. If $P_g : C_{r0}(p) \to \mathcal{L}_1$, then P_g is continuous on $C_{r0}(p)$ if and only if g(k, s, .) is continuous on \mathbb{R} for all $k, s \in \mathbb{N}$.

Proof. Suppose that P_g is continuous on $C_{r0}(p)$. Let $k, s \in \mathbb{N}$, $t_0 \in \mathbb{R}$ and $\varepsilon > 0$. Since P_g is continuous at $t_0 e^{(nm)} \in C_{r0}(p)$, there exists $\delta > 0$ such that

(2.3)
$$\left\|z - t_0 e^{(nm)}\right\|_{C_{r0}(p)} < \delta \text{ implies } \left\|P_g\left(z\right) - P_g\left(t_0 e^{(nm)}\right)\right\|_1 < \varepsilon$$

for all $z = (z_{ks}) \in C_{r0}(p)$. Let $t \in \mathbb{R}$ such that $|t - t_0| < \delta^{\frac{M_1}{p_{ks}}}$ and $y = (y_{ks})$ defined by

$$y_{ks} = \begin{cases} t, & (k,s) = (n,m) \\ 0, & \text{otherwise} \end{cases}$$

So $y = (y_{ks}) \in C_{r0}(p)$ and we have $\left\| y - t_0 e^{(nm)} \right\|_{C_{r0}(p)} = |t - t_0|^{\frac{p_{ks}}{M_1}} < \delta$. From (2.3), we find

$$|g(k,s,t) - g(k,s,t_0)| = \left\| P_g(y) - P_g(t_0e^{(nm)}) \right\|_1 < \varepsilon.$$

Therefore, the function g(k, s, .) is continuous on \mathbb{R} for each $k, s \in \mathbb{N}$.

Conversely, assume that the function g(k, s, .) is continuous on \mathbb{R} for each $k, s \in \mathbb{N}$. We will show that P_g is continuous on $C_{r0}(p)$. Let $x = (x_{ks}) \in C_{r0}(p)$ and $\varepsilon > 0$. Since g satisfies (2'), then P_g acts from $C_{r0}(p)$ to \mathcal{L}_1 by Theorem 2.1. Hence, there exist $\alpha > 0$ and $(c_{ks}) \in \mathcal{L}_1$ such that

(2.4)
$$|g(k,s,t)| \le c_{ks}$$
 whenever $|t| \le \alpha$

for all $k, s \in \mathbb{N}$. Since $(x_{ks}) \in C_{r0}(p) \subset M_u(p)$ and $(c_{ks}) \in \mathcal{L}_1$, there exists $N \in \mathbb{N}$ such that

$$|x_{ks}| \leq \frac{\alpha}{2}$$
 for all $k, s \in \mathbb{N}$ with $max\{k, s\} \geq N$

and

$$\sum_{\max\{k,s\} \ge N} c_{ks} < \frac{\varepsilon}{3}$$

So, $|x_{ks}| \leq \alpha$ for all $k, s \in \mathbb{N}$ with $max\{k, s\} \geq N$. From (2.4), we write $|g(k, s, x_{ks})| \leq c_{ks}$ for all $k, s \in \mathbb{N}$ with $max\{k, s\} \geq N$. Hence, we have

(2.5)
$$\sum_{\max\{k,s\}\geq N} |g(k,s,x_{ks})| \leq \sum_{\max\{k,s\}\geq N} c_{ks} < \frac{\varepsilon}{3}$$

Since g(k, s, .) is continuous at x_{ks} for all $k, s \in \{1, 2, ..., N-1\}$, there exists $\delta > 0$ with $\delta = \min\left\{1, \left(\frac{\alpha}{2}\right)^{\frac{P_{ks}}{M_1}}\right\}$ such that

(2.6)
$$|t - x_{ks}| < \delta^{\frac{M_1}{p_{ks}}} \text{ implies } |g(k, s, t) - g(k, s, x_{ks})| < \frac{\varepsilon}{3(N-1)}$$

for any $t \in \mathbb{R}$. Let $z = (z_{ks}) \in C_{r0}(p)$ be such that $||z - x||_{C_{r0}(p)} < \delta$. Thus,

$$|z_{ks} - x_{ks}|^{\frac{p_{ks}}{M_1}} \le \sup_{k,s \in \mathbb{N}} |z_{ks} - x_{ks}|^{\frac{p_{ks}}{M_1}} = ||z - x||_{C_{r0}(p)} < \delta$$

for each $k, s \in \mathbb{N}$. By using (2.6), we find

$$\left|g\left(k,s,z_{ks}\right) - g\left(k,s,x_{ks}\right)\right| < \frac{\varepsilon}{3\left(N-1\right)}$$

for all $k, s \in \{1, 2, \dots, N-1\}$. Hence, we have

(2.7)
$$\sum_{k,s=1}^{N-1} |g(k,s,z_{ks}) - g(k,s,x_{ks})| < \frac{\varepsilon}{3}$$

Since $|z_{ks}| \leq |z_{ks} - x_{ks}| + |x_{ks}| < \delta^{\frac{M_1}{p_{ks}}} + \frac{\alpha}{2} \leq \frac{\alpha}{2} + \frac{\alpha}{2} = \alpha$ for all $k, s \in \mathbb{N}$ with $max\{k, s\} \geq N$, we find that $|g(k, s, z_{ks})| \leq c_{ks}$ for all $k, s \in \mathbb{N}$ with $max\{k, s\} \geq N$ from (2.4). Hence, we have

$$\sum_{\max\{k,s\}\geq N} |g(k,s,z_{ks})| \leq \sum_{\max\{k,s\}\geq N} c_{ks} < \frac{\varepsilon}{3}.$$

So, we obtain

$$\begin{aligned} \|P_{g}(z) - P_{g}(x)\| &= \sum_{k,s=1}^{\infty} |g(k,s,z_{ks}) - g(k,s,x_{ks})| \\ &\leq \sum_{k,s=1}^{N-1} |g(k,s,z_{ks}) - g(k,s,x_{ks})| + \sum_{\max\{k,s\} \ge N} |g(k,s,z_{ks})| + \\ &+ \sum_{\max\{k,s\} \ge N} |g(k,s,x_{ks})| \\ &< \varepsilon \end{aligned}$$

by using (2.5) and (2.7). This completes the proof.

Example 2.3. Let $g: \mathbb{N}^2 \times \mathbb{R} \to \mathbb{R}$ be defined by

$$g\left(k,s,t\right) = \frac{\left|t\right|^{\frac{Pks}{M_{1}}}}{4^{k+s}}$$

for all $k, s \in \mathbb{N}$ and for all $t \in \mathbb{R}$. Since g(k, s, .) is continuous on \mathbb{R} for all $k, s \in \mathbb{N}$, then g satisfies (2'). Let $\alpha = 1$ and $|t| \leq 1$. Then for all $k, s \in \mathbb{N}$,

$$\begin{aligned} |g\left(k,s,t\right)| &= \frac{|t|^{\frac{p_{ks}}{M_1}}}{4^{k+s}} \\ &\leq \frac{1}{4^{k+s}} \end{aligned}$$

Since $\sum_{k,s=1}^{\infty} \frac{1}{4^{k+s}} < \infty$, we put $c_{ks} = \frac{1}{4^{k+s}}$ for all $k, s \in \mathbb{N}$. By Theorem 2.1, we find that $P_g : C_{r0}(p) \to \mathcal{L}_1$. Since g(k, s, .) is continuous on \mathbb{R} for all $k, s \in \mathbb{N}$, then the superposition operator P_g is continuous on $C_{r0}(p)$ by Theorem 2.2.

3. SUPERPOSITION OPERATORS OF $C_{r0}(p)$ INTO $\mathcal{L}(q)$

In this section, by using the methods developed in [12] we extend our theorems proved in Section 2 to the superposition operator acting from the space $C_{r0}(p)$ into $\mathcal{L}(q)$ where $p = (p_{ks})$ and $q = (q_{ks})$ are bounded double sequences of positive numbers. For characterization of the superposition operator $P_g: C_{r0}(p) \to \mathcal{L}(q)$, we will use the following proposition.

Proposition 3.1. Let X be a double sequences space. If $\mathcal{L}_1 \subseteq X$ and $P_g : X \to M_u(q)$, then there exist $N \in \mathbb{N}$ and $\alpha > 0$ such that $(g(k, s, .))_{\max\{k, s\} \geq N}^{\infty}$ is uniformly bounded on $[-\alpha, \alpha]$ ([6]).

Theorem 3.2. Let $g: \mathbb{N}^2 \times \mathbb{R} \to \mathbb{R}$. Then $P_g: C_{r0}(p) \to \mathcal{L}(q)$ if and only if there exist $N \in \mathbb{N}$ and $\alpha > 0$ such that

(3.1)
$$\sum_{\max\{k,s\}\geq N} \sup_{|t|\leq \alpha^{\frac{1}{p_{ks}}}} |g(k,s,t)|^{\frac{q_{ks}}{M_2}} < \infty.$$

Proof. Suppose that P_g acts from $C_{r0}(p)$ to $\mathcal{L}(q)$. Since $\mathcal{L}_1 \subset C_{r0}(p)$ and $\mathcal{L}(q) \subset M_u(q)$, by Proposition 3.1 we see that there exist $N \in \mathbb{N}$ and $\alpha > 0$ such that $(g(k, s, .))_{\max\{k, s\} \ge N}^{\infty}$ is uniformly bounded on $\left[-\alpha^{\frac{1}{p_{ks}}}, \alpha^{\frac{1}{p_{ks}}}\right]$. Therefore, $\sup_{|t| \le \alpha^{\frac{1}{p_{ks}}}} |g(k, s, t)|^{\frac{q_{ks}}{M_2}} < \infty$ for all $k, s \in \mathbb{N}$ with $\max\{k, s\} \ge N$. We define $B(k, s, \beta)$ by

(3.2)
$$B(k,s,\beta) = \sup_{|t| \le \beta} |g(k,s,t)|^{\frac{q_{ks}}{M_2}}$$

for all $\beta \in \mathbb{R}$ with $0 < \beta \le \alpha^{\frac{1}{p_{ks}}}$. We assert that $\sum_{\max\{k,s\}\ge N} B(k,s,\beta) < \infty$ for some $\beta \in \mathbb{R}$ with $0 < \beta \le \alpha^{\frac{1}{p_{ks}}}$. To show that this is the case, we assume the contrary. Therefore, $\sum_{\max\{k,s\}\ge N} B\left(k,s,\alpha^{\frac{1}{p_{ks}}}\left(\frac{1}{i}+\frac{1}{j}\right)\right) = \infty$ for all $i, j \in \mathbb{N}$. Hence, there exist n' > n and m' > m such that

$$\sum_{k=n}^{n'} \sum_{s=1}^{m'-1} B\left(k, s, \alpha^{\frac{1}{p_{ks}}}\left(\frac{1}{i} + \frac{1}{j}\right)\right) + \sum_{k=1}^{n'-1} \sum_{s=m}^{m'} B\left(k, s, \alpha^{\frac{1}{p_{ks}}}\left(\frac{1}{i} + \frac{1}{j}\right)\right) + \sum_{k=ns=m}^{n'} B\left(k, s, \alpha^{\frac{1}{p_{ks}}}\left(\frac{1}{i} + \frac{1}{j}\right)\right) > 1$$

for all $i, j \in \mathbb{N}$ and $n, m \geq N$. Then, there exist two subsequences $(n_k)_{k=1}^{\infty}$ of $(n)_{n=1}^{\infty}$ and $(m_k)_{k=1}^{\infty}$ of $(m)_{m=1}^{\infty}$ such that

$$\begin{split} \sum_{k=n_i+1}^{n_{i+1}} \sum_{s=1}^{m_{j+1}-1} B\left(k, s, \alpha^{\frac{1}{p_{ks}}}\left(\frac{1}{i}+\frac{1}{j}\right)\right) + \sum_{k=1}^{n_{i+1}-1} \sum_{s=m_j+1}^{m_{j+1}} B\left(k, s, \alpha^{\frac{1}{p_{ks}}}\left(\frac{1}{i}+\frac{1}{j}\right)\right) + \\ + \sum_{k=n_i+1}^{n_{i+1}} \sum_{s=m_j+1}^{m_{j+1}} B\left(k, s, \alpha^{\frac{1}{p_{ks}}}\left(\frac{1}{i}+\frac{1}{j}\right)\right) \\ > \quad 1 \end{split}$$

for all $i, j \in \mathbb{N}$ and $n > n_1$, $m > m_1$. We put $\mathcal{F} = \{(k, s) : k \le n_1 \text{ and } s \le m_1\}$. If $(k, s) \in \mathcal{F}$, we take $x_{ks} = 0$. If $k > n_1$ and $s > m_1$, then there exist $i \in \mathbb{N}$ and $j \in \mathbb{N}$ such that $n_i < k \le n_{i+1}$ and $m_j < s \le m_{j+1}$. Hence, there exists $x_{ks} \in \left[-\alpha^{\frac{1}{p_{ks}}}\left(\frac{1}{i} + \frac{1}{j}\right), \alpha^{\frac{1}{p_{ks}}}\left(\frac{1}{i} + \frac{1}{j}\right)\right]$ such that

(3.3)
$$0 \le B\left(k, s, \alpha^{\frac{1}{p_{ks}}}\left(\frac{1}{i} + \frac{1}{j}\right)\right) < |g(k, s, x_{ks})|^{\frac{q_{ks}}{M_2}} + 2^{-(k+s)}$$

from (3.2). Therefore, it is obvious that $x_{ks} \in C_{r0}(p)$. By using (3.3), we write

$$\begin{split} r^{2} &< \sum_{i=1}^{r} \sum_{j=1}^{r} \left(\sum_{k=n_{i}+1}^{n_{i+1}} \sum_{s=1}^{m_{j+1}-1} B\left(k, s, \alpha^{\frac{1}{p_{ks}}}\left(\frac{1}{i}+\frac{1}{j}\right)\right) + \sum_{k=1}^{n_{i+1}-1} \sum_{s=m_{j}+1}^{m_{j+1}} B\left(k, s, \alpha^{\frac{1}{p_{ks}}}\left(\frac{1}{i}+\frac{1}{j}\right)\right) + \\ &+ \sum_{k=n_{i}+1}^{n_{i+1}} \sum_{s=1}^{m_{j+1}} B\left(k, s, \alpha^{\frac{1}{p_{ks}}}\left(\frac{1}{i}+\frac{1}{j}\right)\right) \right) \\ &= \sum_{k=n_{1}+1}^{n_{r+1}} \sum_{s=1}^{m_{r+1}-1} B\left(k, s, \alpha^{\frac{1}{p_{ks}}}\left(\frac{1}{i}+\frac{1}{j}\right)\right) + \sum_{k=1}^{n_{r+1}-1} \sum_{s=m_{1}+1}^{m_{r+1}-1} B\left(k, s, \alpha^{\frac{1}{p_{ks}}}\left(\frac{1}{i}+\frac{1}{j}\right)\right) \\ &+ \sum_{k=n_{1}+1}^{n_{r+1}} \sum_{s=1}^{m_{r+1}} B\left(k, s, \alpha^{\frac{1}{p_{ks}}}\left(\frac{1}{i}+\frac{1}{j}\right)\right) \\ &< \sum_{k=n_{1}+1}^{n_{r+1}} \sum_{s=1}^{m_{r+1}-1} |g\left(k, s, x_{ks}\right)|^{\frac{q_{ks}}{M_{2}}} + \sum_{k=1}^{n_{r+1}-1} \sum_{s=m_{1}+1}^{m_{r+1}-1} |g\left(k, s, x_{ks}\right)|^{\frac{q_{ks}}{M_{2}}} + \sum_{k=n_{1}+1}^{n_{r+1}-1} \sum_{s=n_{1}+1}^{m_{r+1}-1} |g\left(k, s, x_{ks}\right)|^{\frac{q_{ks}}{M_{2}}} + \\ &+ \sum_{k=1}^{\infty} \sum_{s=1}^{\infty} 2^{-(k+s)}. \end{split}$$

for all $r \in \mathbb{N}$. Hence, $(g(k, s, x_{ks}))_{k,s=1}^{\infty} \notin \mathcal{L}(q)$. This is a contradiction, because of $P_g : C_{r0}(p) \to \mathcal{L}(q)$. Conversely, suppose that there exist $N \in \mathbb{N}$ and $\alpha > 0$ such that

$$\sum_{\max\{k,s\}\geq N} \sup_{|t|\leq \alpha^{\frac{1}{p_{ks}}}} |g(k,s,t)|^{\frac{q_{ks}}{M_2}} < \infty.$$

To show that $P_g: C_{r0}(p) \to \mathcal{L}(q)$, let $x = (x_{ks}) \in C_{r0}(p)$. Since $r - \lim |x_{ks}|^{p_{ks}} = 0$, there exists $N' \ge N$ such that $|x_{ks}| \le \alpha^{\frac{1}{p_{ks}}}$ for all $k, s \in \mathbb{N}$ with max $\{k, s\} \ge N'$. Therefore, we find

$$\sum_{\max\{k,s\} \ge N'} |g(k,s,x_{ks})|^{\frac{q_{ks}}{M_2}} \le \sum_{\max\{k,s\} \ge N'|t| \le \alpha} \sup_{\frac{1}{p_{ks}}} |g(k,s,t)|^{\frac{q_{ks}}{M_2}} < \infty.$$

$$x) = q(k,s,x_{ks}) \in \mathcal{L}(q).$$

Thus, we get $P_g(x) = g(k, s, x_{ks}) \in \mathcal{L}(q)$.

We need the following proposition to show the continuity of the superposition operator $P_g: C_{r0}(p) \to \mathcal{L}(q)$.

Proposition 3.3. Let X be a double sequences space containing all finite double sequences, Y be a double sequences space such that $Y \subseteq M_u(q)$ and $\|.\|_X : X \to \mathbb{R}$, $\|.\|_Y : Y \to \mathbb{R}$ satisfy the conditions in (1.1). Suppose that

(i) $P_g: X \to Y$, (ii) there exist $\alpha > 0$ such that $\|e^{mn}\|_X \leq \alpha$ for all $m, n \in \mathbb{N}$ and $a \in \mathbb{R}$ with $0 < a \leq 1$ such that $\|\lambda x\|_X = |\lambda|^a \|x\|_X$ for all $\lambda \in \mathbb{R}$.

(iii) $\|.\|_{M_u(q)} \leq \beta \|.\|_Y$ on Y for some $\beta > 0$.

If P_g is continuous at x, then for any $\varepsilon > 0$ there exists $\delta > 0$ such that

$$|t - x_{ks}| < \delta \text{ implies } |g(k, s, t) - g(k, s, x_{ks})| < \varepsilon$$

for all $k, s \in \mathbb{N}$ and $t \in \mathbb{R}$ ([6]).

Theorem 3.4. If $P_g : C_{r0}(p) \to \mathcal{L}(q)$, then P_g is continuous on $C_{r0}(p)$ if and only if g(k, s, .) is continuous on \mathbb{R} for all $k, s \in \mathbb{N}$.

Proof. Since the conditions in Proposition 3.3 provided, it's not hard to see that the condition is necessary.

Conversely, let any $x = (x_{ks}) \in C_{r0}(p)$ and assume that g(k, s, .) is continuous at x_{ks} for all $k, s \in \mathbb{N}$. Hence, by Theorem 3.2 there exist $N_1 \in \mathbb{N}$ and $\alpha > 0$ such that

(3.4)
$$\sum_{\max\{k,s\} \ge N_1 |t| \le \alpha} \sup_{\frac{1}{p_{ks}}} |g(k,s,t)|^{\frac{q_{ks}}{M_2}} < \infty.$$

Since $x = (x_{ks}) \in C_{r0}(p)$, there exists $N_2 \ge N_1$ such that $|x_{ks}| \le \frac{\alpha^{\frac{1}{p_{ks}}}}{2}$ for all $k, s \in \mathbb{N}$ with max $\{k, s\} \ge N_2$. Let $\varepsilon > 0$. From (3.4), we see that

$$\sum_{k=1}^{N_{1}-1} \sum_{s=N_{1}|t| \leq \alpha}^{\infty} \sup_{\frac{1}{p_{ks}}} \left| g\left(k,s,t\right) \right|^{\frac{q_{ks}}{M_{2}}} < \infty, \\ \sum_{k=N_{1}}^{\infty} \sum_{s=1}^{N_{1}-1} \sup_{|t| \leq \alpha}^{1} \sup_{\frac{1}{p_{ks}}} \left| g\left(k,s,t\right) \right|^{\frac{q_{ks}}{M_{2}}} < \infty, \\ \sum_{k=N_{1}s=N_{1}}^{\infty} \sum_{|t| \leq \alpha}^{\infty} \sup_{\frac{1}{p_{ks}}} \left| g\left(k,s,t\right) \right|^{\frac{q_{ks}}{M_{2}}} < \infty, \\ \sum_{k=N_{1}s=N_{1}}^{\infty} \sum_{|t| \leq \alpha}^{N_{1}-1} \sup_{\frac{1}{p_{ks}}} \left| g\left(k,s,t\right) \right|^{\frac{q_{ks}}{M_{2}}} < \infty, \\ \sum_{k=N_{1}s=N_{1}}^{\infty} \sum_{|t| \leq \alpha}^{N_{1}-1} \sum_{\frac{1}{p_{ks}}}^{N_{1}-1} \sum_{|t| \leq \alpha}^{N_{1}-1} \sum_{\frac{1}{p_{ks}}}^{N_{1}-1} \sum_{\frac{1}{p_{ks}}}^{N_{1}$$

Therefore, there exists $N \in \mathbb{N}$ with $N \ge N_2$ such that

$$\begin{split} &\sum_{k=1}^{N_{1}-1}\sum_{s=N}^{\infty}\sup_{|t|\leq\alpha}\frac{1}{p_{ks}}\left|g\left(k,s,t\right)\right|^{\frac{q_{ks}}{M_{2}}} < \frac{\varepsilon}{3.2^{\frac{q_{ks}}{M_{2}}+1}} \\ &\sum_{k=N}^{\infty}\sum_{s=1}^{N_{1}-1}\sup_{|t|\leq\alpha^{\frac{1}{p_{ks}}}}\left|g\left(k,s,t\right)\right|^{\frac{q_{ks}}{M_{2}}} < \frac{\varepsilon}{3.2^{\frac{q_{ks}}{M_{2}}+1}} \end{split}$$

 $\sum_{k=N_{1}}^{N-1} \sum_{s=N_{|t| \le \alpha}}^{\infty} \sup_{\frac{1}{p_{ks}}} |g\left(k,s,t\right)|^{\frac{q_{ks}}{M_{2}}} + \sum_{k=N}^{\infty} \sum_{s=N_{1}|t| \le \alpha}^{N-1} \sup_{\frac{1}{p_{ks}}} |g\left(k,s,t\right)|^{\frac{q_{ks}}{M_{2}}} + \sum_{k=N}^{\infty} \sum_{s=N_{|t| \le \alpha}}^{\infty} \sup_{\frac{1}{p_{ks}}} |g\left(k,s,t\right)|^{\frac{q_{ks}}{M_{2}}} < \frac{\varepsilon}{3.2^{\frac{q_{ks}}{M_{2}}+1}}.$

Consequently, we obtain that there exists $N \in \mathbb{N}$ with $N \ge N_2$ such that

(3.5)
$$\sum_{\max\{k,s\} \ge N} \sup_{|t| \le \alpha^{\frac{1}{p_{ks}}}} |g(k,s,t)|^{\frac{q_{ks}}{M_2}} < \frac{\varepsilon}{2^{\frac{q_{ks}}{M_2}+1}}$$

Since g(k, s, .) is continuous at x_{ks} for all $k, s \in \{1, 2, ..., N-1\}$, there is $\delta \in \mathbb{R}$ with $0 < \delta \leq \left(\frac{\alpha}{2^{p_{ks}}}\right)^{\frac{1}{M_1}}$ such that

(3.6)
$$|g(k,s,t) - g(k,s,x_{ks})| < \left[\frac{\varepsilon}{2(N-1)}\right]^{\frac{\eta_{ks}}{M_2}} \text{ whenever } |t - x_{ks}| < \delta^{\frac{M_1}{p_{ks}}}.$$

Let $z = (z_{ks}) \in C_{r0}(p)$ satisfying $||z - x||_{C_{r0}(p)} < \delta$. Thus, $|z_{ks} - x_{ks}|^{\frac{p_{ks}}{M_1}} \le ||z - x||_{C_{r0}(p)} < \delta$. From (3.6), we find $|g(k, s, z_{ks}) - g(k, s, x_{ks})|^{\frac{q_{ks}}{M_2}} < \frac{\varepsilon}{2(N-1)}$ for all $k, s \in \{1, 2, ..., N-1\}$. We write $|z_{ks}| \le ||z_{ks} - x_{ks}| + |x_{ks}| < \delta^{\frac{M_1}{p_{ks}}} + \frac{\alpha^{\frac{1}{p_{ks}}}}{2} \le \frac{\alpha^{\frac{1}{p_{ks}}}}{2} + \frac{\alpha^{\frac{1}{p_{ks}}}}{2} = \alpha^{\frac{1}{p_{ks}}}$ for all $k, s \in \mathbb{N}$ with max $\{k, s\} \ge N$. We have $|g(k, s, z_{ks}) - g(k, s, x_{ks})|^{\frac{q_{ks}}{M_2}} \le 2^{\frac{q_{ks}}{M_2}} \max \left\{ |g(k, s, z_{ks})|^{\frac{q_{ks}}{M_2}}, |g(k, s, x_{ks})|^{\frac{q_{ks}}{M_2}} \right\}$

$$\leq 2^{\frac{q_{ks}}{M_2}} \sup_{|t| \le \alpha^{\frac{1}{p_{ks}}}} |g(k,s,t)|^{\frac{q_{ks}}{M_2}}$$

for all $k, s \in \mathbb{N}$ with max $\{k, s\} \ge N$. By using (3.5), we obtain

n

$$\sum_{\max\{k,s\}\geq N} |g(k,s,z_{ks}) - g(k,s,x_{ks})|^{\frac{q_{ks}}{M_2}} \leq 2^{\frac{q_{ks}}{M_2}} \sum_{\max\{k,s\}\geq N} \sup_{|t|\leq \alpha^{\frac{1}{p_{ks}}}} |g(k,s,t)|^{\frac{q_{ks}}{M_2}} < \frac{\varepsilon}{2}.$$

Therefore,

$$\sum_{k,s=1}^{\infty} |g(k,s,z_{ks}) - g(k,s,x_{ks})|^{\frac{q_{ks}}{M_2}} = \sum_{k,s=1}^{N-1} |g(k,s,z_{ks}) - g(k,s,x_{ks})|^{\frac{q_{ks}}{M_2}} + \sum_{\max\{k,s\} \ge N} |g(k,s,z_{ks}) - g(k,s,x_{ks})|^{\frac{q_{ks}}{M_2}} < (N-1)\frac{\varepsilon}{2(N-1)} + \frac{\varepsilon}{2} < \varepsilon.$$

Hence, we get $\|P_g(z) - P_g(x)\|_{\mathcal{L}(q)} = \sum_{k,s=1}^{\infty} |g(k,s,z_{ks}) - g(k,s,x_{ks})|^{\frac{q_{ks}}{M_2}} < \varepsilon$. This completes the proof.

Example 3.5. Let $g: \mathbb{N}^2 \times \mathbb{R} \to \mathbb{R}$ defined by

$$g\left(k,s,t\right) = \left(\frac{\left|t\right|^{p_{ks}}}{2^{k+s}}\right)^{\frac{M_2}{q_{ks}}}$$

for all $k, s \in \mathbb{N}$ and for all $t \in \mathbb{R}$. Let $\alpha = 2$ and $|t| \leq 2^{\frac{1}{p_{ks}}}$. Then for all $k, s \in \mathbb{N}$,

$$\sum_{\max\{k,s\}\geq N} \sup_{|t|\leq 2^{\frac{1}{p_{ks}}}} |g(k,s,t)|^{\frac{q_{ks}}{M_2}} = \sum_{\max\{k,s\}\geq N} \sup_{|t|\leq 2^{\frac{1}{p_{ks}}}} \frac{|t|^{p_{ks}}}{2^{k+s}} \leq \sum_{\max\{k,s\}\geq N} \frac{2}{2^{k+s}} \leq \sum_{k,s=1}^{\infty} \frac{2}{2^{k+s}} < \infty.$$

By Theorem 3.2, we find that $P_g : C_{r0}(p) \to \mathcal{L}(q)$. Since g(k, s, .) is continuous and bounded on \mathbb{R} for all $k, s \in \mathbb{N}$, then the superposition operator P_g is continuous on $C_{r0}(p)$ by Theorem 3.4.

References

- Apostol, T.M., Mathematical Analysis, Pearson Education Asia Limited and China Machine Press, (1974).
- [2] Basar, F., Sever, Y., The Space Of Double Sequences, Math. J. Okayama Univ., 51 (2009), 149-157.
- [3] Başar F., Summability Theory And Its Applications, Bentham Science Publishers, e-books, Monographs, İstanbul, (2002).
- [4] Chew T.S., Lee P.Y., Orthogonally Additive Functionals On Sequence Spaces, SEA Bull. Math. 9 (1985), 81-85.
- [5] Dedagich F., Zabreiko P.P., Operator Superpositions In The Spaces l_p, Sibirskii Matematicheskii Zhurnal, 28 (1987), 86-98.
- [6] Güngör N., Sağır B., Continuity Of Superposition Operators On The Double Sequence Spaces Of Maddox $\mathcal{L}(p)$, accepted by İranian Journal Of Science And Technology.
- [7] Herawaty E., The Locally Boundedness Criteria for Superposition Operators on $\ell_{\Phi}(L)$, Applied Mathematical Sciences, **7** (2013), 727 733.
- [8] Moricz, F., Extension Of The Spaces c and c₀ From Single To Double Sequences, Acta Math. Hung., 57 (1-2) (1991), 129–136.
- Kolk, E., Raidjoe, A., The Continuity Of Superposition Operators On Some Sequence Spaces Defined By Moduli, Czechoslovak Mathematical Journal, 57 (2007), 777-792.
- [10] Limaye B.V., Zeltser M., On The Pringsheim Convergence Of Double Series, Proc. Eston. Aca. Sci., 58,2 (2009), 108-121.
- [11] Lindenstrauss I.J., Tzafiri L., Classical Banach Spaces I, Lecture Notes In Math., Newyork, Tokyo: Springer-Verlag, Berlin, Heidelberg, (1983).
- [12] Petranuarat S., Kemprasit Y., Superposition Operators On l_p And c_0 Into l_q $(1 \le p, q < \infty)$, Southeast Asian Bulletion of Mathematics, **21** (1997), 139-147.

- [13] Pluciennik, R. , Continuity Of Superposition Operators On w_0 And W_0 , Comment. Math. Univ. Carolinae **31**(1990), 529-542.
- [14] Pringsheim A., Zur Theorie de Zweifach Unendlichen Zahlenfolgen, Math. Ann., 53 (1900), 289-321.
- [15] Sağır B., Güngör N., Continuity Of Superposition Operators On The Double Sequence Spaces \mathcal{L}_p , accepted by Filomat.
- [16] Sağır B., Güngör N., Locally Boundedness And Continuity Of Superposition Operators On The Double Sequence Spaces C_{r0}, J. Computational Analysis And Applications, **19** (2015), 365-377.
- [17] Sama-ae, A., Boundedness And Continuity Of Superposition Operator On $E_r(p)$ and $F_r(p)$, Songklanakarin J. Sci. Technol., **24** (2002), 452-466.
- [18] Streit, R. F., The Summation Of Convergent Double Series, Texas Tech University (1972).

ONDOKUZ MAYIS UNIVERSITY, FACULTY OF SCIENCES AND ARTS, DEPARTMENT OF MATHEMATICS, 55139 KURUPELIT SAMSUN/ TURKEY

E-mail address: bduyar@omu.edu.tr

GÜMÜŞHANE UNIVERSITY, FACULTY OF ENGINEERING, DEPARTMENT OF MATHEMATICAL ENGI-NEERING, 29100 GÜMÜŞHANE / TURKEY

E-mail address: nihangungor@gumushane.edu.tr