BI-CONJUGATIVE RELATIONS

DANIEL ABRAHAM ROMANO

ABSTRACT. In this paper the concept of bi-conjugative relations on sets is introduced. Characterizations of this relations are obtained. In addition, particulary we show that the anti-order relation \leq in poset (L, \leq) is not a bi-conjugative relation.

Mathematics Subject Classification (2010): Primary 03E02, 06A11; Secondary 20M20

Key words: relations, bi-conjugative relations, semigroup of all binary relations

1. INTRODUCTION AND PRELIMINARIES

The regularity of binary relations was first characterized by Zareckii ([11]). Further criteria for regularity were given by Markowsky ([8]), Schein ([10]) and Xu Xiao-quan and Liu Yingming ([12]) (see also [1] and [2]). The concepts of conjugative relations, dually conjugative relations and dually normal relations were introduced by Guanghao Jiang and Luoshan Xu ([3], [4]), and a characterization of normal relations was introduced and analyzed by Jiang Guanghao, Xu Luoshan, Cai Jin and Han Guiwen in [5].

In this paper, we introduce and analyze bi-conjugative relations on sets.

The following are some basic concepts needed in the sequel, for other nonexplicitly stated elementary notions please refer to papers [1] - [6] and [11], and to book [7].

For a set X, we call ρ a binary relation on X, if $\rho \subseteq X \times X$. Let $\mathcal{B}(X)$ denote the set of all binary relations on X. For $\alpha, \beta \in \mathcal{B}(X)$, define

$$\beta \circ \alpha = \{ (x, z) \in X \times X : (\exists y \in X) ((x, y) \in \alpha \land (y, z) \in \beta) \}.$$

The relation $\beta \circ \alpha$ is called the composition of α and β . It is well known that $(\mathcal{B}(X), \circ)$ a semigroup. The relation $\Delta_X = \{(x, x) : x \in X\}$ is the identity. For a binary relation α on a set X, define $\alpha^{-1} = \{(x, y) \in X \times X : (y, x) \in \alpha\}$ and $\alpha^C = X \times X \setminus \alpha$.

The following classes of elements in the semigroup $\mathcal{B}(X)$, given in the following definition, have been investigated:

Definition 1.1. For relation $\alpha \in \mathcal{B}(X)$ we say that it is: - regular if there exists a relation $\beta \in \mathcal{B}(X)$ such that

$$\alpha = \alpha \circ \beta \circ \alpha$$

- normal ([5]) if there exists a relation $\beta \in \mathcal{B}(X)$ such that

$$\alpha = \alpha \circ \beta \circ (\alpha^C)^-$$

- dually normal ([4]) if there exists a relation $\beta \in \mathcal{B}(X)$ such that

$$\alpha = (\alpha^C)^{-1} \circ \beta \circ \alpha$$

- conjugative ([3]) if there exists a relation $\beta \in \mathcal{B}(X)$ such that

 $\alpha = \alpha^{-1} \circ \beta \circ \alpha.$ - dually conjugative ([3]) if there exists a relation $\beta \in \mathcal{B}(X)$ such that $\alpha = \alpha \circ \beta \circ \alpha^{-1}.$

- quasi-regular ([9]) if there exists a relation $\beta \in \mathcal{B}(X)$ such that

$$\alpha = \alpha^C \circ \beta \circ \alpha.$$

- dually quasi-regular ([9]) if there exists a relation $\beta \in \mathcal{B}(X)$ such that

$$\alpha = \alpha \circ \beta \circ \alpha^C.$$

Besides that, for $\alpha, \beta \in \mathcal{B}(X)$ and $x, y \in X$, we define the *box product* of relation α and relation β by

$$(\alpha \Box \beta)(x, y) = \alpha x \times \beta y$$

= {(u, v) \epsilon X \times X : u \epsilon \alpha x \lambda v \epsilon \beta y}.

Let $\alpha, \beta, \gamma \in \mathcal{B}(X)$ be arbitrary relations, then

(1.1)
$$\gamma \circ \beta \circ \alpha = (\alpha \Box \gamma^{-1})(\beta)$$

holds. Indeed, we have

$$(u,v) \in \gamma \circ \beta \circ \alpha \iff (\exists a, b \in X)((u,a) \in \alpha \land (a,b) \in \beta \land (b,v) \in \gamma) \iff (\exists (a,b) \in \beta)(u \in \alpha a \land v \in \gamma^{-1}b) \iff (\exists (a,b) \in \beta)((u,v) \in \alpha a \times \gamma^{-1}b) \iff (\exists (a,b) \in \beta)((u,v) \in (\alpha \Box \gamma^{-1})(a,b)) \iff (u,v) \in (\alpha \Box \gamma^{-1})(\beta).$$

Now, we can equations, introduced in Definition 1.1, represent in the new way. For example, a conjugative relation α satisfies the following equation $\alpha = (\alpha \Box \alpha)(\beta)$, and if α is a dually conjugative relation, then the following equation $\alpha = (\alpha^{-1} \Box \alpha^{-1})(\beta)$ holds. Analogously, a normal relation α is described by $\alpha = ((\alpha^C)^{-1} \Box \alpha^{-1})(\beta)$, and a dually normal relation α satisfies the following equation $\alpha = (\alpha \Box \alpha^C)(\beta)$. Descriptions of quasi-regular relations and dually quasi-regular relations now appear in the following way: $\alpha = (\alpha \Box (\alpha^C)^{-1})(\beta)$ and $\alpha = (\alpha^C \Box \alpha^{-1})(\beta)$.

2. BI-CONJUGATIVE RELATIONS

Put $\alpha^1 = \alpha$. It is easy to see that $(\alpha^{-1})^C = (\alpha^C)^{-1}$ holds. Definition 1.1 describes equalities

$$\alpha = (\alpha^a)^i \circ \beta \circ (\alpha^b)^j$$

for some $\beta \in \mathcal{B}(X)$ where $i, j \in \{-1, 1\}$ and $a, b \in \{1, C\}$. We should investigate all other possibilities since some of possibilities given in the previous equation have been investigated. According to this attitude, in the following definition we introduce a new class of elements in $\mathcal{B}(X)$.

Definition 2.1. For relation $\alpha \in \mathcal{B}(X)$ we say that it is a *bi-conjugative* relation on X if there exists a relation $\beta \in \mathcal{B}(X)$ such that

(2.1)
$$\alpha = \alpha^{-1} \circ \beta \circ \alpha^{-1}$$

It is easy to see that the dual of a bi-conjugative relation α is again a bi-conjugative relation. Besides, for bi-conjugative relation α on a set X the following $Dom(\alpha) = R(\alpha)$ holds.

The family $\mathcal{BC}(X)$ of all bi-conjugative relations on set X is not empty. For example, $\triangle_X \in \mathcal{BC}(X)$ and $\nabla_X = \triangle_X^C \in \mathcal{BC}(X)$. Besides, since for any bijective relation ψ on X

$$\psi = \triangle_X \circ \psi \circ \triangle_X = (\psi^{-1} \circ \psi) \circ \psi \circ (\psi \circ \psi^{-1}) = \psi^{-1} \circ (\psi \circ \psi \circ \psi) \circ \psi^{-1}$$

holds, we have $\psi \in \mathcal{BC}(X)$. For symmetric and idempotent relation α on set X we have $\alpha = \alpha^2 = \alpha \circ \triangle_X \circ \alpha = \alpha^{-1} \circ \triangle_X \circ \alpha^{-1}$.

Therefore, this relation is a bi-conjugative relation on X. Further on, the following implication $\alpha \in \mathcal{BC}(X) \Longrightarrow \alpha^{-1} \in \mathcal{BC}(X)$ holds also.

According to the equation (1.1), the condition (2.1) is equivalent to the following condition

(2.2)
$$\alpha = (\alpha^{-1} \Box \alpha)(\beta).$$

Our first proposition is an adaptation of Schein's result exposed in [10], Theorem 1. (See, also, [2], Lemma 1.)

Theorem 2.2. For a binary relation $\alpha \in \mathcal{B}(X)$, relation

$$\alpha^* = (\alpha \circ \alpha^C \circ \alpha)^C$$

is the maximal element in the family of all relation $\beta \in \mathcal{B}(X)$ such that $\alpha^{-1} \circ \beta \circ \alpha^{-1} \subseteq \alpha.$

Proof. First, remember ourself that

$$\max\{\beta \in \mathcal{B}(X) : \alpha^{-1} \circ \beta \circ \alpha^{-1} \subseteq \alpha\} = \cup\{\beta \in \mathcal{B}(X) : \alpha^{-1} \circ \beta \circ \alpha^{-1} \subseteq \alpha\}.$$

Let $\beta \in B(X)$ be an arbitrary relation such that $\alpha^{-1} \circ \beta \circ \alpha^{-1} \subseteq \alpha$. We will prove that $\beta \subseteq \alpha^*$. If not, there is $(x, y) \in \beta$ such that $\neg((x, y) \in \alpha^*)$. The last gives: $(x, y) \in \alpha \circ \alpha^C \circ \alpha \iff$ $(\exists u, v \in X)((x, u) \in \alpha \land (u, v) \in \alpha^C \land (v, y) \in \alpha) \iff$ $(\exists u, v \in X)((u, x) \in \alpha^{-1} \land (u, v) \in \alpha^C \land (y, v) \in \alpha^{-1} \Longrightarrow$ $(\exists u, v \in X)((u, x) \in \alpha^{-1} \land (x, y) \in \beta \land (y, v) \in \alpha^{-1} \land (u, v) \in \alpha^C) \Longrightarrow$ $(\exists u, v) \in X)((u, v) \in \alpha^{-1} \circ \beta \circ \alpha^{-1} \subseteq \alpha \land (u, v) \in \alpha^C)$ We got a contradiction. So, there must be $\beta \subseteq \alpha^*$.

On the other hand, we should prove that

$$\alpha^{-1} \circ \alpha^* \circ \alpha^{-1} \subseteq \alpha.$$

Let $(x, y) \in \alpha^{-1} \circ \alpha^* \circ \alpha^{-1}$ be an arbitrary element. Then, there are elements $u, v \in X$ such that $(x, u) \in \alpha^{-1}$, $(u, v) \in \alpha^*$ and $(v, y) \in \alpha^{-1}$. So, from

$$(u, x) \in \alpha, \neg((u, v) \in \alpha \circ \alpha^C \circ \alpha), (y, v) \in \alpha,$$

we have $\neg((x, y) \in \alpha^C)$. Suppose that $(x, y) \in \alpha^C$. Then, we have $(u, v) \in \alpha \circ \alpha^C \circ \alpha$, which is impossible. Hence, we have to $(x, y) \in \alpha$ and therefore, $\alpha^{-1} \circ \alpha^* \circ \alpha^{-1} \subseteq \alpha$.

Finally, we conclude that α^* is the maximal element of the family of all relations $\beta \in \mathcal{B}(X)$ such that $\alpha^{-1} \circ \beta \circ \alpha^{-1} \subseteq \alpha$.

It is easy to see that holds

 $\alpha^{\star} = \{(x, y) \in X \times X : \alpha^{-1} \circ \{(x, y)\} \circ \alpha^{-1} \subseteq \alpha\}$

 $= \{ (x,y) \in X \times X : \alpha^{-1}x \times \alpha^{-1}y \subseteq \alpha \}.$

Also, we have $\alpha^{\star} = ((\alpha \Box \alpha^{-1})(\alpha^{C}))^{C}$ by the concept exposed in the equation (1.1).

In the following proposition we give a characterization of bi-conjugative relations. It is our adaptation of concept exposed in [6], Theorem 7.2.

Theorem 2.3. For a binary relation α on a set X, the following conditions are equivalent: (1) α is a bi-conjugative relation.

(2) For all x, y ∈ X, if (x, y) ∈ α, there exist u, v ∈ X such that:
(a) (u, x) ∈ α ∧ (y, v) ∈ α,
(b) (∀s, t ∈ X)((u, s) ∈ α ∧ (t, v) ∈ α ⇒ (s, t) ∈ α).
(3) α ⊆ α⁻¹ ∘ α^{*} ∘ α⁻¹.

Proof. (1) \implies (2). Let α be a bi-conjugative relation, i.e. let there exists a relation β such that $\alpha = \alpha^{-1} \circ \beta \circ \alpha^{-1}$. Let $(x, y) \in \alpha$. Then there exist elements $u, v \in X$ such that

 $(x, u) \in \alpha^{-1}, (u, v) \in \beta, (v, y) \in \alpha^{-1}.$

From this follows that there exist elements $u, v \in X$ such that

$$(u, x) \in \alpha \land (y, v) \in \alpha.$$

This proves condition (a).

Now, we check the condition (b). Let $s, t \in X$ be arbitrary elements such that $(u, s) \in \alpha$ and $(t, v) \in \alpha$. Now, from $(s, u) \in \alpha^{-1}$, $(u, v) \in \beta$ and $(v, t) \in \alpha^{-1}$ follows $(s, t) \in \alpha^{-1} \circ \beta \circ \alpha^{-1} = \alpha$.

 $(2) \Longrightarrow (1)$. Define a binary relation

$$\alpha' = \{(u,v) \in X \times X : (\forall s,t \in X)((u,s) \in \alpha \land (t,v) \in \alpha \Longrightarrow (s,t) \in \alpha)\}$$

and show that $\alpha^{-1} \circ \alpha' \circ \alpha^{-1} = \alpha$ is valid. Let $(x, y) \in \alpha$. Then there exist elements $u, v \in X$ such that the conditions (a) and (b) are hold. We have $(u, v) \in \alpha'$ by definition of relation α' .

Further, from $(x, u) \in \alpha^{-1}$, $(u, v) \in \alpha'$ and $(v, y) \in \alpha^{-1}$ follows $(x, y) \in \alpha^{-1} \circ \alpha' \circ \alpha^{-1}$. Hence, we have $\alpha \subseteq \alpha^{-1} \circ \alpha' \circ \alpha^{-1}$. Contrary, let $(x, y) \in \alpha^{-1} \circ \alpha' \circ \alpha^{-1}$ be an arbitrary pair. There exist elements $u, v \in X$ such that $(x, u) \in \alpha^{-1}$, $(u, v) \in \alpha'$ and $(v, y) \in \alpha^{-1}$, i.e. such that $(u, x) \in \alpha$ and $(y, v) \in \alpha$, Hence, by definition of relation α' , follows $(x, y) \in \alpha$ since $(u, v) \in \alpha'$. Therefore, $\alpha^{-1} \circ \alpha' \circ \alpha^{-1} \subseteq \alpha$. So, the relation α is a bi-conjugative relation on X since there exists a relation α' such that $\alpha^{-1} \circ \alpha' \circ \alpha^{-1} = \alpha$.

(1) \iff (3). Let α be a bi-conjugative relation. Then there a relation β such that $\alpha = \alpha^{-1} \circ \beta \circ \alpha^{-1}$. Since $\alpha^* = \max\{\beta \in \mathcal{B}(X) : \alpha^{-1} \circ \beta \circ \alpha^{-1} \subseteq \alpha\}$, we have $\beta \subseteq \alpha^*$ and

 $\alpha = \alpha^{-1} \circ \beta \circ \alpha^{-1} \subseteq \alpha^{-1} \circ \alpha^* \circ \alpha^{-1}$. Contrary, let holds $\alpha \subseteq \alpha^{-1} \circ \alpha^* \circ \alpha^{-1}$, for a relation α . Then, we have $\alpha \subseteq \alpha^{-1} \circ \alpha^* \circ \alpha^{-1} \subseteq \alpha$. So, the relation α is bi-conjugative relation on set X.

Corollary 2.4. Let (L, \leq) be a poset. Relation \leq is not a bi-conjugative relation on L.

Proof. Let \leq be a bi-conjugative relation on set X, and let $x, y \in X$ be elements such that $x \notin y$. Then, by previous theorem, there exist elements $u, v \in X$ such that: (a) $u \leq x \land y \leq v$;

(b) $(\forall s, t \in L)((u \leq s \land t \leq v) \Longrightarrow s \leq t).$

Let z be an arbitrary element and if we put z = s = t in formula (b), we have

$$(u \nleq z \land z \nleq v) \Longrightarrow z \nleq z.$$

It is a contradiction. Hence, $\neg(u \leq z \land z \leq v)$. Follows $u \leq z \lor z \leq v$. Further on, let $s, t \in L$ be arbitrary elements such that $u \nleq s$ and $t \nleq v$. For z = s, from the last disjunction we have $u \leq s \lor s \leq v$ and also for z = t we have $u \leq t \lor t \leq v$. So, there are fourth possibilities:

(1) $u \leq s \land u \leq t \land , u \leq s \land t \leq v.$

(2) $u \leq s \wedge t \leq v \wedge u \leq s \wedge t \leq v$.

(3)
$$s \leq v \land t \leq v \land u \leq s \land t \leq v$$
.

(4) $s \leqslant v \land u \leqslant t \land u \notin s \land t \notin v$.

Since, options (1), (2) and (3) are contradictions, it left the possibility (4). In this case, since $u \notin s \implies (u \notin t \lor t \notin s)$ holds as a contraposition of the transitivity $(u \leqslant t \land t \leqslant s) \Longrightarrow u \leqslant s$, we have $s \leqslant v \land u \leqslant t \land (u \notin t \lor t \notin s) \land t \notin v$. Finally, since the option $u \notin t$ is in contradiction with $u \notin t$, we have to $t \notin s$ which is in contradiction with the consequence $s \leq t$ of implication (b). Therefore, the relation \leq cannot satisfies the condition (b) of Theorem 2.3.

Example 2.5. Let α be a bi-conjugative relation on set X. Then there exists a relation β on X such that $\alpha = \alpha^{-1} \circ \beta \circ \alpha^{-1}$. If θ is an equivalence relation on X and $\gamma \in \mathcal{B}(X)$, we define relation

$$\gamma/\theta = \{ (a\theta, b\theta) \in X/\theta \times X/\theta : (\exists a' \in X) (\exists b' \in X) ((a, a') \in \theta \land (a', b') \in \gamma \land (b, b') \in \theta) \}.$$

It is easy to that

It is easy to that

$$\alpha/\theta = (\alpha/\theta)^{-1} \circ \beta/\theta \circ (\alpha/\theta)^{-1}$$

holds. So, the relation α/θ is a bi-conjugative relation on X/θ . Therefore, for any equivalence relation θ on X there is a correspondence $\Phi_{\theta} : \mathcal{BC}(X) \longrightarrow \mathcal{BC}(X/\theta)$.

Example 2.6. Let α' be a bi-conjugative element in $\mathcal{B}(X')$. Then there exists a relation $\beta' \in \mathcal{B}(X')$ such that $\alpha' = (\alpha')^{-1} \circ \beta' \circ (\alpha')^{-1}$. For a mapping $f: X \longrightarrow X'$ and a relation $\gamma' \in \mathcal{B}(X')$ we define $f^{-1}(\gamma')$ by

$$(x,y) \in f^{-1}(\gamma') \iff (f(x),f(y)) \in \gamma'.$$

If f is a surjective mapping, we have:

 $(x,y) \in f^{-1}(\alpha') \iff (x,y) \in (f^{-1}(\alpha'))^{-1} \circ f^{-1}(\beta') \circ (f^{-1}(\alpha'))^{-1}.$

So, the relation $f^{-1}(\alpha')$ is a bi-conjugative relation in $\mathcal{B}(X)$. Since for any equivalence relation θ on X, the mapping $\pi : X \longrightarrow X/\theta$ is a surjective, there is a correspondence $\Psi_{\theta} : \mathcal{BC}(X/\theta) \longrightarrow \mathcal{BC}(X)$ also.

Further on, if $\mathcal{E}(X)$ is the family of all equivalence relations on set X, then for any bi-conjugative relation α in X there is the family $\mathcal{BC}(\alpha) = \{\pi^{-1}(\alpha/\theta) : \theta \in \mathcal{E}(X)\}$ of bi-conjugative relations on X. Such that subfamily is this one $\mathcal{BC}(\nabla_{X/\theta}) = \{\pi^{-1}(\nabla_{X/\theta}) : \theta \in \mathcal{E}(X)\}$.

Acknowledgement: The author is grateful to an anonymous referee for helpful comments and suggestions which improved the paper.

References

- [1] H.J.Bandelt: "Regularity and complete distributivity." Semigroup Forum 19: 123-126, 1980
- H.J.Bandelt: "On regularity classes of binary relations". In: Universal Algebra and Applications. Banach Center Publications, vol. 9: pp. 329-333, 1982
- [3] Jiang Guanghao and Xu Luoshan: "Conjugative Relations and Applications". Semigroup Forum, 80(1): 85-91, 2010
- [4] Jiang Guanghao and Xu Luoshan: "Dually normal relations on sets"; Semigroup Forum, 85(1): 75-80, 2012
- [5] Jiang Guanghao, Xu Luoshan, Cai Jin and Han Guiwen: "Normal Relations on Sets and Applications"; Int. J. Contemp. Math. Sciences, 6(15): 721 - 726, 2011
- [6] D.Hardy and M.Petrich: "Binary relations as lattice isomorphisms"; Ann. Mat. Pura Appl, 177(1): 195-224, 1999
- [7] J.M.Howie: "An introduction to semigroup theory"; Academic press, 1976.
- [8] G.Markowsky: "Idempotents and product representations with applications to the semigroup of binary relations". Semigroup Forum, 5: 95-119, 1972
- [9] D.A.Romano: "Quasi-regular relation on sets a new class of relations on sets", Publications de l'Institut Mathematique, 93(107): 127-132, 2013
- [10] B.M.Schein: "Regular elements of the semigroup of all binary relations". Semigroup Forum 13: 95-102,1976
- [11] A. Zareckii. "The semigroup of binary relations". Mat. Sb. 61(3): 291-305, 1963 (In Russian)
- [12] Xu Xiao-quan and Liu Yingming. "Relational representations of hypercontinuous lattices", in: Domain Theory, Logic, and Computation, Kluwer Academic Publisher, pp. 65-74, 2003

FACULTY OF EDUCATION, EAST SARAJEVO UNIVERSITY, B.B, SEMBERSKI RATARI STREET, 76300 BIJELJINA, BOSNIA AND HERZEGOVINA

E-mail address: bato49@hotmail.com