BI-CONJUGATIVE RELATIONS

DANIEL ABRAHAM ROMANO

Abstract

In this paper the concept of bi-conjugative relations on sets is introduced. Characterizations of this relations are obtained. In addition, particulary we show that the anti-order relation \nless in poset (L, \leqslant) is not a bi-conjugative relation.

Mathematics Subject Classification (2010): Primary 03E02, 06A11; Secondary 20M20
Key words: relations, bi-conjugative relations, semigroup of all binary relations

1. INTRODUCTION AND PRELIMINARIES

The regularity of binary relations was first characterized by Zareckii ([11]). Further criteria for regularity were given by Markowsky ([8]), Schein ([10]) and Xu Xiao-quan and Liu Yingming ([12]) (see also [1] and [2]). The concepts of conjugative relations, dually conjugative relations and dually normal relations were introduced by Guanghao Jiang and Luoshan Xu ([3], [4]), and a characterization of normal relations was introduced and analyzed by Jiang Guanghao, Xu Luoshan, Cai Jin and Han Guiwen in [5].

In this paper, we introduce and analyze bi-conjugative relations on sets.
The following are some basic concepts needed in the sequel, for other nonexplicitly stated elementary notions please refer to papers [1] - [6] and [11], and to book [7].

For a set X, we call ρ a binary relation on X , if $\rho \subseteq X \times X$. Let $\mathcal{B}(X)$ denote the set of all binary relations on X . For $\alpha, \beta \in \mathcal{B}(X)$, define

$$
\beta \circ \alpha=\{(x, z) \in X \times X:(\exists y \in X)((x, y) \in \alpha \wedge(y, z) \in \beta)\} .
$$

The relation $\beta \circ \alpha$ is called the composition of α and β. It is well known that $(\mathcal{B}(X), \circ)$ a semigroup. The relation $\triangle_{X}=\{(x, x): x \in X\}$ is the identity. For a binary relation α on a set X , define $\alpha^{-1}=\{(x, y) \in X \times X:(y, x) \in \alpha\}$ and $\alpha^{C}=X \times X \backslash \alpha$.

The following classes of elements in the semigroup $\mathcal{B}(X)$, given in the following definition, have been investigated:

Definition 1.1. For relation $\alpha \in \mathcal{B}(X)$ we say that it is:

- regular if there exists a relation $\beta \in \mathcal{B}(X)$ such that

$$
\alpha=\alpha \circ \beta \circ \alpha .
$$

- normal ([5]) if there exists a relation $\beta \in \mathcal{B}(X)$ such that

$$
\alpha=\alpha \circ \beta \circ\left(\alpha^{C}\right)^{-1} .
$$

- dually normal ([4]) if there exists a relation $\beta \in \mathcal{B}(X)$ such that

$$
\alpha=\left(\alpha^{C}\right)^{-1} \circ \beta \circ \alpha
$$

- conjugative ([3]) if there exists a relation $\beta \in \mathcal{B}(X)$ such that

$$
\alpha=\alpha^{-1} \circ \beta \circ \alpha
$$

- dually conjugative ([3]) if there exists a relation $\beta \in \mathcal{B}(X)$ such that

$$
\alpha=\alpha \circ \beta \circ \alpha^{-1} .
$$

- quasi-regular ([9]) if there exists a relation $\beta \in \mathcal{B}(X)$ such that

$$
\alpha=\alpha^{C} \circ \beta \circ \alpha
$$

- dually quasi-regular ([9]) if there exists a relation $\beta \in \mathcal{B}(X)$ such that

$$
\alpha=\alpha \circ \beta \circ \alpha^{C} .
$$

Besides that, for $\alpha, \beta \in \mathcal{B}(X)$ and $x, y \in X$, we define the box product of relation α and relation β by

$$
\begin{gathered}
(\alpha \square \beta)(x, y)=\alpha x \times \beta y \\
=\{(u, v) \in X \times X: u \in \alpha x \wedge v \in \beta y\} .
\end{gathered}
$$

Let $\alpha, \beta, \gamma \in \mathcal{B}(X)$ be arbitrary relations, then

$$
\begin{equation*}
\gamma \circ \beta \circ \alpha=\left(\alpha \square \gamma^{-1}\right)(\beta) \tag{1.1}
\end{equation*}
$$

holds. Indeed, we have

$$
\begin{aligned}
(u, v) \in \gamma \circ \beta \circ \alpha & \Longleftrightarrow(\exists a, b \in X)((u, a) \in \alpha \wedge(a, b) \in \beta \wedge(b, v) \in \gamma) \\
& \Longleftrightarrow(\exists(a, b) \in \beta)\left(u \in \alpha a \wedge v \in \gamma^{-1} b\right) \\
& \Longleftrightarrow(\exists(a, b) \in \beta)\left((u, v) \in \alpha a \times \gamma^{-1} b\right) \\
& \Longleftrightarrow(\exists(a, b) \in \beta)\left((u, v) \in\left(\alpha \square \gamma^{-1}\right)(a, b)\right) \\
& \Longleftrightarrow(u, v) \in\left(\alpha \square \gamma^{-1}\right)(\beta) .
\end{aligned}
$$

Now, we can equations, introduced in Definition 1.1, represent in the new way. For example, a conjugative relation α satisfies the following equation $\alpha=(\alpha \square \alpha)(\beta)$, and if α is a dually conjugative relation, then the following equation $\alpha=\left(\alpha^{-1} \square \alpha^{-1}\right)(\beta)$ holds. Analogously, a normal relation α is described by $\alpha=\left(\left(\alpha^{C}\right)^{-1} \square \alpha^{-1}\right)(\beta)$, and a dually normal relation α satisfies the following equation $\alpha=\left(\alpha \square \alpha^{C}\right)(\beta)$. Descriptions of quasi-regular relations and dually quasi-regular relations now appear in the following way: $\alpha=\left(\alpha \square\left(\alpha^{C}\right)^{-1}\right)(\beta)$ and $\alpha=\left(\alpha^{C} \square \alpha^{-1}\right)(\beta)$.

2. Bi-conjugative Relations

Put $\alpha^{1}=\alpha$. It is easy to see that $\left(\alpha^{-1}\right)^{C}=\left(\alpha^{C}\right)^{-1}$ holds. Definition 1.1 describes equalities

$$
\alpha=\left(\alpha^{a}\right)^{i} \circ \beta \circ\left(\alpha^{b}\right)^{j}
$$

for some $\beta \in \mathcal{B}(X)$ where $i, j \in\{-1,1\}$ and $a, b \in\{1, C\}$. We should investigate all other possibilities since some of possibilities given in the previous equation have been investigated. According to this attitude, in the following definition we introduce a new class of elements in $\mathcal{B}(X)$.
Definition 2.1. For relation $\alpha \in \mathcal{B}(X)$ we say that it is a bi-conjugative relation on X if there exists a relation $\beta \in \mathcal{B}(X)$ such that

$$
\begin{equation*}
\alpha=\alpha^{-1} \circ \beta \circ \alpha^{-1} \tag{2.1}
\end{equation*}
$$

It is easy to see that the dual of a bi-conjugative relation α is again a bi-conjugative relation. Besides, for bi-conjugative relation α on a set X the following $\operatorname{Dom}(\alpha)=R(\alpha)$ holds.

The family $\mathcal{B C}(X)$ of all bi-conjugative relations on set X is not empty. For example, $\triangle_{X} \in \mathcal{B C}(X)$ and $\nabla_{X}=\triangle_{X}^{C} \in \mathcal{B C}(X)$. Besides, since for any bijective relation ψ on X

$$
\psi=\triangle_{X} \circ \psi \circ \triangle_{X}=\left(\psi^{-1} \circ \psi\right) \circ \psi \circ\left(\psi \circ \psi^{-1}\right)=\psi^{-1} \circ(\psi \circ \psi \circ \psi) \circ \psi^{-1}
$$

holds, we have $\psi \in \mathcal{B C}(X)$. For symmetric and idempotent relation α on set X we have

$$
\alpha=\alpha^{2}=\alpha \circ \Delta_{X} \circ \alpha=\alpha^{-1} \circ \Delta_{X} \circ \alpha^{-1} .
$$

Therefore, this relation is a bi-conjugative relation on X. Further on, the following implication $\alpha \in \mathcal{B C}(X) \Longrightarrow \alpha^{-1} \in \mathcal{B C}(X)$ holds also.

According to the equation (1.1), the condition (2.1) is equivalent to the following condition

$$
\begin{equation*}
\alpha=\left(\alpha^{-1} \square \alpha\right)(\beta) \tag{2.2}
\end{equation*}
$$

Our first proposition is an adaptation of Schein's result exposed in [10], Theorem 1. (See, also, [2], Lemma 1.)

Theorem 2.2. For a binary relation $\alpha \in \mathcal{B}(X)$, relation

$$
\alpha^{*}=\left(\alpha \circ \alpha^{C} \circ \alpha\right)^{C}
$$

is the maximal element in the family of all relation $\beta \in \mathcal{B}(X)$ such that

$$
\alpha^{-1} \circ \beta \circ \alpha^{-1} \subseteq \alpha
$$

Proof. First, remember ourself that

$$
\max \left\{\beta \in \mathcal{B}(X): \alpha^{-1} \circ \beta \circ \alpha^{-1} \subseteq \alpha\right\}=\cup\left\{\beta \in \mathcal{B}(X): \alpha^{-1} \circ \beta \circ \alpha^{-1} \subseteq \alpha\right\}
$$

Let $\beta \in B(X)$ be an arbitrary relation such that $\alpha^{-1} \circ \beta \circ \alpha^{-1} \subseteq \alpha$. We will prove that $\beta \subseteq \alpha^{*}$. If not, there is $(x, y) \in \beta$ such that $\neg\left((x, y) \in \alpha^{*}\right)$. The last gives:
$(x, y) \in \alpha \circ \alpha^{C} \circ \alpha \Longleftrightarrow$
$(\exists u, v \in X)\left((x, u) \in \alpha \wedge(u, v) \in \alpha^{C} \wedge(v, y) \in \alpha\right) \Longleftrightarrow$
$(\exists u, v \in X)\left((u, x) \in \alpha^{-1} \wedge(u, v) \in \alpha^{C} \wedge(y, v) \in \alpha^{-1} \Longrightarrow\right.$
$(\exists u, v \in X)\left((u, x) \in \alpha^{-1} \wedge(x, y) \in \beta \wedge(y, v) \in \alpha^{-1} \wedge(u, v) \in \alpha^{C}\right) \Longrightarrow$
$(\exists u, v) \in X)\left((u, v) \in \alpha^{-1} \circ \beta \circ \alpha^{-1} \subseteq \alpha \wedge(u, v) \in \alpha^{C}\right)$
We got a contradiction. So, there must be $\beta \subseteq \alpha^{*}$.
On the other hand, we should prove that

$$
\alpha^{-1} \circ \alpha^{*} \circ \alpha^{-1} \subseteq \alpha
$$

Let $(x, y) \in \alpha^{-1} \circ \alpha^{*} \circ \alpha^{-1}$ be an arbitrary element. Then, there are elements $u, v \in X$ such that $(x, u) \in \alpha^{-1},(u, v) \in \alpha^{*}$ and $(v, y) \in \alpha^{-1}$. So, from

$$
(u, x) \in \alpha, \neg\left((u, v) \in \alpha \circ \alpha^{C} \circ \alpha\right),(y, v) \in \alpha
$$

we have $\neg\left((x, y) \in \alpha^{C}\right)$. Suppose that $(x, y) \in \alpha^{C}$. Then, we have $(u, v) \in \alpha \circ \alpha^{C} \circ \alpha$, which is impossible. Hence, we have to $(x, y) \in \alpha$ and therefore, $\alpha^{-1} \circ \alpha^{*} \circ \alpha^{-1} \subseteq \alpha$.

Finally, we conclude that α^{*} is the maximal element of the family of all relations $\beta \in \mathcal{B}(X)$ such that $\alpha^{-1} \circ \beta \circ \alpha^{-1} \subseteq \alpha$.

It is easy to see that holds

$$
\begin{aligned}
\alpha^{\star} & =\left\{(x, y) \in X \times X: \alpha^{-1} \circ\{(x, y)\} \circ \alpha^{-1} \subseteq \alpha\right\} \\
& =\left\{(x, y) \in X \times X: \alpha^{-1} x \times \alpha^{-1} y \subseteq \alpha\right\} .
\end{aligned}
$$

In the following proposition we give a characterization of bi-conjugative relations. It is our adaptation of concept exposed in [6], Theorem 7.2.

Theorem 2.3. For a binary relation α on a set X, the following conditions are equivalent:
(1) α is a bi-conjugative relation.
(2) For all $x, y \in X$, if $(x, y) \in \alpha$, there exist $u, v \in X$ such that:
(a) $(u, x) \in \alpha \wedge(y, v) \in \alpha$,
(b) $(\forall s, t \in X)((u, s) \in \alpha \wedge(t, v) \in \alpha \Longrightarrow(s, t) \in \alpha)$.
(3) $\alpha \subseteq \alpha^{-1} \circ \alpha^{*} \circ \alpha^{-1}$.

Proof. (1) $\Longrightarrow(2)$. Let α be a bi-conjugative relation, i.e. let there exists a relation β such that $\alpha=\alpha^{-1} \circ \beta \circ \alpha^{-1}$. Let $(x, y) \in \alpha$. Then there exist elements $u, v \in X$ such that

$$
(x, u) \in \alpha^{-1},(u, v) \in \beta,(v, y) \in \alpha^{-1}
$$

From this follows that there exist elements $u, v \in X$ such that

$$
(u, x) \in \alpha \wedge(y, v) \in \alpha
$$

This proves condition (a).
Now, we check the condition (b). Let $s, t \in X$ be arbitrary elements such that $(u, s) \in \alpha$ and $(t, v) \in \alpha$. Now, from $(s, u) \in \alpha^{-1},(u, v) \in \beta$ and $(v, t) \in \alpha^{-1}$ follows $(s, t) \in$ $\alpha^{-1} \circ \beta \circ \alpha^{-1}=\alpha$.
$(2) \Longrightarrow(1)$. Define a binary relation

$$
\alpha^{\prime}=\{(u, v) \in X \times X:(\forall s, t \in X)((u, s) \in \alpha \wedge(t, v) \in \alpha \Longrightarrow(s, t) \in \alpha)\}
$$

and show that $\alpha^{-1} \circ \alpha^{\prime} \circ \alpha^{-1}=\alpha$ is valid. Let $(x, y) \in \alpha$. Then there exist elements $u, v \in X$ such that the conditions (a) and (b) are hold. We have $(u, v) \in \alpha^{\prime}$ by definition of relation α^{\prime}.

Further, from $(x, u) \in \alpha^{-1},(u, v) \in \alpha^{\prime}$ and $(v, y) \in \alpha^{-1}$ follows $(x, y) \in \alpha^{-1} \circ \alpha^{\prime} \circ \alpha^{-1}$. Hence, we have $\alpha \subseteq \alpha^{-1} \circ \alpha^{\prime} \circ \alpha^{-1}$. Contrary, let $(x, y) \in \alpha^{-1} \circ \alpha^{\prime} \circ \alpha^{-1}$ be an arbitrary pair. There exist elements $u, v \in X$ such that $(x, u) \in \alpha^{-1},(u, v) \in \alpha^{\prime}$ and $(v, y) \in \alpha^{-1}$, i.e. such that $(u, x) \in \alpha$ and $(y, v) \in \alpha$, Hence, by definition of relation α^{\prime}, follows $(x, y) \in \alpha$ since $(u, v) \in \alpha^{\prime}$. Therefore, $\alpha^{-1} \circ \alpha^{\prime} \circ \alpha^{-1} \subseteq \alpha$. So, the relation α is a bi-conjugative relation on X since there exists a relation α^{\prime} such that $\alpha^{-1} \circ \alpha^{\prime} \circ \alpha^{-1}=\alpha$.
$(1) \Longleftrightarrow(3)$. Let α be a bi-conjugative relation. Then there a relation β such that $\alpha=\alpha^{-1} \circ \beta \circ \alpha^{-1}$. Since $\alpha^{*}=\max \left\{\beta \in \mathcal{B}(X): \alpha^{-1} \circ \beta \circ \alpha^{-1} \subseteq \alpha\right\}$, we have $\beta \subseteq \alpha^{*}$ and
$\alpha=\alpha^{-1} \circ \beta \circ \alpha^{-1} \subseteq \alpha^{-1} \circ \alpha^{*} \circ \alpha^{-1}$ ．Contrary，let holds $\alpha \subseteq \alpha^{-1} \circ \alpha^{*} \circ \alpha^{-1}$ ，for a relation α ．Then，we have $\alpha \subseteq \alpha^{-1} \circ \alpha^{*} \circ \alpha^{-1} \subseteq \alpha$ ．So，the relation α is bi－conjugative relation on set X ．
Corollary 2．4．Let (L, \leqslant) be a poset．Relation \nless is not a bi－conjugative relation on L ．
Proof．Let \nless be a bi－conjugative relation on set X ，and let $x, y \in X$ be elements such that $x \nless y$ ．Then，by previous theorem，there exist elements $u, v \in X$ such that：
（a）$u \nless x \wedge y \nless v$ ；
（b）$(\forall s, t \in L)((u \nless s \wedge t \nless v) \Longrightarrow s \nless t)$ ．
Let z be an arbitrary element and if we put $z=s=t$ in formula（b），we have

$$
(u \nless z \wedge z \nless v) \Longrightarrow z \nless z .
$$

It is a contradiction．Hence，$\neg(u \nless z \wedge z \nless v)$ ．Follows $u \leqslant z \vee z \leqslant v$ ．Further on， let $s, t \in L$ be arbitrary elements such that $u \nless s$ and $t \nless v$ ．For $z=s$ ，from the last disjunction we have $u \leqslant s \vee s \leqslant v$ and also for $z=t$ we have $u \leqslant t \vee t \leqslant v$ ．So，there are fourth possibilities：
（1）$u \leqslant s \wedge u \leqslant t \wedge, u \nless s \wedge t \nless v$ ．
（2）$u \leqslant s \wedge t \leqslant v \wedge u \nless s \wedge t \nless v$ 。
（3）$s \leqslant v \wedge t \leqslant v \wedge u \nless s \wedge t \nless v$ 。
（4）$s \leqslant v \wedge u \leqslant t \wedge u \nless s \wedge t \not v$ 。
Since，options（1），（2）and（3）are contradictions，it left the possibility（4）．In this case，since $u \nless s \Longrightarrow(u \nless t \vee t \nless s)$ holds as a contraposition of the transitivity $(u \leqslant t \wedge t \leqslant s) \Longrightarrow u \leqslant s$ ，we have $s \leqslant v \wedge u \leqslant t \wedge(u \nless t \vee t \nless s) \wedge t \notin v$ ． Finally，since the option $u \nless t$ is in contradiction with $u \leqslant t$ ，we have to $t \nless s$ which is in contradiction with the consequence $s \notin t$ of implication（b）．Therefore，the relation \nless cannot satisfies the condition（b）of Theorem 2．3．

Example 2．5．Let α be a bi－conjugative relation on set X ．Then there exists a relation β on X such that $\alpha=\alpha^{-1} \circ \beta \circ \alpha^{-1}$ ．If θ is an equivalence relation on X and $\gamma \in \mathcal{B}(X)$ ， we define relation
$\gamma / \theta=\left\{(a \theta, b \theta) \in X / \theta \times X / \theta:\left(\exists a^{\prime} \in X\right)\left(\exists b^{\prime} \in X\right)\left(\left(a, a^{\prime}\right) \in \theta \wedge\left(a^{\prime}, b^{\prime}\right) \in \gamma \wedge\left(b, b^{\prime}\right) \in \theta\right)\right\}$.
It is easy to that

$$
\alpha / \theta=(\alpha / \theta)^{-1} \circ \beta / \theta \circ(\alpha / \theta)^{-1}
$$

holds．So，the relation α / θ is a bi－conjugative relation on X / θ ．Therefore，for any equivalence relation θ on X there is a correspondence $\Phi_{\theta}: \mathcal{B C}(X) \longrightarrow \mathcal{B C}(X / \theta)$ ．
Example 2．6．Let α^{\prime} be a bi－conjugative element in $\mathcal{B}\left(X^{\prime}\right)$ ．Then there exists a relation $\beta^{\prime} \in \mathcal{B}\left(X^{\prime}\right)$ such that $\alpha^{\prime}=\left(\alpha^{\prime}\right)^{-1} \circ \beta^{\prime} \circ\left(\alpha^{\prime}\right)^{-1}$ ．For a mapping $f: X \longrightarrow X^{\prime}$ and a relation $\gamma^{\prime} \in \mathcal{B}\left(X^{\prime}\right)$ we define $f^{-1}\left(\gamma^{\prime}\right)$ by

$$
(x, y) \in f^{-1}\left(\gamma^{\prime}\right) \Longleftrightarrow(f(x), f(y)) \in \gamma^{\prime}
$$

If f is a surjective mapping，we have：

$$
(x, y) \in f^{-1}\left(\alpha^{\prime}\right) \Longleftrightarrow(x, y) \in\left(f^{-1}\left(\alpha^{\prime}\right)\right)^{-1} \circ f^{-1}\left(\beta^{\prime}\right) \circ\left(f^{-1}\left(\alpha^{\prime}\right)\right)^{-1} .
$$

So, the relation $f^{-1}\left(\alpha^{\prime}\right)$ is a bi-conjugative relation in $\mathcal{B}(X)$. Since for any equivalence relation θ on X, the mapping $\pi: X \longrightarrow X / \theta$ is a surjective, there is a correspondence $\Psi_{\theta}: \mathcal{B C}(X / \theta) \longrightarrow \mathcal{B C}(X)$ also.

Further on, if $\mathcal{E}(X)$ is the family of all equivalence relations on set X, then for any bi-conjugative relation α in X there is the family $\mathcal{B C}(\alpha)=\left\{\pi^{-1}(\alpha / \theta): \theta \in \mathcal{E}(X)\right\}$ of bi-conjugative relations on X. Such that subfamily is this one $\mathcal{B C}\left(\nabla_{X / \theta}\right)=\left\{\pi^{-1}\left(\nabla_{X / \theta}\right)\right.$: $\theta \in \mathcal{E}(X)\}$.

Acknowledgement: The author is grateful to an anonymous referee for helpful comments and suggestions which improved the paper.

References

[1] H.J.Bandelt: "Regularity and complete distributivity." Semigroup Forum 19: 123-126, 1980
[2] H.J.Bandelt: "On regularity classes of binary relations". In: Universal Algebra and Applications. Banach Center Publications, vol. 9: pp. 329-333, 1982
[3] Jiang Guanghao and Xu Luoshan: "Conjugative Relations and Applications". Semigroup Forum, 80(1): 85-91, 2010
[4] Jiang Guanghao and Xu Luoshan: "Dually normal relations on sets"; Semigroup Forum, 85(1): 75-80, 2012
[5] Jiang Guanghao, Xu Luoshan, Cai Jin and Han Guiwen: "Normal Relations on Sets and Applications"; Int. J. Contemp. Math. Sciences, 6(15): 721 - 726, 2011
[6] D.Hardy and M.Petrich: "Binary relations as lattice isomorphisms"; Ann. Mat. Pura Appl, 177(1): 195-224, 1999
[7] J.M.Howie: "An introduction to semigroup theory"; Academic press, 1976.
[8] G.Markowsky: "Idempotents and product representations with applications to the semigroup of binary relations". Semigroup Forum, 5: 95-119, 1972
[9] D.A.Romano: "Quasi-regular relation on sets - a new class of relations on sets", Publications de l'Institut Mathmatique, 93(107): 127-132, 2013
[10] B.M.Schein: "Regular elements of the semigroup of all binary relations". Semigroup Forum 13: 95-102,1976
[11] A. Zareckiii: "The semigroup of binary relations". Mat. Sb. 61(3): 291-305, 1963 (In Russian)
[12] Xu Xiao-quan and Liu Yingming. "Relational representations of hypercontinuous lattices", in: Domain Theory, Logic, and Computation, Kluwer Academic Publisher, pp. 65-74, 2003

Faculty of Education, East Sarajevo University, b.b, Semberski Ratari Street, 76300 Bijeljina, Bosnia and Herzegovina

E-mail address: bato49@hotmail.com

