FINITELY BI-CONJUGATIVE RELATIONS

DANIEL A. ROMANO

Abstract

In this paper, the concept of finitely bi-conjugative relations is introduced. A characterization of this relations is obtained. Particulary we show when the anti-order relation \nless is a finitely bi-conjugative relation.

Article history:

Received 1 September 2016
Received in revised form 13 January 2017
Accepted 13 January 2017

1. Introduction

The concept of finitely conjugative relations was introduced by Guanghao Jiang and Luoshan Xu in [1], the concept of finitely dual normal relations was introduced and analyzed by Jiang Guanghao and Xu Luoshan in [2] and the concept of finitely quasi-conjugative relations was introduced and analyzed by these authors in [3]. In this article, we introduce and analyze the notion of finitely bi-conjugative relations as a continuation of our article [4].

For a set X, we call ρ a relation on X , if $\rho \subseteq X \times X$. Let $\mathcal{B}(X)$ be denote the set of all binary relations on X . For $\alpha, \beta \in \mathcal{B}(X)$, define

$$
\beta \circ \alpha=\{(x, z) \in X \times X:(\exists y \in X)((x, y) \in \alpha \wedge(y, z) \in \beta)\} .
$$

The relation $\beta \circ \alpha$ is called the composition of α and β. It is well known that $(\mathcal{B}(X), \circ)$ is a semigroup. The latter family, with the composition, is not only a semigroup, but also a monoid. Namely, $\triangle_{X}=\{(x, x): x \in X\}$ is its identity element. For a relation α on a set X, define $\alpha^{-1}=\{(x, y) \in X \times X:(y, x) \in \alpha\}$ and $\alpha^{C}=(X \times X) \backslash \alpha$.

Let A and B be subsets of X. For $\alpha \in \mathcal{B}(X)$, set

$$
A \alpha=\{y \in X:(\exists a \in A)((a, y) \in \alpha)\}, \quad \alpha B=\{x \in X:(\exists b \in B)((x, b) \in \alpha)\}
$$

It is easy to see that $A \alpha=\alpha^{-1} A$ holds. Specially, we put $a \alpha$ if $\{a\} \alpha$ and αb if $\alpha\{b\}$.

[^0]
2. Bi-CONJUGATIVE RELATIONS

The following classes of elements in the semigroup $\mathcal{B}(X)$ have been investigated: - regular if there exists a relation $\beta \in \mathcal{B}(X)$ such that

$$
\alpha=\alpha \circ \beta \circ \alpha .
$$

- dually normal ([2]) if there exists a relation $\beta \in \mathcal{B}(X)$ such that

$$
\alpha=\left(\alpha^{C}\right)^{-1} \circ \beta \circ \alpha .
$$

- conjugative ([1]) if there exists a relation $\beta \in \mathcal{B}(X)$ such that

$$
\alpha=\alpha^{-1} \circ \beta \circ \alpha .
$$

- dually conjugative ([1]) if there exists a relation $\beta \in \mathcal{B}(X)$ such that

$$
\alpha=\alpha \circ \beta \circ \alpha^{-1} .
$$

The notion of bi-conjugative relation was introduced in the paper [4] by the following way:

Definition 2.1. For a relation $\alpha \in \mathcal{B}(X)$ we say that it is a bi-conjugative relation on X if there exists a relation $\beta \in \mathcal{B}(X)$ such that

$$
\alpha=\alpha^{-1} \circ \beta \circ \alpha^{-1}
$$

The family $\mathcal{B C}(X)$ of all bi-conjugative relations on set X is not empty. For example, $\triangle_{X} \in \mathcal{B C}(X)$ and $\nabla_{X}=\triangle_{X}^{C} \in \mathcal{B C}(X)$.

3. Finitely bi-conjugative Relations

In this section we introduce the concept of finitely bi-conjugative relations and give a characterization of this relations. For that we need the concept of finite extension of a relation. That notion and belonging notation we borrow from articles [1] and [2]. For any set X, let $X^{(<\omega)}=\{F \subseteq X: F$ is finite and nonempty $\}$.

Definition 3.1. ([1], Definition 3.3; [2], Definition 3.4) Let α be a binary relation on a set X. Define a binary relation $\alpha^{(<\omega)}$ on $X^{(<\omega)}$, called the finite extension of α, such that

$$
\left(\forall F, G \in X^{(<\omega)}\right)\left((F, G) \in \alpha^{(<\omega)} \Longleftrightarrow G \subseteq F \alpha\right) .
$$

From Definition 3.1, we immediately obtain that

$$
\left(\forall F, G \in X^{(<\omega)}\right)\left((F, G) \in\left(\alpha^{-1}\right)^{(<\omega)} \Longleftrightarrow G \subseteq F \alpha^{-1}=\alpha F\right)
$$

Now, we can introduce concept of finitely bi-conjugative relation.
Definition 3.2. A relation α on a set X is called finitely bi-conjugative if there exists a relation $\beta^{(<\omega)}$ on $X^{(<\omega)}$ such that

$$
\alpha^{(<\omega)}=\left(\alpha^{-1}\right)^{(<\omega)} \circ \beta^{(<\omega)} \circ\left(\alpha^{-1}\right)^{(<\omega)} .
$$

Although it seems, in accordance with Definition 2.1, it would be better to call a relation α on X to be finitely bi-conjugative if its finite extension to $X^{(<\omega)}$ is a bi-conjugative relation, we will not use that option. That concept is different from our concept given by Definition 3.2.

Now we give an essential characterization of finitely bi-conjugative relations.

Theorem 3.1. A relation α on a set X if a finitely bi-conjugative relation if and only if for all $F, G \in X^{(<\omega)}$, if $G \subseteq F \alpha$, then there are $U, V \in X^{(<\omega)}$, such that
(i) $U \subseteq \alpha F, G \subseteq \alpha V$, and
(ii) for all $S, T \in X^{(<\omega)}$, if $U \subseteq \alpha S$ and $T \subseteq \alpha V$ then $T \subseteq S \alpha$.

Proof. (Necessity) Let α be a finitely bi-conjugative relation on set X. Then there is a relation $\beta^{(<\omega)} \subseteq\left(X^{(<\omega)}\right)^{2}$ such that $\left(\alpha^{-1}\right)^{(<\omega)} \circ \beta^{(<\omega)} \circ\left(\alpha^{-1}\right)^{(<\omega)}=\alpha^{(<\omega)}$. For all $(F, G) \in\left(X^{(<\omega)}\right)^{2}$, if $G \subseteq F \alpha$, i.e., $(F, G) \in \alpha^{(<\omega)}$, thus $(F, G) \in\left(\alpha^{-1}\right)^{(<\omega)} \circ \beta^{(<\omega)} \circ$ $\left(\alpha^{-1}\right)^{(<\omega)}$. Therefore, there are U and V in $\left(X^{(<\omega)}\right)$ such that $(F, U) \in\left(\alpha^{-1}\right)^{(<\omega)}$, $(U, V) \in \beta^{(<\omega)}$ and $(V, G) \in\left(\alpha^{-1}\right)^{(<\omega)}$, i.e., $U \subseteq F \alpha^{-1}=\alpha F, G \subseteq V \alpha^{-1}=\alpha V$. Hence we have got the condition (i).

Now we check the condition (ii). For all $(S, T) \in\left(X^{(<\omega)}\right)^{2}$, if $U \subseteq \alpha S$ and $T \subseteq \alpha V$, i.e., $(S, U) \in\left(\alpha^{-1}\right)^{(<\omega)}$ and $(V, T) \in\left(\alpha^{-1}\right)^{(<\omega)}$, then by $(U, V) \in \beta^{(<\omega)}$, we have $(S, T) \in\left(\alpha^{-1}\right)^{(<\omega)} \circ \beta^{(<\omega)} \circ\left(\alpha^{-1}\right)^{(<\omega)}$, i.e., $(S, T) \in \alpha^{(<\omega)}$. Hence $T \subseteq S \alpha$.
(Sufficiency) Let α be a relation on a set X such that for $F, G \in X^{(<\omega)}$ with $G \subseteq F \alpha$ there are $U, V \in X^{(<\omega)}$ such that conditions (i) and (ii) hold. Define a binary relation $\beta^{(<\omega)} \subseteq X^{(<\omega)} \times X^{(<\omega)}$ by

$$
(F, G) \in \beta \Longleftrightarrow\left(\forall S, T \in X^{(<\omega)}\right)((F \subseteq \alpha S \wedge T \cap \alpha G \neq \emptyset) \Longrightarrow T \cap S \alpha \neq \emptyset) .
$$

First, check that

$$
\begin{equation*}
\left(\alpha^{-1}\right)^{(<\omega)} \circ \beta^{(<\omega)} \circ\left(\alpha^{-1}\right)^{(<\omega)} \subseteq \alpha^{(<\omega)} \tag{3.1}
\end{equation*}
$$

holds. For all $H, W \in X^{(<\omega)}$, if $(H, W) \in\left(\alpha^{-1}\right)^{(<\omega)} \circ \beta^{(<\omega)} \circ\left(\alpha^{-1}\right)^{(<\omega)}$, then there are $F, G \in X^{(<\omega)}$ with $(H, F) \in\left(\alpha^{-1}\right)^{(<\omega)},(F, G) \in \beta^{(<\omega)}$ and $(G, W) \in$ $\left(\alpha^{-1}\right)^{(<\omega)}$. Then $F \subseteq H \alpha^{-1}=\alpha H$ and $W \subseteq G \alpha^{-1}=\alpha G$. For all $w \in W$, let $S=H, T=\{w\}$. Then $F \subseteq \alpha S$ and $\alpha G \cap T \neq \emptyset$ because $w \in T$ and $w \in \alpha G$. Since $(F, G) \in \beta^{(<\omega)}$, we have that $F \subseteq \alpha S \wedge \alpha G \cap T \neq \emptyset$ implies $T \cap S \alpha \neq \emptyset$. Hence, $w \in S \alpha$, i.e. $W \subseteq S \alpha$. So, we have $(H, W)=(S, W) \in \alpha^{(<\omega)}$. Therefore, we have $\left(\alpha^{-1}\right)^{(<\omega)} \circ \beta^{(<\bar{\omega})} \circ\left(\alpha^{-1}\right)^{(<\omega)} \subseteq \alpha^{(<\omega)}$.

The second, check that

$$
\begin{equation*}
\alpha^{(<\omega)} \subseteq\left(\alpha^{-1}\right)^{(<\omega)} \circ \beta^{(<\omega)} \circ\left(\alpha^{-1}\right)^{(<\omega)} \tag{3.2}
\end{equation*}
$$

holds. For all $H, W \in X^{(<\omega)}$, if $(H, W) \in \alpha^{(<\omega)}$ (i.e., $W \subseteq H \alpha$), there are $A, B \in X^{(<\omega)}$ such that:
(i') $A \subseteq \alpha H, W \subseteq \alpha B$, and
(ii') for all $S, T \in X^{(<\omega)}$, if $A \subseteq \alpha S$ and $T \subseteq \alpha B$, then $T \subseteq S \alpha$.
Now, we have to show that $(A, B) \in \beta^{(<\omega)}$. Let be for all $(C, D) \in\left(X^{(<\omega)}\right)^{2}$ the following $A \subseteq \alpha D$ and $D \cap \alpha B \neq \emptyset$ hold. From $D \cap \alpha B \neq \emptyset$ follows that there exists an element $d \in D \cap \alpha B(\neq \emptyset)$. So, $d \in D$ and $d \in \alpha B$. Put $S=C$ and $T=\{d\}$. Then, by (ii'), we have

$$
(A \subseteq \alpha S \wedge T=\{d\} \subseteq \alpha B) \Longrightarrow\{d\}=T \subseteq S \alpha
$$

i.e. $\emptyset \neq D \cap S \alpha=T \cap S \alpha$. Therefore, $(A, B) \in \beta^{(<\omega)}$ by definition of $\beta^{(<\omega)}$. Finally, for $(H, A) \in\left(\alpha^{-1}\right)^{(<\omega)},(A, B) \in \beta^{(<\omega)}$ and $(B, W) \in\left(\alpha^{-1}\right)^{(<\omega)}$ follows that $(H, W) \in\left(\alpha^{-1}\right)^{(<\omega)} \circ \beta^{(<\omega)} \circ\left(\alpha^{-1}\right)^{(<\omega)}$.

By assertion (3.1) and (3.2), we have $\alpha^{(<\omega)}=\left(\alpha^{-1}\right)^{(<\omega)} \circ \beta^{(<\omega)} \circ\left(\alpha^{-1}\right)^{(<\omega)}$. So, α is a finitely bi-conjugative relation on X.

Particulary, if we put $F=\{x\}$ and $G=\{y\}$ in the Theorem 3.1, we give the following consequent.

Corollary 3.1. Let α be a relation on a set X. Then α is a finitely bi-conjugative relation on X if and only if for all elements $x, y \in X$ such that $(x, y) \in \alpha$ there are finite subsets $U=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ in $X^{(<\omega)}$ such that
$\left(1^{0}\right)(\forall i \in\{1,2, \ldots, m\})\left(\left(u_{i}, x\right) \in \alpha\right) \wedge(\exists j \in\{1,2, \ldots, n\})\left(\left(y, v_{j}\right) \in \alpha\right)$, and
$\left(2^{0}\right)$ for all $S=\left\{s_{1}, s_{2}, \ldots, s_{p}\right\}$ in $X^{(<\omega)}$ and $t \in X$ holds

$$
\left(U \subseteq \alpha S \wedge\left(\exists v_{j} \in V\right)\left(\left(t, v_{j}\right) \in \alpha\right)\right) \Longrightarrow\left(\exists s_{k} \in S\right)\left(\left(s_{k}, t\right) \in \alpha\right)
$$

Proof. Let α be a finitely bi-conjugative relation on X and let x, y be elements of X such that $(x, y) \in \alpha$. If we put $F=\{x\}$ and $G=\{y\}$ in Theorem 3.1, then there exist finite subsets $U=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ in $X^{(<\omega)}$ such that conditions $\left(1^{0}\right)$ and $\left(2^{0}\right)$ hold.

Opposite, let for all elements x, y in X such that $(x, y) \in \alpha$ there are $U=$ $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ in $X^{(<\omega)}$ such that conditions $\left(1^{0}\right)$ and (2^{0}) hold. Define binary relation $\beta^{(<\omega)} \subseteq X^{<\omega} \times X^{<\omega}$ by

$$
(A, B) \in \beta^{(<\omega)} \Longleftrightarrow\left(\forall S \in X^{<\omega}\right)(\forall t \in X)((A \subseteq \alpha S \wedge t \in \alpha B) \Longrightarrow t \in S \alpha)
$$

The proof that the equality $\left(\alpha^{-1}\right)^{(<\omega)} \circ \beta^{(<\omega)} \circ\left(\alpha^{-1}\right)^{(<\omega)}=\alpha^{(<\omega)}$ holds is some as in the Theorem 3.1. So, α is a finitely bi-conjugative relation.

At end of this note, we show when the anti-order relation \nless on poset (L, \leqslant) is a finitely bi-conjugative idempotent relation.

Theorem 3.2. Let (L, \leqslant) be a poset. Then the relation \nless on L is a finitely beconjugative relation if and only if for all $x, y \in L$ such that $x \notin y$, there exist finite subsets $U=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of L such that
(a) $(\forall i \in\{1,2, \ldots, m\})\left(u_{i} \nless x\right)$ and $(\exists j \in\{1,2, \ldots, n\})\left(y \nless v_{j}\right)$ and (b) $(\forall z \in L)\left((\exists i \in\{1,2, \ldots, m\})\left(u_{i} \leqslant z\right) \vee(\forall j \in\{1,2, \ldots, n\})\left(z \leqslant v_{j}\right)\right)$.

Proof. Let $x, y \in L$ such that $x \nless y$. Then, since \nless is a finitely bi-conjugative relation on L, there exist finite subsets $U=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of L such that
(1) $(\forall i \in\{1,2, \ldots, m\})\left(u_{i} \nless x\right) \wedge(\exists j \in\{1,2, \ldots, n\})\left(y \nless v_{j}\right)$, and
(2) for all $S=\left\{s_{1}, s_{2}, \ldots, s_{p}\right\}$ in $L^{(<\omega)}$ and $t \in L$ the following holds

$$
\left(\left(\forall u_{i} \in U\right)\left(\exists s_{k} \in S\right)\left(u_{i} \nless s_{k}\right) \wedge\left(\exists v_{j} \in V\right)\left(t \nless v_{j}\right)\right) \Longrightarrow\left(\exists s_{k^{\prime}} \in S\right)\left(s_{k^{\prime}} \nless t\right) .
$$

For $z \in L$, let $S=\{z\}=\{t\}$. Then by (2), from

$$
\left(\forall u_{i} \in U\right)\left(u_{i} \nless z\right) \wedge\left(\exists v_{j} \in V\right)\left(z \nless v_{j}\right)
$$

implies $z \not \approx z$. It is a contradiction. Hence, we have

$$
\neg\left(\left(\forall u_{i} \in U\right)\left(u_{i} \nless z\right) \wedge\left(\exists v_{j} \in V\right)\left(z \nless v_{j}\right)\right) .
$$

So, finally, we have

$$
(\exists i \in\{1,2, \ldots, m\})\left(u_{i} \leqslant z\right) \vee(\forall j \in\{1,2, \ldots, n\})\left(z \leqslant v_{j}\right)
$$

Let for $(x, y) \in L^{2}$ be $x \nless y$ holds and let there exist finite subsets $U=$ $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of L satisfying conditions (a) and (b). So, the condition (a) is the condition $\left(1^{0}\right)$ in Corollary 3.1.

Let $S \in L^{(<\omega)}$ and $t \in L$ with

$$
\left(\forall u_{i} \in U\right)\left(\exists s_{k} \in S\right)\left(u_{i} \nless s_{k}\right) \text { and }\left(\exists v_{j} \in V\right)\left(t \nless v_{j}\right)
$$

holds. Suppose that $\left(\forall s_{k} \in S\right)\left(s_{k} \leqslant t\right)$ holds. Then, by (b), for $S=\{s\}$ and $z=s$, we have

$$
\left(\exists u_{i} \in U\right)\left(u_{i} \leqslant s\right) \vee\left(\forall v_{j} \in V\right)\left(s \leqslant v_{j}\right)
$$

The first option is impossible because $\left(\forall u_{i}\right)\left(u_{i} \nless s\right)$. Let the option $\left(\forall v_{j} \in V\right)(s \leqslant$ $\left.v_{j}\right)$ be valid. Then from $\left(\exists v_{j} \in V\right)\left(t \not v_{j}\right)$ and $s \leqslant t$ follows $\left(\exists v_{j} \in V\right)\left(s \nless v_{j}\right)$. It is in contradiction with $\left(\forall v_{j} \in V\right)\left(s \leqslant v_{j}\right)$. So, must to be $\neg\left(\forall s_{k} \in S\right)\left(s_{k} \leqslant t\right)$. Thus $\left(\exists s_{k} \in S\right)\left(s_{k} \nless t\right)$. Hence \nless satisfies also condition $\left(2^{0}\right)$ in Corollary 3.1. Finally, the relation \nless is a finitely bi-conjugative relation on L.

References

[1] Guanghao Jiang and Luoshan Xu: Conjugative relations and applications. Semigroup Forum, 80(1)(2010), 85-91.
[2] Guanghao Jiang and Luoshan Xu: Dually normal relations on sets and applications; Semigrouop Forum, 85(1)(2012), 75-80.
[3] D.A.Romano and M.Vinčić: Finitelly quasi-conjugative relations; Bull. Int. Math. Virtual Inst., 3(1)(2013), 29-34.
[4] D.A.Romano: Bi-conjugative relation; Rom. J. Math. Comput. Sci., $4(2)(2014), 203-208$.

Home: 6, Kordunaška Street, 78000 banja Luka, Bosnia and Herzegovina

E-mail address: bato49@hotmail.com
Work 1: East Sarajevo University, Bijeljina Faculty of Education, 76300 Bijeljina, b.b, Semberski Ratari Street, Bosnia and Herzegovina

Work 2: Banja Luka University, Faculty of Mechanical Engineering, 78000 Banja Luka, 71, Vojvoda Stepa Stepanović Street, Bosnia and Herzegovina

[^0]: 2010 Mathematics Subject Classification. 20M20, 03E02, 06A11.
 Key words and phrases. Relations, bi-conjugative relations, finitely biconjugative relations.

