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Abstract

In this paper, a numerical method for solving variational problems is presented.
The method is based upon hybrid functions approximation. The properties of hy-
brid functions consisting of block-pulse functions and Bernoulli polynomials are
presented. The operational matrices of integration and product and the integra-
tion of the cross product of two hybrid functions of block-pulse and Bernoulli
polynomials vectors are then utilized to reduce the variational problems to the
solution of algebraic equations. Illustrative examples are included to demonstrate
the validity and applicability of the technique.

Mathematics Subject Classification: 33F05; 41A30; 49M30

Keywords: Hybrid; Bernoulli polynomials; block-pulse; variational; numerical
solution

1 Introduction

In the large number of problems arising in analysis, mechanics, geometry, etc., it is nec-
essary to determine the maximal and minimal of a certain functional. Such Problems
are called variational problems [28]. The direct method of Ritz and Galerkin in solving
variational problems has been of considerable concern and is well covered in many text-
books [6, 7, 8].
The available sets of orthogonal functions can be divided into three classes. The first
class includes sets of piecewise constant basis functions (PCBF’s)(e.g., block-pulse, Haar,
Walsh, etc.). The second class consists of sets of orthogonal polynomials (e.g., Cheby-
shev, Laguerre, Legendre, etc.). The third class is the set of sine-cosine functions in the
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Fourier series. Orthogonal functions have been used when dealing with various prob-
lems of the dynamical systems. The main advantage of using orthogonal functions is that
they reduce the dynamical system problems to those of solving a system of algebraic
equations. The approach is based on converting the underlying differential equation
into an integral equation through integration, approximating various signals involved
in the equation by truncated orthogonal functions, and using the operational matrix of
integration P to eliminate the integral operations. Special attention has been given to
applications of Walsh functions [4], Chebyshev polynomials [9], Laguerre polynomials
[12], Legendre polynomials [3] and Fourier series [23]. Among orthogonal polynomials,
the shifted Legendre polynomials pm(t), m = 0, 1, 2, ..., where 0 ≤ t ≤ 1, is computation-
ally more effective [20]. The Bernoulli polynomials and Taylor series are not based on
orthogonal functions, nevertheless, they possess the operational matrix of integration.
However, since the integration of the cross product of two Taylor series vectors is given
in terms of a Hilbert matrix [24], which are known to be ill-posed, the applications of
Taylor series are limited.

For approximating an arbitrary time function the advantages of Bernoulli polyno-
mials βm(t), m = 0, 1, 2, ...,M, where 0 ≤ t ≤ 1, over shifted Legendre polynomials
pm(t), m = 0, 1, 2, ...,M, are:

a) the operational matrix P , in Bernoulli polynomials has less errors than P for shifted
Legendre polynomials for 1 < M < 10. This is because for P in βm(t) we ignore the

term βM+1(t)

M+1
while for P in pm(t) we ignore the term pM+1(t)

2(2M+1)
;

b) the Bernoulli polynomials have less terms than shifted Legendre polynomials. For
example β6(t), has 5 terms while p6(t), has 7 terms, and this difference will increase by
increasing m. Hence for approximating an arbitrary function we use less CPU time by
applying Bernoulli polynomials as compared to shifted Legendre polynomials;

c) the coefficient of individual terms in Bernoulli polynomials βm(t), are smaller than
the coefficient of individual terms in the shifted Legendre polynomials pm(t). Since the
computational errors in the product are related to the coefficients of individual terms,
the computational errors are less by using Bernoulli polynomials.

In recent years the hybrid functions consisting of the combination of block-pulse
functions with Chebyshev polynomials [13, 22, 29], Legendre polynomials [11, 16, 21], or
Taylor series [15, 17, 18] have been shown to give excellent results for discretization of
selected problems. Among these three hybrid functions, the hybrid functions of block-
pulse and Legendre polynomials have shown to be computationally more effective.

The outline of this paper is as follows: In sections 2 we introduce properties of hybrid
functions. Section 3 is devoted to the problem statement. In section 4 the numerical
method is used to approximate the variational problems and in Section 5 we report our
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numerical findings and demonstrate the accuracy of the proposed numerical scheme by
considering four numerical examples.

2 Properties of Hybrid Functions

2.1 Hybrid of block-pulse and Bernoulli polynomials

Hybrid functions bnm(t), n = 1, 2, . . . , N, m = 0, 1, . . . ,M are defined on the interval
[0, tf ) as

bnm(t) =

{
βm(N

tf
t− n + 1), t ∈ [n−1

N
tf ,

n
N

tf ),

0, otherwise,
(1)

where n and m are the order of block-pulse functions and Bernoulli polynomials, respec-
tively. In Eq. (1), βm(t), m = 0, 1, 2, ... are the Bernoulli polynomials of order m, which
can be defined by [5]

βm(t) =
m∑

k=0

(
m
k

)
αkt

m−k,

where αk, k = 0, 1, ...,m are Bernoulli numbers. These numbers are a sequence of
signed rational numbers which arise in the series expansion of trigonometric functions
[1] and can be defined by the identity

t

et − 1
=

∞∑
n=0

αn
tn

n!
.

The first few Bernoulli numbers are

α0 = 1,
α1 = −1

2
,

α2 = 1
6
,

α4 = −1
30

,

with α2k+1 = 0, k = 1, 2, 3, . . ..

The first few Bernoulli polynomials are

β0(t) = 1,
β1(t) = t− 1

2
,

β2(t) = t2 − t + 1
6
,

β3(t) = t3 − 3
2
t2 + 1

2
t.

These polynomials satisfy the following formula [1]
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βm(0) = αm, m ≥ 0, (2)∫ x

a

βm(t)dt =
βm+1(x)− βm+1(a)

m + 1
, (3)∫ 1

0

βn(t)βm(t)dt = (−1)n−1 m!n!

(m + n)!
αn+m, m, n ≥ 1. (4)

According to [14], Bernoulli polynomials, form a complete basis over the interval [0,1].

2.2 Function approximation

Suppose that H = L2[0, 1] and {b10(t), b20(t), ..., bNM(t)} ⊂ H be the set of hybrid of
block-pulse and Bernoulli polynomials and

Y = span{b10(t), b20(t), ..., bN0(t), b11(t), b21(t), ..., bN1(t), ..., b1M(t), b2M(t), ..., bNM(t)},

and f be an arbitrary element in H. Since Y is a finite dimensional vector space, f has
the unique best approximation out of Y such as f0 ∈ Y, that is

∀y ∈ Y, ‖ f − f0 ‖≤‖ f − y ‖ .

Since f0 ∈ Y, there exists the unique coefficients c10, c20, ..., cNM such that

f ' f0 =
M∑

m=0

N∑
n=1

cnmbnm(t) = CT B(t), (5)

where

BT (t) = [b10(t), b20(t), ..., bN0(t), b11(t), b21(t), ..., bN1(t), ..., b1M(t), b2M(t), ..., bNM(t)], (6)

and
CT = [c10, c20, ..., cN0, c11, c21, ..., cN1, ..., c1M , c2M , ..., cNM ]. (7)

2.3 Integration of B(t)BT (t)

Using Eq. (5) we obtain

fij =<
M∑

m=0

N∑
n=1

cnmbnm(t), bij(t) >=
M∑

m=0

N∑
n=1

cnmdij
nm,

i = 1, 2, ..., N, j = 0, 1, ...,M,
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where fij =< f, bij(t) >, dij
nm =< bnm(t), bij(t) >, and <,> denotes inner product.

Therefore

fij = CT [dij
10, d

ij
20, ..., d

ij
N0, d

ij
11, d

ij
21, ..., d

ij
N1, ..., d

ij
1M , dij

2M , ..., dij
NM ]T ,

i = 1, 2, ..., N, j = 0, 1, ...,M.

So we get
Φ = DT C,

with
Φ = [f10, f20, . . . , fN0, f11, f21, . . . , fN1, . . . , f1M , f2M , . . . , fNM ]T ,

and
D = [dij

nm],

where D is a matrix of order N(M + 1)×N(M + 1) and is given by

D =

∫ 1

0

B(t)BT (t)dt. (8)

Using Eq. (4) in each interval n = 1, 2, ..., N, we can get matrix D. For example with
N = 2 and M = 3, D is

D =
1

2



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1

12
0 0 0 −1

120
0

0 0 0 1
12

0 0 0 −1
120

0 0 0 0 1
180

0 0 0
0 0 0 0 0 1

180
0 0

0 0 −1
120

0 0 0 1
840

0
0 0 0 −1

120
0 0 0 1

840


.

It is seen that the matrix D is a sparse matrix. Furthermore, if we choose large values
of M and N the non zero elements of D will tend to zero.

2.4 Operational matrix of integration

The integration of the B(t) defined in Eq. (6) is given by∫ t

0

B(t′)dt′ ' PB(t), (9)

where P is the N(M + 1)×N(M + 1) operational matrix of integration and is given by
[19]
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P =
tf
N


P0 I O ... O
−1
2

α2I O 1
2
I ... O

...
...

...
. . .

...
−1
M

αMI O O ... 1
M

I
−1

M+1
αM+1I O O ... O

 ,

where I and O are N ×N identity and zero matrices respectively, and

P0 =


−α1 1 ... 1 1

0 −α1 ... 1 1
...

...
. . .

...
...

0 0 ... −α1 1
0 0 ... 0 −α1

 .

It is seen that P is a sparse matrix.

2.5 The operational matrix of product

The following property of the product of two hybrid function vectors will also be used.
Let

B(t)BT (t)C ' C̃B(t), (10)

where C̃ is a N(M + 1) × N(M + 1) product operational matrix. To illustrate the
calculation procedure we choose tf = 1, M = 2 and N = 3. Thus we have

C = [c10, c20, c30, c11, c21, c31, c12, c22, c32]
T , (11)

B(t) = [b10(t), b20(t), b30(t), b11(t), b21(t), b31(t), b12(t), b22(t), b32(t)]
T . (12)

In Eq. (12) we have

b10(t) = 1
b11(t) = 3t− 1

2

b12(t) = 9t2 − 3t + 1
6

 0 ≤ t <
1

3
, (13)

b20(t) = 1
b21(t) = (3t− 1)− 1

2

b22(t) = (3t− 1)2 − (3t− 1) + 1
6

 1

3
≤ t <

2

3
, (14)

b30(t) = 1
b31(t) = (3t− 2)− 1

2

b32(t) = (3t− 2)2 − (3t− 2) + 1
6

 2

3
≤ t < 1. (15)
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We also get

B(t)BT (t) =



b10b10 b10b20 b10b30 · · · b10b12 b10b22 b10b32

b20b10 b20b20 b20b30 · · · b20b12 b20b22 b20b32

b30b10 b30b20 b30b30 · · · b30b12 b30b22 b30b32
...

...
...

...
...

...
...

b12b10 b12b20 b12b30 · · · b12b12 b12b22 b12b32

b22b10 b22b20 b22b30 · · · b22b12 b22b22 b22b32

b32b10 b32b20 b32b30 · · · b32b12 b32b22 b32b32


. (16)

From Eqs. (14)-(15) we have

bijbkl = 0, i 6= k,
bi0bij = bij,
bi1bi1 = 1

12
bi0 + bi2,

bi1bi2 = 1
6
bi1 + bi3,

bi2bi2 = 1
180

bi0 + 1
3
bi2 + bi4.

Using Eq. (16) we get

B(t)BT (t) =



b10 0 0 · · · b12 0 0
0 b20 0 · · · 0 b22 0
0 0 b30 · · · 0 0 b32
...

...
...

...
...

...
...

b12 0 0 · · · 1
180

b10 + 1
3
b12 0 0

0 b22 0 · · · 0 1
180

b20 + 1
3
b22 0

0 0 b32 · · · 0 0 1
180

b30 + 1
3
b32


.

From the vector C in Eq. (11), the 9× 9 matrix C̃ in Eq. (10) is given by

C̃ =

 C̃0 C̃1 C̃2
1
12

C̃1 C̃0 + 1
6
C̃2 C̃1

1
180

C̃2
1
6
C̃1 C̃0 + 1

3
C̃2

 ,

where C̃i, i = 0, 1, 2 are 3× 3 matrices given by

C̃i =

 c1i 0 0
0 c2i 0
0 0 c3i

 .

Similarly for other values of M and N , the product operational matrix C̃ in Eq. (10)
can be obtained.
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3 Problem statement

Consider the following variational problems:

J [x(t)] =

∫ 1

0

F (t, x(t), ẋ(t), . . . , x(n)(t))dt, (17)

with the boundary conditions

x(0) = a0, ẋ(0) = a1, . . . , x
(n−1)(0) = an−1, (18)

x(1) = b0, ẋ(1) = b1, . . . , x
(n−1)(1) = bn−1. (19)

The problem is to find the extremum of Eq. (17), subject to boundary conditions in
Eqs. (18) and (19). The method consists of reducing the variational problems into a set
of algebraic equations by first expanding x(n)(t) in terms of a hybrid of block-pulse and
Bernoulli polynomials with unknown coefficients.

4 The numerical method

By expanding x(n)(t) in the hybrid of block-pulse and Bernoulli polynomials we have,

x(n)(t) = XT B(t). (20)

where X is vector of order N × (M + 1) given by

X = [x10, x20, ..., xN0, x11, x21, ..., xN1, ..., x1M , x2M , ..., xNM ]T ,

By integrating Eq. (20) from 0 to t we get

x(n−1)(t)− x(n−1)(0) =

∫ t

0

XT B(t′)dt′ = XT PB(t),

where P is operational matrix of integration given in Eq. (9). By using Eq. (18) we get

x(n−1)(t) = an−1 + XT PB(t). (21)

By n− 1 times integrating Eq. (21) from 0 to t and using boundary conditions given in
Eq. (18) we have

x(n−2)(t) = an−2 + an−1t + XT P 2B(t), (22)

...

ẋ(t) = a1 + a2t +
a3

2!
t2 + · · ·+ an−1

(n− 2)!
tn−2 + XT P n−1B(t), (23)
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x(t) = a0 + a1t +
a2

2!
t2 + · · ·+ an−1

(n− 1)!
tn−1 + XT P nB(t). (24)

Assume that each of ti, i = 1, 2, . . . , n − 1, and each of an−i, i = 1, 2, . . . , n, can be
written in terms of hybrid functions as

ti = dT
i B(t), i = 1, 2, . . . , n− 1 (25)

an−i = an−iE
T B(t), i = 1, 2, . . . , n, (26)

where
ET = [1, 1, ..., 1︸ ︷︷ ︸

N

, 0, 0, ..., 0︸ ︷︷ ︸
NM

].

Substituting Eqs. (25) and (26) into Eqs. (21)-(24) we obtain

x(n)(t) = XT B(t),

x(n−1)(t) = (an−1E
T + XT P )B(t),

...

ẋ(t) = (a1E
T + a2d

T
1 +

a3

2!
dT

2 + · · ·+ an−1

(n− 2)!
dT

n−2 + XT P n−1)B(t),

x(t) = (a0E
T + a1d

T
1 +

a2

2!
dT

2 + · · ·+ an−1

(n− 1)!
dT

n−1 + XT P n)B(t).

Substituting above equations into Eq. (17) we get

J [x(t)] = J [X], (27)

the boundary conditions in Eq. (19) can be expressed as

qk = x(k)(1)− bk = 0, k = 0, ..., n− 1. (28)

We now find the extremum of Eq. (27) subject to Eq. (28) using the Lagrange multiplier
technique. Let

J∗[X, λ] = J [X] + λQ,

where the vector λ represents the unknown Lagrange multipliers and

Q = [q0, q1, . . . , qn−1]
T .

The necessary conditions are given by
∂

∂X
J∗[X, λ] = 0,

∂
∂λ

J∗[X, λ] = 0.

By solving above equations, we can obtain X.
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5 Illustrative examples

In this section, four examples are given to demonstrate the applicability and accuracy
of our method. Examples 1 and 2 are the variational problems for which the boundary
conditions are fixed. Example 1 was first considered in [4] and Example 2 was given in
[25]. Example 3 is a variational problem that some of its boundary conditions are fixed
and others are unspecified, this example was considered in [2] and [26]. For Examples
1 − 3 we obtain the exact solutions by using the present method. The exact solutions
were not obtained in [4], [2], [25], and [26]. For example 4, we compare our findings with
the numerical results obtained by using hybrid of block-pulse functions and Legendre
polynomials together with the CPU time and exact values.

5.1 Example 1

Consider the extremization of [4]

J =

∫ 1

0

[
1

2
ẋ2 − xg(t)]dt, (29)

where

g(t) =


−1, 0 ≤ t ≤ 1

4
, 1

2
≤ t ≤ 1,

3, 1
4
≤ t ≤ 1

2
,

(30)

with the boundary conditions

ẋ(0) = 0, ẋ(1) = 0. (31)

Schechter [27] gave a physical interpretation of this problem by noting an application in
heat conduction. The exact solution is

x(t) =



1
2
t2, 0 ≤ t ≤ 1

4
,

3
2
t2 + t− 1

8
, 1

4
≤ t ≤ 1

2
,

1
2
t2 − t + 3

8
, 1

2
≤ t ≤ 1.

Here, we solve this problem by using the hybrid of block-pulse functions and Bernoulli
polynomials, we assume

ẋ(t) = CT B(t),

in view of Eq. (30), we write Eq. (29) as

J =
1

2

∫ 1

0

ẋ2(t)dt + 4

∫ 1
4

0

x(t)dt− 4

∫ 1
2

0

x(t)dt +

∫ 1

0

x(t)dt,
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or

J =
1

2

∫ 1

0

CT B(t)BT (t)Cdt + 4CT P

∫ 1
4

0

B(t)dt− 4CT P

∫ 1
2

0

B(t)dt + CT P

∫ 1

0

B(t)dt.

Let

V (t) =

∫ t

0

B(t′)dt′, (32)

using Eq. (8) we get

J =
1

2
CT DC + CT P [4V (

1

4
)− 4V (

1

2
) + V (1)], (33)

the boundary conditions in Eq. (31) can be expressed in terms of hybrid functions as

CT B(0) = 0, CT B(1) = 0. (34)

We now find the extremum of Eq. (33) subject to Eq. (34) using the Lagrange multiplier
technique. Suppose

J∗ = J + λ1C
T B(0) + λ2C

T B(1),

where λ1 and λ2 are two multipliers. Then the necessary condition is given by

∂

∂C
J∗ = DC + P [4V (

1

4
)− 4V (

1

2
) + V (1)] + λ1B(0) + λ2B(1) = 0. (35)

Equations (34) and (35) define a set of simultaneous linear algebraic equations from
which the vector C and the multipliers λ1 and λ2 can be found. By solving above
equations with M = 2 and N = 4 we get the exact solution.

5.2 Example 2

Consider the problem of finding the extremum of the functional [25]

J [x(t)] =

∫ 1

0

(ẋ2(t)f(t))dt, (36)

where

f(t) =

{
−1, 0 ≤ t < 1

4
,

1, 1
4

< t ≤ 1,
(37)

with the boundary conditions

x(0) = 0, x(1) = 1. (38)
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Suppose

ẋ(t) = CT B(t),

in view of Eq. (37), we write Eq. (36) as

J = −2

∫ 1
4

0

ẋ2(t)dt +

∫ 1

0

ẋ2(t)dt,

or

J = −2

∫ 1
4

0

CT B(t)BT (t)Cdt +

∫ 1

0

CT B(t)BT (t)Cdt.

Using Eqs. (8) and (10) we have

J = −2

∫ 1
4

0

CT C̃B(t)dt + CT DC,

applying Eq. (32) we get

J = −2CT C̃V (
1

4
) + CT DC, (39)

the boundary condition in Eq. (38) can be expressed in terms of hybrid functions as

CT PB(1) = 1. (40)

We now find the extremum of Eq. (39) subject to Eq. (40) using the Lagrange multiplier
technique. Suppose

J∗ = J + λ(CT PB(1)− 1),

where λ is multiplier. Then the necessary conditions are given by
∂

∂C
J∗ = 0,

∂
∂λ

J∗ = 0.

By solving above equations with M = 1 and N = 4, we get

x(t) =

{
−2t, 0 ≤ t ≤ 1

4
,

2t− 1, 1
4
≤ t ≤ 1,

which is the exact solution.



5 ILLUSTRATIVE EXAMPLES 13

5.3 Example 3

Find the extremum of the functional [2, 26]

J [x(t)] =

∫ 1

0

[
1

2
ẍ2(t) + 4(1− t)ẋ(t)]dt =

∫ 1

0

F (t, x(t), ẋ(t), ẍ(t))dt, (41)

with the initial conditions
x(0) = 0, ẋ(0) = 0, (42)

and the values of x(1) and ẋ(1) are unspecified.
The exact solution via Euler equation is x(t) = −1

6
t4 + 2

3
t3 − t2.

The natural boundary conditions are found from following equations [10]

Fẋ − d
dt

(Fẍ)|t=1 = 0,

Fẍ|t=1 = 0,

that imply
x···(1) = 0, (43)

ẍ(1) = 0. (44)

Suppose
x···(t) = CT B(t), (45)

by 3 times integrating Eq. (45) from 0 to t and using boundary conditions given in Eq.
(42) we have

ẍ(t) = CT PB(t) + ẍ(0), (46)

ẋ(t) = CT P 2B(t) + ẍ(0)t, (47)

x(t) = CT P 3B(t) + ẍ(0)dT
1 PB(t), (48)

where t ' dT
1 B(t) and P is operational matrix of integration given in Eq. (9). Using

Eqs. (44) and (46) we get
ẍ(0) = −CT PB(1). (49)

Suppose
4(1− t) = AT B(t), (50)

substituting Eqs. (46), (47) and (50) into Eq. (41) and using Eqs. (8) and (32) we have

J = 1
2
CT PDP T C − CT PV (1)BT (1)P T C + 1

2
CT PB(1)BT (1)P T C

+AT DP 2T
C − AT Dd1B

T (1)P T C.

(51)
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By applying Eq. (45)the boundary condition in Eq. (43) can be written as

CT B(1) = 0. (52)

We now find the extremum of Eq. (51) subject to Eq. (52) using the Lagrange multiplier
technique. Suppose

J∗ = J + λ(CT B(1)),

where λ is multiplier. Then the necessary conditions are given by
∂

∂C
J∗ = 0,

∂
∂λ

J∗ = 0.

By solving above equations with M = 5 and N = 1, we obtain

c10 = 2, c11 = −4 , c12 = 0 , c13 = 0 , c14 = 0 , c15 = 0

substituting above values in Eq. (48) the exact solution is obtained.

5.4 Example 4

Find the extremum of the functional

J [x(t)] =

∫ π
4

0

(x2(t)− ẋ2(t))dt, x(0) = 1, ẋ(
π

4
) = 0. (53)

The exact value is x(t) = sin(t) + cos(t). In Table 1, the values of x(t) using the hybrid
of block-pulse and Legendre polynomials (B-P Legendre), the hybrid of block-pulse and
Bernoulli polynomials (B-P Bernoulli), together with CPU time and the exact solution
are listed.

Table 1. Estimated and exact values of x(t)
B-P Legendre B-P Bernoulli B-P Legendre B-P Bernoulli

t N = 4,M = 2 N = 4,M = 2 N = 4,M = 3 N = 4,M = 3 Exact
0 0.999943 1.000000 0.999999 0.999999 1.000000
0.1 1.094835 1.094834 1.094788 1.094838 1.094838
0.3 1.250852 1.250849 1.250709 1.250857 1.250857
0.5 1.357004 1.357005 1.356769 1.357008 1.357008
0.7 1.409056 1.409056 1.407521 1.409059 1.409059

CPU time 0.732 0.578 0.954 0.818
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6 Conclusion

In the present work the hybrid of block-pulse functions and Bernoulli polynomials are
used to solve variational problems. The variational problems has been reduced to a
problem of solving a system of algebraic equations. For constructing matrices D and P
in Eqs. (8) and (9) we use Bernoulli numbers αn which are a sequence of singed rational
numbers and α2n+1 = 0, n = 1, 2, 3, . . .. Thus the matrices P and D have many zero
elements and they are sparse, hence the present method is very attractive and reduces
the CPU time and the computer memory. Illustrative examples are given to demonstrate
the validity and applicability of the proposed method.
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