The Exponential Change of Finsler Metric and Relation between Imbedding Class Numbers of their Tangent Riemannian Spaces

By

B. N. PRASAD*, H. S. Shukla and O. P. Pandey
*C-10, Surajkund Avas Vikas Colony, Gorakhpur, India
Department of Mathematics \& Statistics
DDU Gorakhpur University,Gorakhpur, India
e-mail : baijnath_prasad2003@yahoo.co.in,
profhsshuklagkp@rediffmail.com, oppandey1988@gmail.com

Abstract

In the present paper the relation between imbedding class numbers of tangent Riemannian spaces of $\left(M^{n}, L\right)$ and $\left(M^{n}, L^{*}\right)$ have been obtained, where the Finsler metric L^{*} is obtained from L by $L^{*}=L e^{\beta / L}$ and M^{n} is the differentiable manifold.

Keywords : Finsler metric, Exponential change, Embedding Class. 2000 Mathematics Subject Classification : 53B40, 53C60.

1. Introduction

Let $\left(M^{n}, L\right)$ be an n-dimensional Finsler space on a differentiable manifold M^{n}, equipped with the fundamental function $L(x, y)$. In 1971, Matsumoto [2] introduced the transformation of Finsler metric:

$$
\begin{equation*}
L^{*}(x, y)=L(x, y)+\beta(x, y) \tag{1.1}
\end{equation*}
$$

where $\beta(x, y)=b_{i}(x) y^{i}$ is a differentiable one-form on M^{n}. In 1984 Shibata [5] has studied the properties of Finsler space $\left(M^{n}, L^{*}\right)$ whose metric function $L^{*}(x, y)$ is obtained from $L(x, y)$ by the relation $L^{*}(x, y)=f(L, \beta)$ where f is positively homogeneous of degree one in L and β. This change of metric function is called a β-change. The change (1.1) is a particular case of β-change called Randers change. The following theorem has importance under Randers change.

Theorem 1.1. [2] Let $\left(M^{n}, L^{*}\right)$ be a locally Minkowskian n-space obtained from a locally Minkowskian n-space $\left(M^{n}, L\right)$ by the change (1.1). If the tangent Riemannian n-space $\left(M_{X}^{n}, g_{X}\right)$ to $\left(M^{n}, L\right)$ is of imbedding
class r, then the tangent Riemannian n-space $\left(M_{X}^{n}, g_{X}^{*}\right)$ to $\left(M^{n}, L^{*}\right)$ is of imbedding class at most $r+2$.

Another particular β-change of Finsler metric function is a Kropina change of metric function given by

$$
\begin{equation*}
L^{*}(x, y)=\frac{L^{2}(x, y)}{\beta(x, y)} . \tag{1.2}
\end{equation*}
$$

If $L(x, y)$ reduces to the metric function of Riemannian space then $L^{*}(x, y)$ reduces to the metric function of Kropina space [4]. Due to this reason the transformation (1.2) has been called the Kropina change of Finsler metric.

In 2003, Singh, Prasad and Kumari [6] introduced the Kropina change of Finsler metric given by (1.2) and proved that Theorem 1.1 is valid for this transformation also.

In 1990, Prasad, Shukla and Singh [3] introduced the same transformation (1.1) under the condition that $\beta=b_{i}(x, y) y^{i}$ where $b_{i}(x, y)$ are components of the h-vector field. They proved that the above theorem is valid for this transformation also.

In the present paper we consider an exponential change of Finsler metric given by

$$
L^{*}=L e^{\beta / L}
$$

and we have proved that Theorem 1.1 is valid for this transformation also.

2. The Finsler Space $\left(M^{n}, L^{*}\right)$

Let $\left(M^{n}, L\right)$ be a given Finsler space and let $b_{i}(x) d x^{i}$ be a one-form on M^{n}. We shall define on M^{n} a function $L^{*}(x, y)(>0)$ by the equation

$$
\begin{equation*}
L^{*}=L e^{\beta / L} \tag{2.1}
\end{equation*}
$$

where we put $\beta(x, y)=b_{i}(x) y^{i}$. To find the metric tensor $g_{i j}^{*}$, the angular metric tensor $h_{i j}^{*}$, the Cartan tensor $C_{i j k}^{*}$ and the v-curvature tensor of $\left(M^{n}, L^{*}\right)$ we use the following results:

$$
\begin{equation*}
\dot{\partial}_{i} \beta=b_{i} \quad \dot{\partial}_{i} L=l_{i}, \quad \dot{\partial}_{j} l_{i}=\frac{1}{L} h_{i j} \tag{2.2}
\end{equation*}
$$

where $\dot{\partial}_{i}$ stands for $\frac{\partial}{\partial y^{i}}$ and $h_{i j}$ are components of angular metric tensor of $\left(M^{n}, L\right)$ given by $h_{i j}=g_{i j}-l_{i} l_{j}=L \dot{\partial}_{i} \dot{\partial}_{j} L$.

The successive differentiation of (2.1) with respect to y^{i} and y^{j} give

$$
\begin{equation*}
l_{i}^{*}=\left(1-\frac{\beta}{L}\right) e^{\beta / L} l_{i}+e^{\beta / L} b_{i} \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
h_{i j}^{*}=e^{2 \beta / L}\left\{\left(1-\frac{\beta}{L}\right) h_{i j}+\frac{\beta^{2}}{L^{2}} l_{i} l_{j}-\frac{\beta}{L}\left(l_{i} b_{j}+l_{j} b_{i}\right)+b_{i} b_{j}\right\} . \tag{2.4}
\end{equation*}
$$

From (2.3) and (2.4) we get the following relation between metric tensors of $\left(M^{n}, L\right)$ and $\left(M^{n}, L^{*}\right)$.

$$
\begin{align*}
& g_{i j}^{*}=e^{2 \beta / L}\left\{\left(1-\frac{\beta}{L}\right) g_{i j}-\frac{\beta}{L}\left(1-\frac{2 \beta}{L}\right) l_{i} l_{j}\right. \tag{2.5}\\
&\left.+\left(1-\frac{2 \beta}{L}\right)\left(l_{i} b_{j}+l_{j} b_{i}\right)+2 b_{i} b_{j}\right\} .
\end{align*}
$$

The contravariant components of the metric tensor of $\left(M^{n}, L^{*}\right)$ derived from (2.5), are given by

$$
\begin{align*}
g^{* i j}=e^{-2 \beta / L}[& \frac{L}{L-\beta} g^{i j}+\frac{(L-2 \beta)(\beta-L \triangle)}{(L-\beta)\{(1-\triangle) L-\beta\}} l^{i} l^{j} \tag{2.6}\\
& -\frac{L(L-2 \beta)}{(L-\beta)\{(1-\triangle) L-\beta\}}\left(l^{i} b^{j}+l^{j} b^{i}\right) \\
& \left.-\frac{L^{2}}{(L-\beta)\{(1-\triangle) L-\beta\}} b^{i} b^{j}\right]
\end{align*}
$$

where we put $b^{2}=g^{i j} b_{i} b_{j}, b^{i}=g^{i j} b_{j}, l^{i}=g^{i j} l_{j}$ and $\triangle=\frac{\beta^{2}}{L^{2}}-b^{2}$.
Differentiating (2.5) with respect to y^{k} and using (2.2) we get the following relation between the Cartan tensors of $\left(M^{n}, L\right)$ and $\left(M^{n}, L^{*}\right)$:

$$
\begin{align*}
C_{i j k}^{*}=\frac{1}{2} \dot{\partial}_{k} g_{i j}^{*}= & e^{2 \beta / L}\left[\left(1-\frac{\beta}{L}\right) C_{i j k}+\frac{1}{2 L}\left(1-\frac{2 \beta}{L}\right)\right. \tag{2.7}\\
& \left.\times\left(h_{i j} m_{k}+h_{j k} m_{i}+h_{i k} m_{j}\right)+\frac{2}{L} m_{i} m_{j} m_{k}\right],
\end{align*}
$$

where $m_{i}=b_{i}-\frac{\beta}{L} l_{i}$. It is to be noted that
(2.8) $m_{i} l^{i}=0, \quad m_{i} b^{i}=b^{2}-\frac{\beta^{2}}{L^{2}}=-\triangle, \quad h_{i j} l^{j}=0, \quad h_{i j} m^{i}=h_{i j} b^{i}=m_{j}$, where $m^{i}=g^{i j} m_{j}=b^{i}-\frac{\beta}{L} l^{i}$.

The quantities corresponding to $\left(M^{n}, L^{*}\right)$ will be denoted by putting $*$ on those quantities. To find $C_{j k}^{* i}=g^{* i h} C_{j h k}^{*}$ we use (2.6), (2.7) and (2.8). We get

$$
\begin{align*}
C_{j k}^{* i}=C_{j k}^{i} & -\frac{1}{(1-\triangle) L-\beta} C_{. j k} n^{i}+\frac{L-2 \beta}{2 L(L-\beta)} \tag{2.9}\\
& \times\left(h_{j}^{i} m_{k}+h_{j k} m^{i}+h_{k}^{i} m_{j}\right)+\frac{2}{L-\beta} m_{j} m_{k} m^{i} \\
& -\frac{(1-2 \triangle) L-2 \beta}{L(L-\beta)\{(1-\triangle) L-\beta\}} m_{j} m_{k} n^{i} \\
& +\frac{\triangle(L-2 \beta)}{2 L\{(1-\triangle) L-\beta\}(L-\beta)} h_{j k} n^{i},
\end{align*}
$$

where $n^{i}=(L-2 \beta) l^{i}+L b^{i}$ and $C_{. j k}=C_{h j k} b^{h}$.
Throughout this paper we use the symbol . to denote the contraction with b^{i}. To find the v-curvature tensor of $\left(M^{n}, L^{*}\right)$ we use the following:

$$
\begin{align*}
& C_{r i j} n^{r}=L C_{. i j}, \quad C_{r i j} m^{r}=C_{. i j}, \quad C_{r i j} h_{h}^{r}=C_{i j h}, \quad m_{r} n^{r}=-\triangle L, \tag{2.10}\\
& h_{j r} n^{r}=L m_{j}, \quad h_{h}^{r} m_{r}=m_{h}, \quad h_{j r} h_{h}^{r}=h_{j h}, \quad m_{r} m^{r}=-\triangle .
\end{align*}
$$

The v-curvature tensor $S_{h i j k}^{*}$ of $\left(M^{n}, L^{*}\right)$ is defined as

$$
\begin{align*}
S_{h i j k}^{*} & =C_{h k}^{* r} C_{r i j}^{*}-C_{h j}^{* r} C_{r i k}^{*} \tag{2.11}\\
& =g_{r i}^{*}\left(\dot{\partial}_{k} C_{h j}^{* r}-\dot{\partial}_{j} C_{h k}^{* m}+C_{h j}^{* m} C_{m k}^{* r}-C_{h k}^{* m} C_{m j}^{* r}\right] .
\end{align*}
$$

From (2.7), (2.8), (2.9), (2.10) and (2.11) we get the following relation between v-curvature tensors of $\left(M^{n}, L\right)$ and $\left(M^{n}, L^{*}\right)$:

$$
\begin{equation*}
S_{h i j k}^{*}=e^{2 \beta / L} \frac{L-\beta}{L} S_{h i j k}+d_{i k} d_{h j}-d_{i j} d_{h k}+E_{i j} E_{h k}-E_{i k} E_{h j} \tag{2.12}
\end{equation*}
$$

where

$$
\begin{gather*}
d_{i j}=\frac{e^{\beta / L} \sqrt{L-\beta}}{\sqrt{(1-\triangle) L-\beta}}\left\{C_{. i j}-\frac{L-2 \beta}{2 L^{2}} h_{i j}-\frac{1}{L-\beta} m_{i} m_{j}\right\}, \tag{2.13}\\
E_{i j}=\frac{e^{\beta / L}}{2 L}\left\{\frac{L-2 \beta}{L} h_{i j}+\frac{3 L-2 \beta}{L-\beta} m_{i} m_{j}\right\} .
\end{gather*}
$$

By direct calculation we get the following results which will be used in the latter section of the paper.

$$
\begin{align*}
& \text { (a) } \dot{\partial}_{k}\left(e^{\beta / L} \sqrt{1-\frac{\beta}{L}}\right)=\frac{(L-2 \beta) e^{\beta / L}}{2 L \sqrt{L} \sqrt{L-\beta}} m_{k}, \\
& \text { (b) } \dot{\partial}_{k}\left(\frac{e^{\beta / L} \sqrt{L-\beta}}{\sqrt{(1-\triangle) L-\beta}}\right)=\frac{e^{\beta / L}[2(L-\beta)-\triangle(L-2 \beta)]}{2 \sqrt{L-\beta}[(1-\triangle) L-\beta]^{3 / 2}} m_{k} \\
& +\frac{e^{\beta / L} . L \sqrt{L-\beta}}{[(1-\triangle) L-\beta]^{3 / 2}} C_{. . k}, \\
& \text { 15) (c) } \dot{\partial}_{k}\left(\frac{L-2 \beta}{2 L^{2}}\right)=-\frac{1}{L^{2}} m_{k}-\frac{L-2 \beta}{2 L^{3}} l_{k}, \tag{2.15}\\
& \text { (d) } \dot{\partial}_{k}\left(\frac{1}{L-\beta}\right)=-\frac{1}{(L-\beta)^{2}}\left(l_{k}-b_{k}\right), \\
& \text { (e) } \dot{\partial}_{k}\left(\frac{e^{\beta / L}}{2 L}\right)=\frac{e^{\beta / L}}{2 L^{2}}\left(m_{k}-l_{k}\right), \\
& \text { (f) } \dot{\partial}_{k}\left(\frac{L-2 \beta}{L}\right)=-\frac{2}{L} m_{k}, \\
& \text { (g) } \dot{\partial}_{k}\left(\frac{3 L-2 \beta}{L-\beta}\right)=\frac{L}{(L-\beta)^{2}} m_{k}, \quad \text { (h) } \quad \dot{\partial}_{k} \triangle=2 C . . k+\frac{2 \beta}{L^{2}} m_{k} .
\end{align*}
$$

3. Imbedding Class Numbers

The tangent vector space M_{X}^{n} to M^{n} at every point x is considered as the Riemannian $n-\operatorname{space}\left(M_{X}^{n}, g_{X}\right)$ with the Riemannian metric $g_{X}=$ $g_{i j}(x, y) d y^{i} d y^{j}$. Then the components of the Cartan tensor are the Christoffel symbols associated with g_{X} :

$$
C_{j k}^{i}=\frac{1}{2} g^{i h}\left(\dot{\partial}_{k} g_{j h}+\dot{\partial}_{j} g_{h k}-\dot{\partial}_{h} g_{j k}\right) .
$$

Thus $C_{j k}^{i}$ defines the components of the Riemannian connection on M_{X}^{n} and v-covariant derivative say

$$
\begin{equation*}
\left.X_{i}\right|_{j}=\dot{\partial}_{j} X_{i}-X_{h} C_{i j}^{h} \tag{3.0}
\end{equation*}
$$

is the covariant derivative of covariant vector X_{i} with respect to Riemannian connection $C_{j k}^{i}$ on M_{X}^{n}. It is observed that the v-curvature tensor $S_{h i j k}$ of $\left(M^{n}, L\right)$ is the Riemannian Christoffel curvature tensor of the Riemannian
space $\left(M_{X}^{n}, g_{X}\right)$ at a point X. The space $\left(M_{X}^{n}, g_{X}\right)$ equipped with such a Riemannian connection is called the tangent Riemannian n-space [2].

It is well known [1] that any Riemannian n-space V^{n} can be imbedded isometrically in a Euclidean space of dimension $\frac{n(n+1)}{2}$ in the analytics case. If $n+r$ is the lowest dimension of the Euclidean space in which V^{n} is imbedded isometrically, then the integer r is called the imbedding class number of V^{n}. The fundamental theorem of isometric imbedding ([1] page 190) is that the tangent Riemannian n-space $\left(M_{X}^{n}, g_{X}\right)$ is locally imbedded isometrically in a Euclidean $(n+r)$-space if and only if there exist r-number $\epsilon_{P}= \pm 1, r$-symmetric tensors $H_{(P) i j}$ and $\frac{r(r-1)}{2}$ covariant vector fields $H_{(P, Q) i}=-H_{(Q, P) i} ; P, Q=1,2, \ldots, r$, satisfying the Gauss equations

$$
\begin{equation*}
S_{h i j k}=\sum_{P} \epsilon_{P}\left\{H_{(P) h j} H_{(P) i k}-H_{(P) i j} H_{(P) h k}\right\} \tag{3.1}
\end{equation*}
$$

the Codazzi equations

$$
\begin{equation*}
\left.H_{(P) i j}\right|_{k}-\left.H_{(P) i k}\right|_{j}=\sum_{Q} \epsilon_{Q}\left\{H_{(Q) i j} H_{(Q, P) k}-H_{(Q) i k} H_{(Q, P) j}\right\} \tag{3.2}
\end{equation*}
$$

and the Ricci-Kühne equations

$$
\begin{align*}
\left.H_{(P, Q) i}\right|_{j}-\left.H_{(P, Q) j}\right|_{i} & +\sum_{R} \epsilon_{R}\left\{H_{(R, P) i} H_{(R, Q) j}-H_{(R, P) j} H_{(R, Q) i}\right\} \tag{3.3}\\
& +g^{h k}\left\{H_{(P) h i} H_{(Q) k j}-H_{(P) h j} H_{(Q) k i}\right\}=0 .
\end{align*}
$$

The numbers $\epsilon_{P}= \pm 1$ are the indicators of unit normal vector N_{P} to M^{n} and $H_{(P) i j}$ are the second fundamental tensors of M^{n} with respect to the normals N_{P}.

The following imbedding theorem is main result of the present paper.
Theorem 3.1. Let $\left(M^{n}, L^{*}\right)$ be a Finsler space obtained from a Finsler space $\left(M^{n}, L\right)$ by the exponential change (2.1). If the tangent Riemannian n-space $\left(M_{X}^{n}, g_{X}\right)$ to $\left(M^{n}, L\right)$ is of imbedding class r, then the tangent Riemannian n-space $\left(M_{X}^{n}, g_{X}^{*}\right)$ to $\left(M^{n}, L^{*}\right)$ is of imbedding class at most $r+2$.

Proof. In order to prove the theorem, we put

$$
\begin{align*}
& H_{(P) i j}^{*}=e^{\beta / L} \sqrt{1-\frac{\beta}{L}} H_{(P) i j}, \quad \epsilon_{P}^{*}=\epsilon_{P}, P=1,2, \ldots, r \\
& H_{(r+1) i j}^{*}=d_{i j}, \quad \epsilon_{r+1}^{*}=1 \tag{3.4}\\
& H_{(r+2) i j}^{*}=E_{i j}, \quad \epsilon_{r+2}^{*}=-1 .
\end{align*}
$$

Then it follows from (2.12) and (3.1) that

$$
S_{h i j k}^{*}=\sum_{\mu=1}^{r+2} \epsilon_{\mu}^{*}\left\{H_{(\mu) h j}^{*} H_{(\mu) i k}^{*}-H_{(\mu) h k}^{*} H_{(\mu) i j}^{*}\right\}
$$

which is the Gauss equation of $\left(M_{X}^{n}, g_{X}^{*}\right)$.
Moreover to verify Codazzi and Ricci-Kühne equations of (M_{X}^{n}, g_{X}^{*}) we put

$$
\begin{align*}
& H_{(P, Q) i}^{*}=-H_{(Q, P) i}^{*}=H_{(P, Q) i}, \quad P, Q=1,2,, \ldots, r \\
& H_{(P, r+1) i}^{*}=-H_{(r+1, P) i}^{*}=\frac{\sqrt{L}}{\sqrt{(1-\triangle) L-\beta}} H_{(P) . i}, \quad P=1,2, \ldots, r \\
& H_{(P, r+2) i}^{*}=-H_{(r+2, P) i}^{*}=0, \quad P=1,2, \ldots, r . \tag{3.5}\\
& H_{(r+1, r+2) i}^{*}=-H_{(r+2, r+1) i}^{*}=\frac{1}{\sqrt{L-\beta} \sqrt{(1-\triangle) L-\beta}} m_{i} .
\end{align*}
$$

The Codazzi equations of $\left(M_{X}^{n}, g_{X}^{*}\right)$ consists of the following three equations:

$$
\begin{align*}
\left.H_{(P) i j}^{*}\right|_{k} ^{*}-\left.H_{(P) i k}^{*}\right|_{j} ^{*} & =\sum_{Q} \epsilon_{Q}^{*}\left\{H_{(Q) i j}^{*} H_{(Q, P) k}^{*}-H_{(Q) i k}^{*} H_{(Q, P) j}^{*}\right\} \tag{3.6}\\
& +\epsilon_{r+1}^{*}\left\{H_{(r+1) i j}^{*} H_{(r+1, P) k}^{*}-H_{(r+1) i k}^{*} H_{(r+1, P) j}^{*}\right\} \\
& +\epsilon_{r+2}^{*}\left\{H_{(r+2) i j}^{*} H_{(r+2, P) k}^{*}-H_{(r+2) i k}^{*} H_{(r+2, P) j}^{*}\right\}
\end{align*}
$$

(b) $\left.H_{(r+1) i j}^{*}\right|_{k} ^{*}-\left.H_{(r+1) i k}^{*}\right|_{j}=\sum_{Q} \epsilon_{Q}^{*}\left\{H_{(Q) i j}^{*} H_{(Q, r+1) k}^{*}-H_{(Q) i k}^{*} H_{(Q, r+1) j}^{*}\right\}$

$$
+\epsilon_{r+2}^{*}\left\{H_{(r+2) i j}^{*} H_{(r+2, r+1) k}^{*}-H_{(r+2) i k}^{*} H_{(r+2, r+1) j}^{*}\right\}
$$

(c) $\left.H_{(r+2) i j}^{*}\right|_{k} ^{*}-\left.H_{(r+2) i k}^{*}\right|_{j} ^{*}=\sum_{Q} \epsilon_{Q}^{*}\left\{H_{(Q) i j}^{*} H_{(Q, r+2) k}^{*}-H_{(Q) i k}^{*} H_{(Q, r+2) j}^{*}\right\}$

$$
+\epsilon_{r+1}^{*}\left\{H_{(r+1) i j}^{*} H_{(r+1, r+2) k}^{*}-H_{(r+1) i k}^{*} H_{(r+1, r+2) j}^{*}\right\} .
$$

To prove these equations we note that for any symmetric tensor $X_{i j}$ satisfying $X_{i j} l^{i}=X_{i j} l^{j}=0$, we have from (2.9) and (3.0),

$$
\begin{align*}
& \left.X_{i j}\right|_{k} ^{*}-\left.X_{i k}\right|_{j} ^{*}=\left.X_{i j}\right|_{k}-\left.X_{i k}\right|_{j}+\frac{L}{(1-\triangle) L-\beta}\left\{C_{. i k} X_{. j}-C_{. i j} X_{. k}\right\} \tag{3.7}\\
& \quad+\frac{L-2 \beta}{2 L(L-\beta)}\left(X_{i k} m_{j}-X_{i j} m_{k}\right)+\frac{L}{(L-\beta)\{(1-\triangle) L-\beta\}} \\
& \quad \times\left(X_{. k} m_{j}-X_{. j} m_{k}\right) m_{i}+\frac{L-2 \beta}{2 L\{(1-\triangle) L-\beta\}}\left(h_{i j} X_{. k}-h_{i k} X_{. j}\right) .
\end{align*}
$$

In view of (3.4) and (3.5), equation (3.6)a is equivalent to

$$
\begin{gather*}
\left.\left(e^{\beta / L} \sqrt{1-\frac{\beta}{L}} \cdot H_{(P) i j}\right)\right|_{k} ^{*}-\left.\left(e^{\beta / L} \sqrt{1-\frac{\beta}{L}} \cdot H_{(P) i k}\right)\right|_{j} ^{*} \tag{3.8}\\
=\left(e^{\beta / L} \sqrt{1-\frac{\beta}{L}}\right) \cdot \sum_{Q} \epsilon_{Q}\left\{H_{(Q) i j} H_{(Q, P) k}-H_{(Q) i k} H_{(Q, P) j}\right\} \\
-\frac{\sqrt{L}}{\sqrt{(1-\triangle) L-\beta}}\left\{H_{(P) . k} d_{i j}-H_{(P) \cdot j} d_{i k}\right\} .
\end{gather*}
$$

Applying formula (3.7) for $H_{(P) i j}$ and using equation (2.13) and (2.15) a, we get

$$
\begin{aligned}
& \left.\left(e^{\beta / L} \sqrt{1-\frac{\beta}{L}} \cdot H_{(P) i j}\right)\right|_{k} ^{*}-\left.\left(e^{\beta / L} \sqrt{1-\frac{\beta}{L}} \cdot H_{(P) i k}\right)\right|_{j} ^{*}=\left(e^{\beta / L} \sqrt{1-\frac{\beta}{L}}\right) \\
& \quad \times\left\{\left.H_{(P) i j}\right|_{k}-\left.H_{(P) i k}\right|_{j}\right\}-\frac{\sqrt{L}}{\sqrt{(1-\triangle) L-\beta}}\left\{H_{(P) . k} d_{i j}-H_{(P) . j} d_{i k}\right\}
\end{aligned}
$$

which after using equation (3.2), gives equation (3.8).
In view of (3.4) and (3.5), equation (3.6)b is equivalent to

$$
\begin{aligned}
\left.(3.9) d_{i j}\right|_{k}-\left.d_{i k}\right|_{j}= & \sum_{Q} \epsilon_{Q}\left\{H_{(Q) i j} H_{(Q) \cdot k}-H_{(Q) i k} H_{(Q) \cdot j}\right\}\left(\frac{e^{\beta / L} \sqrt{L-\beta}}{\sqrt{(1-\triangle) L-\beta}}\right) \\
& +\frac{1}{\sqrt{L-\beta} \sqrt{(1-\triangle) L-\beta}}\left\{E_{i j} m_{k}-E_{i k} m_{j}\right\} .
\end{aligned}
$$

To verify (3.9) we note that

$$
\begin{equation*}
\left.C_{. i j}\right|_{k}-\left.C_{. i k}\right|_{j}=b_{h} S_{i j k}^{h} \tag{3.10}
\end{equation*}
$$

$$
\begin{gather*}
\left.b\right|_{k}=-\frac{1}{b} C_{. . k},\left.\quad h_{i j}\right|_{k}-\left.h_{i k}\right|_{j}=\frac{1}{L}\left(h_{i j} l_{k}-h_{i k} l_{j}\right) \tag{3.11}\\
\left.m_{i}\right|_{k}=-C_{. i k}-\frac{\beta}{L^{2}} h_{i k}-\frac{1}{L} l_{i} m_{k} \tag{3.12}
\end{gather*}
$$

The v-covariant differentiation of (2.13) and use of (2.15)b, c, d will give the value of $\left.d_{i j}\right|_{k}$. Then taking skew-symmetric part of $\left.d_{i j}\right|_{k}$ in j and k using (3.10), (3.11), (3.12), we get

$$
\begin{align*}
\left.d_{i j}\right|_{k} & -\left.d_{i k}\right|_{j}=\frac{e^{\beta / L} \sqrt{L-\beta}}{[(1-\triangle) L-\beta]^{3 / 2}}\left\{L\left[C_{. i j} C_{. . k}-C_{. i k} C_{. . j}\right]\right. \tag{3.13}\\
& -\frac{L-2 \beta}{2 L}\left(h_{i j} C_{. . k}-h_{i k} C_{. . j}\right)+[(1-\triangle) L-\beta] b_{h} S_{i j k}^{h} \\
& -\frac{L}{L-\beta}\left(C_{. . k} m_{j}-C_{. . j} m_{k}\right) m_{i}+\frac{\triangle(L+2 \beta)}{2(L-\beta)}\left(C_{. i j} m_{k}-C_{. i k} m_{j}\right) \\
& \left.+\frac{(L-2 \beta)[2(L-\beta)-\triangle(3 L+2 \beta)]}{4 L^{2}(L-\beta)}\left(h_{i j} m_{k}-h_{i k} m_{j}\right)\right\} .
\end{align*}
$$

Applying formula (3.7) for $d_{i j}$ and using (3.13), we get

$$
\begin{align*}
\left.d_{i j}\right|_{k} ^{*}-\left.d_{i k}\right|_{j} ^{*} & =\frac{e^{\beta / L} \sqrt{L-\beta}}{\sqrt{(1-\triangle) L-\beta}} b_{h} S_{i j k}^{h} \tag{3.14}\\
& +\frac{e^{\beta / L} L-2 \beta}{2 L^{2} \sqrt{L-\beta} \sqrt{(1-\triangle) L-\beta}}\left(h_{i j} m_{k}-h_{i k} m_{j}\right)
\end{align*}
$$

Substituting (3.1) and (2.14) in the right hand side of (3.14), we get equation (3.9).

In view of (3.4) and (3.5), equation (3.6)c is equivalent to

$$
\begin{equation*}
\left.E_{i j}\right|_{k} ^{*}-\left.E_{i k}\right|_{j} ^{*}=\frac{1}{\sqrt{L-\beta} \sqrt{(1-\triangle) L-\beta}}\left(d_{i j} m_{k}-d_{i k} m_{j}\right) \tag{3.15}
\end{equation*}
$$

The v-covariant differentiation of (2.14) and use of equations (2.15)e, f, g will give the value of $\left.E_{i j}\right|_{k}$. Then taking skew-symmetric part of $\left.E_{i j}\right|_{k}$ in j and k and using (3.11), (3.12), we get

$$
\begin{align*}
\left.E_{i j}\right|_{k}-\left.E_{i k}\right|_{j}= & \frac{e^{\beta / L}(3 L-2 \beta)}{2 L(L-\beta)}\left(C_{. i j} m_{k}-C_{. i k} m_{j}\right) \tag{3.16}\\
& -\frac{e^{\beta / L}(L-2 \beta)}{2 L^{2}(L-\beta)}\left(h_{i j} m_{k}-h_{i k} m_{j}\right) .
\end{align*}
$$

Applying formula (3.7) for $E_{i j}$ and using (3.16), we get (3.15). This completes the proof of Codazzi equations of $\left(M_{X}^{n}, g_{X}^{*}\right)$.

The Ricci Kühne equations of $\left(M_{X}^{n}, g_{X}^{*}\right)$ consist of the following four equations:

$$
\begin{align*}
& H_{(P, Q)}^{*} i_{j}^{*}-\left.H_{(P, Q) j}^{*}{ }^{\mid}\right|_{i}+\sum_{Q} \epsilon_{Q}^{*}\left\{H_{(R, P) i}^{*} H_{(R, Q) j}^{*}\right. \tag{3.17}\\
&\left.\quad-H_{(R, P) j}^{*} H_{(R, Q) i}^{*}\right\}+\epsilon_{r+1}^{*}\left\{H_{(r+1, P) i}^{*} H_{(r+1, Q) j}^{*}\right. \\
&\left.\quad-H_{(r+1, P) j}^{*} H_{(r+1, Q) i}^{*}\right\}+\epsilon_{r+2}^{*}\left\{H_{(r+2, P) i}^{*} H_{(r+2, Q) j}^{*}\right. \\
&\left.\quad-H_{(r+2, P) j}^{*} H_{(r+2, Q) i}^{*}\right\}+g^{* h k}\left\{H_{(P) h i}^{*} H_{(Q) k j}^{*}\right. \\
&\left.\quad-H_{(P) h j}^{*} H_{(Q) k i}^{*}\right\}=0, P, Q=1,2, \ldots, r
\end{align*}
$$

(b) $H_{(P, r+1) i}^{*} i_{j}^{*}-\left.H_{(P, r+1) j}^{*}{ }^{*}\right|_{i}+\sum_{R} \epsilon_{R}^{*}\left\{H_{(R, P) i}^{*} H_{(R, r+1) j}^{*}-H_{(R, P) j}^{*} H_{(R, r+1) i}^{*}\right\}$

$$
+\epsilon_{r+2}^{*}\left\{H_{(r+2, P) i}^{*} H_{(r+2, r+1) j}^{*}-H_{(r+2, P) j}^{*} H_{(r+2, r+1) i}^{*}\right\}
$$

$$
+g^{* h k}\left\{H_{(P) h i}^{*} H_{(r+1) k j}^{*}-H_{(P) h j}^{*} H_{(r+1) k i}^{*}\right\}=0, P=1,2, \ldots, r
$$

(c) $H_{(P, r+2) i}^{*}{ }^{*}{ }_{j}-\left.H_{(P, r+2) j}^{*}{ }^{*}\right|_{i}+\sum_{R} \epsilon_{R}^{*}\left\{H_{(R, P) i}^{*} H_{(R, r+2) j}^{*}-H_{(R, P) j}^{*} H_{(R, r+2) i}^{*}\right\}$

$$
+\epsilon_{r+1}^{*}\left\{H_{(r+1, P) i}^{*} H_{(r+1, r+2) j}^{*}-H_{(r+1, P) j}^{*} H_{(r+1, r+2) i}^{*}\right\}
$$

$$
+g^{* h k}\left\{H_{(P) h i}^{*} H_{(r+2) k j}^{*}-H_{(P) h j}^{*} H_{(r+2) k i}^{*}\right\}=0, P=1,2, \ldots, r
$$

(d) $\left.H_{(r+1, r+2) i}^{*}\right|_{j} ^{*}-\left.H_{(r+1, r+2) j}^{*}\right|_{i} ^{*}+\sum_{R} \epsilon_{R}^{*}\left\{H_{(R, r+1) i}^{*} H_{(R, r+2) j}^{*}-H_{(R, r+1) j}^{*}\right.$

$$
\left.\times H_{(R, r+2) i}^{*}\right\}+g^{* h k}\left\{H_{(r+1) h i}^{*} H_{(r+2) k j}^{*}-H_{(r+1) h j}^{*} H_{(r+2) k i}^{*}\right\}=0 .
$$

In view of (3.4) and (3.5), equation (3.17)a is equivalent to

$$
\begin{align*}
& \left.H_{(P, Q) i}\right|_{j} ^{*}-H_{(P, Q) j} \stackrel{*}{i}_{i}+\sum_{R} \epsilon_{R}\left\{H_{(R, P) i} H_{(R, Q) j}-H_{(R, P) j}\right. \tag{3.18}\\
& \left.\times H_{(R, Q) i}\right\}+\frac{L}{(1-\triangle) L-\beta}\left\{H_{(P) . i} H_{(Q) \cdot j}-H_{(P) . j} H_{(Q) . i}\right\} \\
& +g^{* h k}\left\{H_{(P) h i} H_{(Q) k j}-H_{(P) h j} H_{(Q) k i}\right\} e^{2 \beta / L}\left(1-\frac{\beta}{L}\right)=0 .
\end{align*}
$$

Since $\left.H_{(P, Q)}{ }_{i}\right|_{j}-\left.H_{(P, Q) j}{ }^{*}\right|_{i}=\left.H_{(P, Q) i}\right|_{j}-\left.H_{(P, Q) j}\right|_{i}$, equation (3.18) follows from (3.3), (2.6) and the facts that $H_{(P) i j} l^{i}=0=H_{(P, Q) i} l^{i}$.

By virtue of (3.4) and (3.5), equation (3.17)b may be written as

$$
\begin{align*}
& \left.\left(\frac{\sqrt{L}}{\sqrt{(1-\triangle) L-\beta}} H_{(P) \cdot i}\right)\right|_{j} ^{*}-\left.\left(\frac{\sqrt{L}}{\sqrt{(1-\triangle) L-\beta}} H_{(P) \cdot j}\right)\right|_{i} ^{*} \tag{3.19}\\
& \quad+\sum_{R} \epsilon_{R}\left\{H_{(R, P) i} H_{(R) \cdot j}-H_{(R, P) j} H_{(R) \cdot i}\right\} \frac{\sqrt{L}}{\sqrt{(1-\triangle) L-\beta}} \\
& \quad+g^{* h k}\left\{H_{(P) h i} d_{k j}-H_{(P) h j} d_{k i}\right\}\left(e^{\beta / L} \sqrt{1-\frac{\beta}{L}}\right)=0 .
\end{align*}
$$

Now

$$
\begin{aligned}
& \left.\left(\frac{\sqrt{L}}{\sqrt{(1-\Delta) L-\beta}} H_{(P) \cdot i}\right)\right|_{j} ^{*}=\frac{\sqrt{L}}{\sqrt{(1-\Delta) L-\beta}} H_{(P) . i} i_{j}^{*}+\dot{\partial}_{j}\left(\frac{\sqrt{L}}{\sqrt{(1-\Delta) L-\beta}}\right) H_{(P) . i} \\
& \quad \text { Since } \dot{\partial}_{j}\left(\frac{\sqrt{L}}{\sqrt{(1-\Delta) L-\beta}}\right)=\frac{\sqrt{L}}{2[(1-\triangle) L-\beta]^{3 / 2}}\left\{\left(1+\frac{2 \beta}{L}\right) m_{j}+2 L C_{. . j}\right\}
\end{aligned}
$$ and $\left.H_{(P) . i}\right|_{j} ^{*}-\left.H_{(P) . j}\right|_{i} ^{*}=\left.H_{(P) . i}\right|_{j}-\left.H_{(P) . j}\right|_{i}$, we have

$$
\begin{align*}
& \left.\left(\frac{\sqrt{L}}{\sqrt{(1-\triangle) L-\beta}} H_{(P) \cdot i}\right)\right|_{j} ^{*}-\left.\left(\frac{\sqrt{L}}{\sqrt{(1-\triangle) L-\beta}} H_{(P) \cdot j}\right)\right|_{i} ^{*} \tag{3.20}\\
& \quad=\frac{\sqrt{L}}{\sqrt{(1-\triangle) L-\beta}}\left[\left.H_{(P) . i}\right|_{j}-\left.H_{(P) . j}\right|_{i}\right] \\
& \quad+\frac{\sqrt{L}}{2[(1-\triangle) L-\beta]^{3 / 2}}\left\{\left(1+\frac{2 \beta}{L}\right)\left(H_{(P) . i} m_{j}-H_{(P) . j} m_{i}\right)\right. \\
& \left.\quad+2 L\left(H_{(P) . i} C_{. . j}-H_{(P) . j} C_{. . i}\right)\right\} .
\end{align*}
$$

Since $\left.H_{(P) . i}\right|_{j}-\left.H_{(P) . j}\right|_{i}=\left(\left.H_{(P) h i}\right|_{j}-\left.H_{(P) h j}\right|_{i}\right) b^{h}-\left(H_{(P) h i} C_{. j}^{h}-H_{(P) h j} C_{. i}^{h}\right)$, the equation (3.20) may be written as

$$
\begin{aligned}
& \left.\left(\frac{\sqrt{L}}{\sqrt{(1-\triangle) L-\beta}} H_{(P) . i}\right)\right|_{j} ^{*}-\left.\left(\frac{\sqrt{L}}{\sqrt{(1-\triangle) L-\beta}} H_{(P) . j}\right)\right|_{i} ^{*} \\
& =\frac{\sqrt{L}}{\sqrt{(1-\triangle) L-\beta}}\left[\left(\left.H_{(P) h i}\right|_{j}-\left.H_{(P) h j}\right|_{i}\right) b^{h}+\left(H_{(P) h j} C_{. i}^{h}-H_{(P) h i} C_{. j}^{h}\right)\right] \\
& +\frac{\sqrt{L}}{2[(1-\triangle) L-\beta]^{3 / 2}}\left\{\left(1+\frac{2 \beta}{L}\right)\left(H_{(P) . i} m_{j}-H_{(P) . j} m_{i}\right)\right. \\
& \left.+2 L\left(H_{(P) . i} C_{. . j}-H_{(P) . j} C_{. . i}\right)\right\} .
\end{aligned}
$$

Substituting these values in (3.19) and using (2.6), (2.13) and Codazzi equation (3.2) for $\left(M^{n}, L\right)$, we obtain that equation (3.19) is identically satisfied.

In view of (3.4) and (3.5), equation (3.17)c may be written as

$$
\begin{align*}
& \frac{\sqrt{L}}{\sqrt{L-\beta}\{(1-\triangle) L-\beta\}}\left(H_{(P) . j} m_{i}-H_{(P) . i} m_{j}\right) \tag{3.21}\\
& +g^{* h k}\left\{H_{(P) h i} E_{k j}-H_{(P) h j} E_{k i}\right\}\left(e^{\beta / L} \sqrt{1-\frac{\beta}{L}}\right)=0,
\end{align*}
$$

which is identically satisfied by virtue of equations (2.6), (2.14) and the facts that $H_{(P) h i} l^{i}=0, E_{i j} l^{i}=0$.

In view of (3.4) and (3.5), equation (3.17)d may be written as

$$
\begin{align*}
& \left.\left(\frac{1}{\sqrt{L-\beta} \sqrt{(1-\triangle) L-\beta}} m_{i}\right)\right|_{j} ^{*}-\left.\left(\frac{1}{\sqrt{L-\beta} \sqrt{(1-\triangle) L-\beta}} m_{j}\right)\right|_{i} ^{*} \\
& +g^{* h k}\left(d_{h i} E_{k j}-d_{h j} E_{k i}\right)=0 . \tag{3.22}
\end{align*}
$$

Since

$$
\begin{aligned}
& \dot{\partial}_{j}\left(\frac{1}{\sqrt{L-\beta} \sqrt{(1-\triangle) L-\beta}}\right)=-\left[\frac{2(L-\beta)-\triangle(2 L-\beta)}{2(L-\beta)^{3 / 2}\{(1-\triangle) L-\beta\}^{3 / 2}}\right] l_{j} \\
& +\left[\frac{2(L-\beta)-\triangle L}{2(L-\beta)^{3 / 2}\{(1-\triangle) L-\beta\}^{3 / 2}}\right] b_{j}+\frac{L}{\sqrt{L-\beta}\{(1-\triangle) L-\beta\}^{3 / 2}} C_{. . j} \\
& +\frac{2 \beta}{L\{(1-\triangle) L-\beta\}} m_{j}
\end{aligned}
$$

and $\left.m_{i}\right|_{j} ^{*}-\left.m_{j}\right|_{i}=\left.m_{i}\right|_{j}-\left.m_{j}\right|_{i}$, we have

$$
\begin{aligned}
&\left.\left(\frac{1}{\sqrt{L-\beta} \sqrt{(1-\triangle) L-\beta}} m_{i}\right)\right|_{j} ^{*}-\left.\left(\frac{1}{\sqrt{L-\beta} \sqrt{(1-\triangle) L-\beta}} m_{j}\right)\right|_{i} ^{*} \\
&= \frac{1}{\sqrt{L-\beta} \sqrt{(1-\triangle) L-\beta}}\left(\left.m_{i}\right|_{j}-\left.m_{j}\right|_{i}\right) \\
&-\left(\frac{2(L-\beta)-\triangle(2 L-\beta)}{2(L-\beta)^{3 / 2}\{(1-\triangle) L-\beta\}^{3 / 2}}\right)\left(l_{j} m_{i}-l_{i} m_{j}\right) \\
&+\left(\frac{2(L-\beta)-\triangle L}{2(L-\beta)^{3 / 2}\{(1-\triangle) L-\beta\}^{3 / 2}}\right)\left(b_{j} m_{i}-b_{i} m_{j}\right) \\
&+\frac{L}{\sqrt{L-\beta}\{(1-\triangle) L-\beta\}^{3 / 2}}\left(m_{i} C_{. . j}-m_{j} C_{. . i}\right) .
\end{aligned}
$$

Using equations (2.6), (2.13), (2.14), (3.11), (3.12) and (3.23) one can show that (3.22) is identically satisfied. Thus the Ricci-Kühne equations are satisfied for $\left(M_{X}^{n}, g_{X}^{*}\right)$. This completes the proof of Theorem 3.1.

References

[1] Eisenhart, L. P. : Riemannian Geometry, Princeton, 1926.
[2] Matsumoto, M. : On transformations of locally Minkowskian space, Tensor N. S., 22 (1971), 103-111.
[3] Prasad, B. N., Shukla, H. S. and Singh, D. D. : On a transformation of the Finsler metric, Math. Vesnik, 42 (1990), 45-53.
[4] Shibata, C. : On Finsler space with Kropina metric, Rep. Math. Phy., 13 (1978), 117-128.
[5] Shibata, C. : On invariant tensors of β-changes of Finsler metrics, J. Math. Kyoto University, 24 (1984), 163-188.
[6] Singh, U. P., Prasad, B. N. and Kumari, Bindu : On a Kropina change of Finsler metric, Tensor N. S., 64 (2003), 181-188.

