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Abstract

In the present paper the relation between imbedding class numbers of
tangent Riemannian spaces of (M", L) and (M", L*) have been obtained,
where the Finsler metric L* is obtained from L by L* = Le®/* and M™ is
the differentiable manifold.

Keywords : Finsler metric, Exponential change, Embedding Class.
2000 Mathematics Subject Classification : 53B40, 53C60.

1. INTRODUCTION

Let (M™, L) be an n—dimensional Finsler space on a differentiable man-
ifold M™, equipped with the fundamental function L(x,y). In 1971, Mat-
sumoto [2] introduced the transformation of Finsler metric:

(1.1) L*(z,y) = L(x,y) + B(z,y)

where B(x,y) = b;(x)y’ is a differentiable one-form on M". In 1984 Shi-
bata [5] has studied the properties of Finsler space (M™, L*) whose metric
function L*(z,y) is obtained from L(x,y) by the relation L*(x,y) = f(L, 5)
where f is positively homogeneous of degree one in L and 3. This change of
metric function is called a f—change. The change (1.1) is a particular case
of f—change called Randers change. The following theorem has importance
under Randers change.

Theorem 1.1. [2] Let (M", L*) be a locally Minkowskian n—space ob-
tained from a locally Minkowskian n—space (M™, L) by the change (1.1).
If the tangent Riemannian n—space (MY, gx) to (M™, L) is of imbedding
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class r, then the tangent Riemannian n—space (MY, g%) to (M™, L*) is of
imbedding class at most r + 2.

Another particular f—change of Finsler metric function is a Kropina
change of metric function given by

L2(z,y)
Blz.y)
If L(x,y) reduces to the metric function of Riemannian space then L*(x,y)

reduces to the metric function of Kropina space [4]. Due to this reason the
transformation (1.2) has been called the Kropina change of Finsler metric.

(1.2) L¥(z,y) =

In 2003, Singh, Prasad and Kumari [6] introduced the Kropina change
of Finsler metric given by (1.2) and proved that Theorem 1.1 is valid for
this transformation also.

In 1990, Prasad, Shukla and Singh [3] introduced the same transfor-
mation (1.1) under the condition that 8 = b;(x,y)y* where b;(z,y) are
components of the h—vector field. They proved that the above theorem is
valid for this transformation also.

In the present paper we consider an exponential change of Finsler metric
given by
L* = Le#/*

and we have proved that Theorem 1.1 is valid for this transformation also.

2. THE FINSLER SPACE (M", L")

Let (M™ L) be a given Finsler space and let b;(x)dz" be a one-form on
M™. We shall define on M™ a function L*(z,y) (> 0) by the equation

(2.1) L* = LeP/E,

where we put (z,y) = b;(x)y’. To find the metric tensor gj;, the angular

metric tensor hj;, the Cartan tensor C7, and the v—curvature tensor of

(M™, L*) we use the following results:

. . . 1

where 0; stands for a?/i and h;; are components of angular metric tensor of

(Mn’ L) given by hij = Gij — lllj = L@@L
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The successive differentiation of (2.1) with respect to y* and ¢/ give

(2.3) ¥ = (1 — %) Pl 4 eﬂ/Lbi,

)

(2.4) h’-‘.—ew/L{(l—é) h--+ﬁ—2u-—ﬁ(z-b-+z.b-)+b-b}
. 1] L ) LQ ) L V) 77 VAN

From (2.3) and (2.4) we get the following relation between metric tensors
of (M™,L) and (M™, L*).

(2.5) 9ij = et { (1 - %) 9ij — % (1 - %) il

2
+ (1 - fﬁ) (L;bj + 1;b;) + 2bibj} :

The contravariant components of the metric tensor of (M™, L*) derived from
(2.5), are given by

*ij:€26/L|: L gl + (L—2B)(B—LA)
-5 TT-AA-DL -5
RN T SR

'

(2.6) ¢

12 -
. blbj} |
(L—-B){(1—-A)L -5}
where we put b? = ¢gb;b;, b' = ¢gb;, I' = g¥l; and A = g—z — b2

Differentiating (2.5) with respect to y* and using (2.2) we get the fol-
lowing relation between the Cartan tensors of (M", L) and (M", L*):
1. 28/L B 1 2
. r = —0Lgt. = 1—= g (1=
(2 7) ngk 28kgw e I Cz]k + 5 7

2
x(hl-jmk + hjkmi + hzkm]) + Zmlmjmk] ,

where m; = b; — %li. It is to be noted that

(28) mzll = 0, mzb’ = 62 — ﬁ = —A, hijlj = O, h”m’ = hzjbz = mj,
where m' = gm; = b' — %l"
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The quantities corresponding to (M™, L*) will be denoted by putting * on
those quantities. To find Cj; = g*"*C,, we use (2.6), (2.7) and (2.8). We
get

i i 1 i L-28
(2.9) = O T T L= Y - )
X(hémk + hjk;mi + h?cmj) + Li—ﬂmjmkmi
o Q=2ML-28
L {1 - ML — 5y "™
A(L —2p)

%
h'jkn )

+
2L{(1 - A)L — BHL — B)
where n = (L — 28)l' + Lb* and C j; = Cy;;b".

Throughout this paper we use the symbol . to denote the contraction with
b'. To find the v—curvature tensor of (M™, L*) we use the following:

210 Cm“nr = LCz, C'T,;-mr = Cz, thz = Cz ihs mrnr = —AL,
J J J J J J

hj-n" = Lmg,  hyme =mp,  hjrhy = hjp,  mem" = —=A.
The v—curvature tensor Sy, of (M", L*) is defined as

(2-11) S;;ijk = OZZC:U - C;:; :zk
= 9rl0kChj — 0;Chi" + G Oy, — Gt Ol

From (2.7), (2.8), (2.9), (2.10) and (2.11) we get the following relation
between v—curvature tensors of (M", L) and (M", L*):

I —
(212)  Spn = 20k 5Shijk + dipdp; — dijdpg + EijEpy — EipEy;,

L
where
P/ L =B L—28 1
. ij = i~y g — T—3mam; ¢,
et (L —28 3L — 283
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By direct calculation we get the following results which will be used in the
latter section of the paper.

: Ly BY_ (L—2B)e""
(a) Ok (66/ 1—z> = 3LV —L—ﬁmk’

5, ( /L~ B ) _ PRAL - B) — AL = 28)]

I—ANL—5) 2VL-Bll—A)L—ppr "
HLIVI=B
(1= A)L = ppr—"
. (L—2 1 L—2
(2.15) (¢) O ( 2L25) =~y 2L35Zk,
. 1 1
L fBILN GBI
(e) ak (2—) = ﬁ(mk - lk>7
o 6 (5 72) =2,

3. IMBEDDING CLASS NUMBERS

The tangent vector space M¥ to M™ at every point x is considered
as the Riemannian n—space (M¥%, gx) with the Riemannian metric gx =
gij(x,y)dy'dy’. Then the components of the Cartan tensor are the Christof-
fel symbols associated with gx:

i L g s : :
ik = 59 (Okgjn + 0ignk — Ongjt.)-

Thus C%;, defines the components of the Riemannian connection on M% and
v—covariant derivative say

(30) Xi|j - anz — XhCZ

is the covariant derivative of covariant vector X; with respect to Riemannian
connection C7; on M¥. Tt is observed that the v—curvature tensor Sp;jy of
(M™, L) is the Riemannian Christoffel curvature tensor of the Riemannian
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space (M¥%,gx) at a point X. The space (M¥%,gx) equipped with such a
Riemannian connection is called the tangent Riemannian n—space [2].

It is well known [1] that any Riemannian n—space V"™ can be imbedded

isometrically in a Euclidean space of dimension w in the analytics case.
If n+4r is the lowest dimension of the Euclidean space in which V"™ is imbed-
ded isometrically, then the integer r is called the imbedding class number
of V™. The fundamental theorem of isometric imbedding ([1] page 190) is
that the tangent Riemannian n—space (MY, gx) is locally imbedded iso-
metrically in a Euclidean (n+1r)—space if and only if there exist —number
ep = =£1, r—symmetric tensors Hpy; and @ covariant vector fields

Hpgy=—Hpu P,Q =1,2,...,r, satisfying the Gauss equations

(3.1) Shijk = Y ep{HpyiH(pyit — Hpyi Hpyni},
P

the Codazzi equations

(3.2) Hpyjle — Heyiel; = D co{H@yisH.pi — HuHq.p)i
Q

and the Ricci-Kiithne equations

(33)  Hpoyl; — Herayli + Y er{HmpiHry — HirrHirei)
R
+ 9" {HpymiH @k — HpynHigywit = 0-

The numbers ep = 1 are the indicators of unit normal vector Np to M™
and Hpy; are the second fundamental tensors of M™ with respect to the
normals Np.

The following imbedding theorem is main result of the present paper.

Theorem 3.1. Let (M",L*) be a Finsler space obtained from a Finsler
space (M™, L) by the exponential change (2.1). If the tangent Riemannian
n—space (M¥%,gx) to (M", L) is of imbedding class r, then the tangent
Riemannian n—space (M¥,g%) to (M™, L*) is of imbedding class at most
r 4 2.
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Proof. In order to prove the theorem, we put

P)U—eﬂ/L\/ H P)ijs ep=¢€p, P=1,2,...,r
= 7,]7

(3.4) Hi i =1
HEkr+2)ij = Eij> r+2 =—L
Then it follows from (2.12) and (3.1) that

r+2

Zijk—Z {H u)lk H?u)tha)ijL

which is the Gauss equation of (M¥%, g%).
Moreover to verify Codazzi and Ricci-Kiithne equations of (MY, g% ) we put
H{P,Q)’L:_H(*Q,P)Z:H(P7Q)Z7 P,Q: 1,2,,...,T
VL

T 5
(3.5) H(*P,T-‘FQ)l - _HEKT+2,P)Z :O’ P: 1,2’...771

* * !
H(r+1,r+2)i = —H(H-Q,r—i-l)i = \/L——ﬁ (1 _ A)L _ ﬁml

The Codazzi equations of (M%, g% ) consists of the following three equations:

H(*P,fr—i-l)i = _H(*’r-i-l,P)i = H(P),i» P=12...r

(3.6) (a)  H{pylp — p)ml ZeQ{H Hig.py — HigyH{q.p);}

+ €r+1{H(r+1)in('r+1,P)k — Hi 10}
+ 6o Hirp2yij Hiv o pye — Hiproyin Hir 0,0y}

(0)  Hiyle —Hienal = Y colHigy Higwrvr — HigynHig1);}
)

+ 6o H o0y Hivvorie — HirgoyieH (v 0,010}

*

(c) H(*r+2)ij’k _H(*r+2)ik|j: Z EQ{H H(Q r+2)k H{Q)ikHEkQ,rJrQ)j}
Q

+ & {H )i Hiorope — HignyieH (ri1,r402)5 3
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To prove these equations we note that for any symmetric tensor X;; satis-
fying X,;I* = X;;19 = 0, we have from (2.9) and (3.0),
L
(1-28)L—5
L—2p L
+— (Xuem; — Xi;ymy) +
SL(L— ) T ) T AV = By

L—23
+ 2L{(1—A)L—B}ULUXk_hlka)

(3.7) Xijly =Xl j= Xijlw — Xielj + {CinXj — Ci Xk}

X (ka] — )(]TI’Lk)TI’LZ

In view of (3.4) and (3.5), equation (3.6)a is equivalent to
E * E *

8
= (65“\/ 1-7 > eo{HgyiiHgry — HgyinHia.pys}

Q

VL
BV N B{H<P>.kdij — Hip)jdix}-
Applying formula (3.7) for H(p);; and using equation (2.13) and (2.15)a, we
get

p ' . 5
<65/L 1—ZH(p)U |k — 65/L 1—%H(p)zk ’j: Bﬁ/L 1—Z

VL
x{Hpyijle — Hpyixlj} — N 6{H(P).kdij — Hipy jdin},

which after using equation (3.2), gives equation (3.8).

In view of (3.4) and (3.5), equation (3.6)b is equivalent to

* * eﬁ/L L_ﬁ
(3-9)dijly, —dinl; % olH@iHr — Higm (Q)J]’( (YN

1
+ Eiimyg — Eipm,}.
T=a AL =g o Pl
To verify (3.9) we note that

(3.10) Cijle — Cukl; = thihjk
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(3.11) bl = _EC"k’ hijle — higl; = Z(hzjlk — higl;)

I5; 1
The v—covariant differentiation of (2.13) and use of (2.15)b, ¢, d will give
the value of d;;|;. Then taking skew-symmetric part of d;;|, in j and k using

(3.10), (3.11), (3.12), we get

L —B
(1= AL — p*2

(3.12) mily = —Clix —

— Z_Lzﬁ (hiiCk — harC 5) + [(1 = A)L — mbh ijk
L A(L + 2p)
“I1_3 B(C,.k’mj — C jmyg)m; + m(c-ijmk — Caxmy)
L—-28)2(L—-p8)— ABL+2
e )

Applying formula (3.7) for d;; and using (3.13), we get

* * B/IL, [T, —
(3.14) dyjl, —du|, = — st
P A-NL-7

ePILL — 203

N NN

Substituting (3.1) and (2.14) in the right hand side of (3.14), we get equation
(3.9).

hzjmk — hzkmj)

In view of (3.4) and (3.5), equation (3.6)c is equivalent to

* * 1
( ) J‘k klj \/m (1—A)L—ﬁ( gk k J)
The v—covariant differentiation of (2.14) and use of equations (2.15)e, f, g
will give the value of E;;|;. Then taking skew-symmetric part of Ejj|; in j
and k and using (3.11), (3.12), we get

ePIL(3L — 2p)

2L(L— )
BIL(L —2
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Applying formula (3.7) for E;; and using (3.16), we get (3.15). This com-
pletes the proof of Codazzi equations of (M¥%, g%).

The Ricci Kiihne equations of (MY, g%) consist of the following four
equations:

(317)(a)  Hipgul; —Hipayli + Y col HinpyiHiroy;
Q

—H{ppiHroit + it H i1 pyiH(ri1.0)
—H{1,p)iHis1.0)i} + ol Hipro,pyiHir2.0)

* * xhk * *
_H(r+2,P)jH(r+2,Q)i} +9 {H(P)hiH(Q)kj
—H{pyp;Higw:} =0, P,Q=1,2,...,r

*

(b) H(*P,r—i-l)i|j _HEKP,T+1)j|i + Z EE{HEKR,P)iHEkR,H-l)j - HZ(R,P)jHEkRW-&-l)i}
R

+ 6ol Hipro pyiH (r21); = Hipro,pyj H 2010}
+g*hk{HEkP)hiH(*r+l)kj - HEkP)th(*rH)ki} =0, P=1,2,...,r

*

() Hippyopl; —Hippiojli + Y €xdHn pyiH s 0, — Higp) Hin o)t
R

+ E:+1{H€T+1,P)iH€r+1,r+2)j - HEkr+1,P)jHEkr+1,r+2)i}

*

(d) H€r+1,r+2)z‘|j —H(*r+1,r+2)j|i + Z E*R{H€R7r+1)in<R7r+2)j - H(*R,r-i-l)j
R

XH{R,TH)Z} + g*hk{Ha—&—l)hiH(*r—i-Z)kj - Hgkr+1)th€<r+2)ki} =0.
In view of (3.4) and (3.5), equation (3.17)a is equivalent to

(3.18) Hpoul; —Hpoil; + 3 er{HnriHroy — Hiry;
R

L
=gl = Heifail

. B
+ 9" Hpyni Hip; — HipynjHipri ™" (1 —-—]=0.

xHr i} +
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* *

Since H(pr)i|j —Hpg)jl,= Hwrq)li — Hpo)jli, equation (3.18) follows from
(3.3), (2.6) and the facts that Hp);I' =0 = Hpoyl".

By virtue of (3.4) and (3.5), equation (3.17)b may be written as

(3.19) ( VL H(P).i)*, - ( Vi H(P)a)*.
1_AL_p j N i

VL

+ > er{HrpiHry; — HrpyiHep.i}
R

—i—g*hk{H(p)hidkj — H(P)hjdki} <€ﬁ/L 1 — é) = 0.

Now

*

VL g )| =
( (1AL (P)'Z>j

- : VL _ VL 28
Since 0, <\/(1_A)L_B> = A=A LPPT {(1 + f) mj + 2LC’“]-}

VI Ny VL ‘
o il; T ( (1A)L5) Hims

*

and H(P).i|j —H(p)_j

- H(P)vi|j - H(P).j|z‘, we have

(]

(3.20) ( VL H(P),i)*, - ( VL H(P).j>*A
(1-AN)L-p j (1-A)L-p g

VL
N S 6[H(P).i|j — Hp) 1]
VL 23
+2[(1 — A)L — (]3/2 { <1 - f) (H(py.im; — Hp) jm:)

+2L(H(p),i(]__j — H(P).jO..i) }

Since H(pyilj—Hp) jli = (Hipynilj— Hipyng|i)0" — (H(pyniCls— H(pyn C%),
the equation (3.20) may be written as
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VL g T VL g |
a-L-5 )l A-ML-p )

= A)L—ﬂK (Pynily — Hipyngl)0" + (HpyniC — HpyniC?})]

A=A (1) tenons s m

—|—2L(H(p).ic,,j - H(P).jC..i> }

Substituting these values in (3.19) and using (2.6), (2.13) and Codazzi equa-
tion (3.2) for (M™, L), we obtain that equation (3.19) is identically satisfied.

In view of (3.4) and (3.5), equation (3.17)c may be written as

VL
VL —p{(1-A)L -5}
B

+ 9" HpyniErjy — Hpynj B} <€B/L 1 - —) =0,

(3.21)

(H(p)jmi — Hp).im;)

L

which is identically satisfied by virtue of equations (2.6), (2.14) and the
facts that H pypl' = 0, Ey;l* = 0.
In view of (3.4) and (3.5), equation (3.17)d may be written as

* *

1 1
(w——Wl - A)L—ﬁ"”> - (@——Wl - A>L—ﬂm"> :

(3.22) + 9" (dpi Bxj — dnj Bri) = 0.

Since

o ! :‘l AL —B) = ARL - B) }l,
"\VI=3/(1-A)L-5 AL = BP0 = D)L =By ]

[ 2(L — B) — AL }b-+ L o

2L = BpP{(L— AL =By | T JI=B{(L- &)L - ppr
25

_.|_

{0-AL—py "7
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* *
and my|; —my|;= m;|; —my;l;, we have

* *

1 1
(JL——B\/—(l - A)L—ﬁm’) - (mﬁ = A)L—@"”) i

1

B ST Ml

O L Ny
2L~ (1= A)L— ) 9

" <2(L — B)32{(1 - A)L — 5}3/2) (bjmi — bim;)

L
V=B - AL - 5P
Using equations (2.6), (2.13), (2.14), (3.11), (3.12) and (3.23) one can show

that (3.22) is identically satisfied. Thus the Ricci-Kiihne equations are sat-
isfied for (M¥, g% ). This completes the proof of Theorem 3.1. O

(3.23)
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