SOME APPLICATIONS OF BERNOULLI'S INEQUALITY IN THE APPROXIMATION THEORY.

Gavriil Păltineanu

Abstract

Two elementary proofs of Weierstrass approximation theorem, respective of Stone-Weierstrass theorem are given. The paper is based on the previous papers [2] and [4]. Besides some simplifications of the proofs given in these two papers, the author also obtained two new results: Theorem 1 and Corollary 3.

Mathematics Subject Classifications: 41A10.

Keywords : approximation by polynomials, compact space, subalgebra of continuous functions, containing constants, separating points.

INTRODUCTION.

Weierstrass' theorems of approximating continuous functions on closed intervals by using algebraic or trigonometric polynomials were published in 1885, when he was 70 years old.

Later on, many mathematicians found other proofs for these theorems (see [3]). Among them, we mention:

Picard, Féjér, Landau, de la Vallée Poussin, Runge, Mittag - Leffler, Lebesgue, Lerch, Volterra, Bernstein. All these proofs appeared until 1913.

50 years after, in 1964, H. Kuhn [1] proved the theorem of approximation with algebraic polynomials using Bernoulli's inequality.

This proof is considered by Allan Pinkus "wonderfully simple and elementary".

Kuhn's idea of using Bernoulli's inequality was taken over by other mathematicians, in order to give new "elementary" proofs to other theorems of approximation.

Thus, in 1981, Bruno Brosowski and Frank Deutsch gave an elementary proof to Stone-Weierstrass' theorem.

In 1984 T.J.Ransford, using the same technique, found an elementary proof for Bishop's approximation theorem.

In 1992, J. Prolla generalizes Von Neumann's variant of Stone-Weierstrass' theorem for continuous functions with range in [0,1], using Ransford's tools.

Finally, in 2005, Rudolf Výborný gave a proof of Weierstrass’ theorem of approximation based on Bernoulli's inequality, which turned out to be "more elementary" than Kuhn's proof.

In this line of research, the present paper gives two simple proofs of Weierstrass approximation theorem by polynomials, respective of StoneWeierstrass theorem, and it is based on the previous papers [2] and [4].

Theorem 1.Let X be an arbitrary set, $u: X \rightarrow \mathbb{R}, 0<u(x)<1, \forall x \in X$, and let A and B be two disjoint subsets of X. We suppose that there exists $k \in \mathbb{N}^{*}, k>1$, such that $u(x)<\frac{1}{k}, \forall x \in A$ and $u(x)>\frac{1}{k}, \forall x \in B$.

Then we have:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(1-u^{n}(x)\right)^{k^{n}}=1, \quad \forall x \in A \\
& \lim _{n \rightarrow \infty}\left(1-u^{n}(x)\right)^{k^{n}}=0, \quad \forall x \in B
\end{aligned}
$$

Proof. The assertion results from Bernoulli's inequality.
Indeed, if $x \in A$, then $k u(x)<1$ and we have :

$$
1 \geq\left(1-u^{n}(x)\right)^{k^{n}} \geq 1-(k u(x))^{n} \rightarrow 1
$$

If $x \in B$, then $k u(x)>1$ and we have:
$0 \leq\left(1-u^{n}(x)\right)^{k^{n}} \leq \frac{\left(1-u^{n}(x)^{k^{n}}\right.}{(k u(x))^{n}} \quad\left(1+k^{n} u^{n}(x)\right) \leq$

$$
\leq \frac{\left(1-u^{n}(x)\right)^{k^{n}}\left(1+u^{n}(x)\right)^{k^{n}}}{(k u(x))^{n}}=\frac{\left(1-u^{2 n}(x)\right)^{k^{n}}}{(k u(x))^{n}}<\frac{1}{(k u(x))^{n}} \rightarrow 0 .
$$

Corollary 1. Let $a, b \in \mathbb{R}$, such that $0<a<b<1$. Then there exists a sequence of polynomials $\left\{p_{n}\right\}$ with the properties :
(i) $0 \leq p_{n}(x) \leq 1, \forall x \in[0,1]$;
(ii) $\lim _{n \rightarrow \infty} p_{n}(x)=1, \forall x \in[0, a]$;
(iii) $\lim _{n \rightarrow \infty} p_{n}(x)=0, \forall x \in[b, 1]$.

Proof. Let $c=\frac{a+b}{2}$, and let $u(x)=\frac{1}{2}+\frac{x-c}{2}, \forall x \in[0,1]$.
Obviously, u is an increasing polynomial function of degree 1 .We observe that:

$$
\begin{gathered}
u(0)=\frac{1-c}{2}>0 ; u(a)=\frac{1}{2}+\frac{a-c}{2}<\frac{1}{2} ; \\
u(b)=\frac{1}{2}+\frac{b-c}{2}>\frac{1}{2} ; u(1)=\frac{2-c}{2}=1-\frac{c}{2}<1 .
\end{gathered}
$$

Since u is increasing, it follows that :
$0<u(x)<1, \forall x \in[0,1] ; u(x)<\frac{1}{2}, \forall x \in[0, a] ; u(x)>\frac{1}{2}, \forall x \in[b, 1]$.
If we denote by $p_{n}(x)=\left(1-u^{n}(x)\right)^{2^{n}}$, then $\left\{p_{n}\right\}$ is a sequence of polynomials with the property : $0 \leq p_{n}(x) \leq 1, \forall x \in[0,1]$.

On the other hand, from Theorem 1 , for $k=2$, it follows :

$$
\lim _{n \rightarrow \infty} p_{n}(x)=1, x \in[0, a]
$$

and

$$
\lim _{n \rightarrow \infty} p_{n}(x)=0, x \in[b, 1] .
$$

Corollary 2. Let X be a compact Hausdorff space, \mathscr{A} a subalgebra of real valued continuous functions on X containing constants and separating points of X , and $H, K \subset X$ two closed disjoints subsets of X. Then there exists a sequence of functions $\left\{a_{n}\right\}, a_{n} \in \mathscr{A}$, with the properties:
(i) $0 \leq a_{n}(x) \leq 1, x \in X$;
(ii) $\lim _{n \rightarrow \infty} a_{n}(x)=0, x \in K$;
(iii) $\lim _{n \rightarrow \infty} a_{n}(x)=1, x \in H$.

Proof. Since $K \cap H=\varnothing$, it results that $U=X \backslash H$ is an open neighborhood of K. Let $x_{0} \in K$. As \mathscr{A} separates the points of X it follows that $\forall x \in H, \exists a_{x} \in A$ such that :

$$
a_{x}\left(x_{0}\right) \neq a_{x}(x) .
$$

If we denote by $b_{x}=a_{x}-a_{x}\left(x_{0}\right) \mathbf{1}_{X}$, then $b_{x} \in \mathscr{A}, b_{x}\left(x_{0}\right)=0$ and $b_{x}\left(x_{0}\right) \neq 0$.
Let $c_{x}=\frac{b_{x}^{2}}{\left\|b_{x}\right\|^{2}}$. We observe that $c_{x} \in \mathrm{~A}, \quad c_{x}\left(x_{0}\right)=0, c_{x}(x)>0$ and $0 \leq c_{x} \leq 1$.
Let $V_{x}=\left\{t \in X \mid c_{x}(t)>0\right\}$. Then $\quad V_{x}$ is an open neighborhood of x, and $H \subset U_{x \in H} V_{x}$.

By the compactness of H, there exists a finite number of points $x_{1}, x_{2}, \ldots, x_{m} \in H$, such that $H \subset \bigcup_{i=1}^{m} V_{x_{i}}$.

Finally, if we denote by $u=\frac{c_{x_{1}}+c_{x_{2}}+\ldots \ldots . .+c_{x_{m}}}{m}$, then :
$u \in \mathscr{A}, 0 \leq u \leq 1, u\left(x_{0}\right)=0$ şi $u(x)>0, \forall x \in H$.
Using again the compactness of H, it results that there exists $0<\delta<1$ such that: $u(x) \geq \delta, \forall x \in H$.

Let $W_{x_{0}}=\left\{x \in X \left\lvert\, u(x)<\frac{\delta}{2}\right.\right\}$. Obviously $x \in W_{x_{0}}, W_{x_{0}}$ is an open subset of X and $W_{x_{0}} \subset U=X \backslash H$.

Let $k \in \mathbb{N}^{*}$ with the property :

$$
\begin{equation*}
k-1 \leq \frac{1}{\delta}<k \tag{1}
\end{equation*}
$$

We observe that :

$$
k \leq \frac{1+\delta}{\delta}<\frac{2}{\delta}
$$

and thus:

$$
\begin{equation*}
1<k \delta<2 \tag{2}
\end{equation*}
$$

If we denote by :

$$
a_{n}(x)=[1-u(x)]^{k^{n}}, x \in X,
$$

then

$$
a_{n} \in \mathscr{A}, 0 \leq a_{n} \leq 1 \text { and } a_{n}\left(x_{0}\right)=1, \forall n \in \mathbb{N}^{*} .
$$

On the other hand, if $x \in W_{x_{0}}$, then:

$$
k u(x)<\frac{k \delta}{2}<1
$$

and so :

$$
u(x)<\frac{1}{k}
$$

If $x \in H$, then $k u(x) \geq k \delta>1$, thus $u(x)>\frac{1}{k}$.
By Theorem 1, it follows that:

$$
\lim _{n \rightarrow \infty} a_{n}(x)=1, \text { if } x \in W_{x_{0}}
$$

and

$$
\lim _{n \rightarrow \infty} a_{n}(x)=0, \text { if } x \in H
$$

Using now the compactness of K, we infer that there exist $y_{1}, \ldots y_{r} \in K$ such that:

$$
K \subset U_{i=1}^{r} W_{y_{i}}
$$

Let $a_{n}^{i} \in \mathscr{A}, i=\overline{1, r}$ with the properties :

$$
\begin{gathered}
0 \leq a_{n}^{i} \leq 1 \\
\lim _{n \rightarrow \infty} a_{n}^{i}(x)=1, \forall x \in W_{y_{i}}
\end{gathered}
$$

and

$$
\lim _{n \rightarrow \infty} a_{n}^{i}(x)=0, \forall x \in H
$$

Finaly, if we denote by $a_{n}=\left(1-a_{n}{ }_{n}\right) \ldots . .\left(1-a_{n}{ }^{r}\right)$, then:

$$
a_{n} \in \mathscr{A}, 0 \leq a_{n} \leq 1, \lim _{n \rightarrow \infty} a_{n}(x)=0, \forall x \in K \text { and } \lim _{n \rightarrow \infty} a_{n}(x)=1, \text { if } x \in H
$$

Corollary 3. Let X be a compact Hausdorff space, Ab a subalgebra of continuous functions on X containing constants and separating the points of X, $A_{i}, B_{i}, i=\overline{0, n}, 2 n+2$ closed subsets of $X, A_{i} \cap B_{i}=\varnothing, \forall i=\overline{0, n}, \quad A_{i} \subset A_{i+1}$, $B_{i} \supset B_{i+1}$, and $\mathcal{E}>0$. Then, $\exists a \in \mathscr{A}$ such that:

$$
a(x)<i \varepsilon+\varepsilon^{2}, \text { if } x \in A_{i} .
$$

and

$$
a(x)>(j+1) \varepsilon-\varepsilon^{2}, \text { if } x \in B_{j} .
$$

Proof. By Corollary 2, it follows that : $\forall i, \exists a_{i} \in \mathscr{A}$, with the properties :
(i) $0 \leq a_{i} \leq 1$;
(ii) $a_{i}(x)<\frac{\varepsilon}{n}, x \in A_{i}$;
(iii) $a_{i}(x)>1-\frac{\varepsilon}{n}, x \in B_{j}, i=\overline{0, n}$.

Let $a(x)=\varepsilon\left(a_{0}(x)+a_{1}(x)+\ldots+a_{n}(x)\right)$. Obviously $a \in \mathscr{A}$.
If $x \in A_{i}$, then:

$$
a(x)=\varepsilon\left(a_{0}(x)+\ldots+a_{i-1}(x)\right)+\varepsilon\left(a_{i}(x)+\ldots+a_{n}(x)\right) \leq i \varepsilon+(n-i+1) \frac{\varepsilon^{2}}{n}<i \varepsilon+\varepsilon^{2}
$$

If $x \in B_{j}$, then :

$$
a(x) \geq \varepsilon\left(a_{0}(x)+\ldots+a_{j}(x)\right)>\varepsilon(j+1)\left(1-\frac{\varepsilon}{n}\right)>\varepsilon(j+1)-\varepsilon^{2}
$$

Theorem 2 (Weierstrass). Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function. Then, for $\forall \varepsilon>0$, there exists a polynomial P_{ε} such that:

$$
\left|f(x)-P_{\varepsilon}(x)\right|<\varepsilon, \forall x \in[0,1]
$$

Proof. We denote by :
$A=\left\{x \in[0,1] \mid \exists\right.$ polynomial P_{ε} such that $\left.\left|f(x)-P_{\varepsilon}(t)\right|<\mathcal{E}, t \in[0, x]\right\}$.
First, we observe that the set A is non void. Indeed, since f is continuous in 0 , it results that there is a $0<\alpha<1$ such that $|f(t)-f(a)|<\varepsilon, \forall t \in[0, \alpha]$.

As the function $P(t)=f(a), \forall t \in[0, \alpha]$, is a polynomial of degree 0 , we infer that $\alpha \in A$.

Let $s=\sup A$. If $s=1$, the proof is finished.
We suppose now that $0<s<1$. As f is continuous in s, it results that there exists $\delta>0$ such that:

$$
|f(x)-f(s)|<\frac{\varepsilon}{3}, \forall x \in(s-\delta, x+\delta)
$$

On the other hand, since s is the upper bound of A , it follows that there is $c \in A$ such that :

$$
s-\delta<c \leq s
$$

By Corollary 1, for $a=s-\delta$, and $b=c$, it results that there exists a sequence of polynomials $\left\{p_{n}\right\}$ with the properties:
$0 \leq p_{n} \leq 1 ;$
$\lim _{n \rightarrow \infty} p_{n}(x)=1, x \in[0, s-\delta] ;$
$\lim _{n \rightarrow \infty} p_{n}(x)=0, x \in[c, 1]$.
On the other hand, as $c \in A$, it follows that there exists a polynomial Q_{ε} such that :

$$
\left|f(x)-Q_{\varepsilon}(x)\right|<\varepsilon, \forall x \in[0, c]
$$

Denotes by:

$$
P_{\varepsilon}(x)=f(s)+\left[Q_{\varepsilon}(x)-f(s)\right] p_{n}(x), x \in[0,1]
$$

We shall show that this is the searching polynomial. Indeed, we observe that:

$$
\left|f(x)-P_{\varepsilon}(x)\right| \leq\left|f(x)-Q_{\varepsilon}(x)\right| p_{n}(x)+|f(x)-f(s)|\left(1-p_{n}(x)\right)(*)
$$

If $x \in[0, s-\delta]$, then $\lim _{n \rightarrow \infty} p_{n}(x)=1$, and if we pass to the limit after n in $(*)$ it follows that:

$$
\left|f(x)-P_{\varepsilon}(x)\right| \leq\left|f(x)-Q_{\varepsilon}(x)\right|<\varepsilon
$$

If $x \in[s-\delta, c]$, then :

$$
\left|f(x)-P_{\varepsilon}(x)\right|<\varepsilon p_{n}(x)+\frac{\varepsilon}{3}\left(1-p_{n}(x)\right)<\varepsilon .
$$

Finally, if $x \in[c, s+\delta]$, then $\lim _{n \rightarrow \infty} p_{n}(x)=0$, and if we pass to the limit in $(*)$, with respect to n, we obtain :

$$
\left|f(x)-P_{\varepsilon}(x)\right| \leq|f(x)-f(s)|<\frac{\varepsilon}{3}<\varepsilon
$$

It results that f may by uniformly approximated by a polynomial on the interval $[0, s+\delta]$, and this contradicts the definition of s.

Remark 1. The Weierstrass theorem is valid on any interval $[a, b]$.
Indeed, if we denote by $\varphi(t)=(1-t) a+t b, t \in[0,1]$, then φ is a change of variable, from $[0,1]$ to $[a, b]$, and $t=\varphi^{-1}(x)=\frac{x-a}{b-a}, x \in[a, b]$.

Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function, and let $g:[0,1] \rightarrow \mathbb{R}, g=f \circ \varphi$. Obviously, g is continuous and, according to Theorem 2 ,there exists a polynomial Q_{ε} such that :

$$
\left|g(t)-Q_{\varepsilon}(t)\right|<\varepsilon, \forall t \in[0,1] .
$$

If we denote by $P_{\varepsilon}(x)=Q_{\varepsilon}\left[\varphi^{-1}(x)\right]$, it follows that P_{ε} is a polynomial and $\left|g\left[\varphi^{-1}(x)\right]-Q_{\varepsilon}\left[\varphi^{-1}(x)\right]\right|<\varepsilon, x \in[a, b]$ and thus:
$\left|f(x)-P_{\varepsilon}(x)\right|<\varepsilon, \forall x \in[a, b]$.

Theorem 2. (Stone-Weierstrass)

Let X be a compact Hausdorff space, and let A be a subalgebra of real valued continuous functions on X containing constants and separating the points of X.

Then $\bar{A}=C(X)$.
Proof. Let $f \in C(X), 0<\varepsilon<\frac{1}{3}$ and $n \in \mathbb{N}^{*}$, such that $\frac{\|f\|}{n-1}<\varepsilon$.
Denote by :

$$
A_{i}=\left\{x \in X \left\lvert\, f(x) \leq\left(i-\frac{1}{3}\right) \varepsilon\right.\right\}
$$

and by

$$
B_{i}=\left\{x \in X \left\lvert\, f(x) \geq\left(i+\frac{1}{3}\right) \varepsilon\right.\right\} .
$$

Obviously, A_{i}, B_{i} are closed and $A_{i} \cap B_{i}=\varnothing, \forall i$.
We observe that:
$A_{0}=\varnothing \subset A_{1} \subset A_{2} \subset \ldots \subset A_{n}=X$,
$B_{0} \supset B_{1} \supset \ldots . . \supset B_{n}=\phi$,
and
$X \backslash A_{i-1} \subset B_{i-2}$.

Indeed, $B_{i-2}=\left\{x \left\lvert\, f(x) \geq\left(i-2+\frac{1}{3}\right) \varepsilon\right.\right\}=\left\{x \left\lvert\, f(x) \geq\left(i-\frac{5}{3}\right) \varepsilon\right.\right\}$.
If $x \notin A_{i-1}$, then $f(x)>\left(i-1-\frac{1}{3}\right) \varepsilon=\left(i-\frac{4}{3}\right) \mathcal{E}>\left(i-\frac{5}{3}\right) x$, thus $x \in B_{i-2}$.
On the other hand, we have:

$$
X \subset A_{1} \cup\left(\bigcup_{i=2}^{n} A_{i} \backslash A_{i-1}\right) \subset A_{1} \cup\left(\bigcup_{i=1}^{n}\left(A_{i} \cap B_{i-2}\right)\right)
$$

From Corollary 3, we infer that there exists an $a \in \mathscr{A}$ with the properties:
$a(x)<i \varepsilon+\varepsilon^{2}$ if $x \in A_{i}$ and
$a(x)>(j+1) \varepsilon-\varepsilon^{2}$ if $j \in B_{j}$.
Let $x \in X$ arbitrary.
If $x \in A_{1}$, then $f(x) \leq \frac{2}{3} \varepsilon$, and $a(x) \leq \varepsilon+\varepsilon^{2}<\varepsilon+\frac{\varepsilon}{3}=\frac{4 \varepsilon}{3}$.
It follows that:
$|f(x)-a(x)|<\frac{4 \varepsilon}{3}<2 \varepsilon$.
If $x \in\left(A_{i} \cap B_{i-2}\right), i \geq 2$, then , according to Theorem 2, it follows that:

$$
(i-1) \varepsilon-\varepsilon^{2} \leq a(x) \leq i \varepsilon+\varepsilon^{2} \text { and }\left(i-\frac{5}{3}\right) \varepsilon \leq f(x) \leq\left(i-\frac{1}{3}\right) \varepsilon
$$

As

$$
(i-1) \varepsilon-\varepsilon^{2}<(i-1) \varepsilon-\frac{\varepsilon}{3}=\left(i-\frac{4}{3}\right) \varepsilon, \text { and } i \varepsilon+\varepsilon^{2}<i \varepsilon+\frac{\varepsilon}{3}=\left(i+\frac{1}{3}\right) \varepsilon
$$

we have :

$$
\left(i-\frac{5}{3}\right) \varepsilon<a(x)<\left(i+\frac{1}{3}\right) \varepsilon
$$

and further :

$$
|f(x)-a(x)|<\left(i+\frac{1}{3}\right) \varepsilon-\left(i-\frac{5}{3}\right) \varepsilon=2 \varepsilon
$$

REFERENCES.

[1] H. Kuhn, Ein elementarer Beweis des Weiersrtasschen Appraximationsstzes, Arch.der Math. (Basel) 15 (1964), 316-317.
[2] B. Brosowski, F. Deutch, An elementary proof of the Stone-Weierstrass theorem, Proc. Amer. Math. Soc. 81 (1981), 89-92.
[3] A. Pinkus, The Weierstrass Approximation Theorems, Surveys in Appraximations Theory, Vol. 1, 2005, 1-37.
[4] R.Výborný, The Weierstrass theorem on polynomial approximation, Mathematica Bohemica, 130 (2005), No. 2, 161 -165, 2004.

Department of Mathematics and Computer Science, Technical University of Civil Engineering of Bucharest, Romania, E-mail: gavriil.paltineanu@gmail.com

