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ABSTRACT: In this paper a collocation method based on the Bessel-hybrid functions is used for approximation 

of the solution of linear Fredholm-Volterra integro-differential equations (FVIDEs) under mixed conditions. 

First, we explain the properties of Bessel-hybrid functions, which are combination of block-pulse functions and 

Bessel functions of first kind. The method is based upon Bessel-hybrid approximations, so that to obtain the 

operational matrixes and approximation of functions we use the transfer matrix from Bessel-hybrid functions to 

Taylor polynomials. The matrix equations correspond to a system of linear algebraic equations with the 

unknown Bessel-hybrid coefficients. Present results and comparisons demonstrate our estimate have good degree 

of accuracy. 
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1. INTRODUCTION 

 

Many analytical and numerical methods have been exited to solve linear and nonlinear 

integro-differential equations. Now, for solution of these equations we used Bessel-hybrid 

functions with collocation points. Recently, many of polynomials with block-pulse functions 

are combined, such as: Legendre, Chebyshev, Taylor and other polynomials. Ordokhani [9] 

has used Walsh-hybrid functions operational matrix with Newton-Cotes nodes for solving of 

Fredholm-Hemmerstein integral equations. Maleknejad et al. [8] have solved linear Fredholm 

and Volterra integral equation of the second by using Legendre wavelets. Hou and Yang in 

[5], have solved Fredholm integro-differential equations by using hybrid function operational 

matrix of derivative. Authors in [17] have used hybrid functions for solving Fredholm and 

Volterra integral equations. Danfu and Xufeng [2] have solved integro-differential equations 

by using CAS wavelet operational matrix of integration. Razzaghi et al. have used hybrid of 

block-pulse and Bernoulli polynomials in [14]. Yuzbasi et al. [21], Yuzbasi and Sezer [23], 

Yuzbasi et al. [20] have worked on the Bessel matrix and collocation methods for the 

numerical solutions of the neutral delay differential equations, the pantograph equations and 

the Lane-Emden differential equations. Also, readers who are interested in learning more 

about this topic, could refer to [1], [3], [4], [6], [12], [13], [15]. 

Recently, Yazbasi in [22] used Bessel polynomials and Bessel collocation method [23] 

for solving high-order linear Fredholm-Volterra integro-differential equations. 

In this article, by Bessel-hybrid functions and suitable collocation points, we estimate 

the solution of linear (FVIDEs) of the form: 
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where )(xy is an unknown function and )(xpk , rk ,,1,0  , )(xg , ),(1 txk  and ),(2 txk  are 

known functions. Also, jka , jkb , j , 1  and 2 are real or complex constants. 

 

2. PROPERTIES OF BESSEL-HYBRID FUNCTIONS  

AND TAYLOR POLYNOMIALS 

 

2.1 Bessel-hybrid functions 

 

Bessel-hybrid functions ),,( xmnb , ,,,2,1 Nn  ,,,1,0 Mm   have three arguments n, 

m and x. Respectively, n is the order for block-pulse, m is the order for Bessel polynomials 

and x is the normalized time, is defined on the interval [0, 1) as  
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where )(, xJ Mm  are Bessel polynomials, obtained as truncated  Bessel functions of first kind 

and of m order, defined as in [10]: 

 

(4)                              .      ,0     ,)
2

(
)!(!

)1(
)( 2

]
2

[

0

, 



 





 mx
x

mkk
xJ mk

mM

k

k

Mm  

 

In [4] M is a positive integer, so that mM  , Mm ,,1,0  and a set of block-pulse functions 

),(xi  ,,,2,1 Ni  on the interval ]1,0[2L  is defined as [5]: 
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The intervals where two distinct block-pulse functions on [0,1) are different from zero are  

disjoint, for .,,2,1 Ni  These functions have the property of orthogonality on [0,1). 

 

2.2 Function approximation 

 

Now, we approximate a function )(xy  in ]1,0[2L  space in Bessel-hybrid functions as 

(5)                                                    ,)()(~)( AxBxBAxy TT   

where 

(6)                
 

  .),,(,),1,(),,0,(|,|),,,1(,),,1,1(),,0,1()(

,,,,|,|,,,,                            1011110

T

T

NMNNM

xMNbxNbxNbxMbxbxbxB

aaaaaaA








 

In this case, for M = 2 and N = 2 we have 
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We can transfer the Bessel-hybrid functions to M-th degree Taylor basis functions. In matrix 

form as 

(8)                                                               ),(ˆ)( xXDxB   

where 

 

    
Figure1. Graphs of Bessel-hybrid functions for N=2, M=2. 
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Also, we can obtain D for different N and M, so for N = 2 and M = 2 we have 
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By substituting Eq. (8) in Eq. (5) we get 

(9)                                                    .)(ˆ)(ˆ~)( ADxXxXDAxy TTT   

 

2.3 Operational matrix of Taylor polynomials 

 

We can obtain operational matrix of integration for Taylor polynomials in N 

subinterval Ni
N

i
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of [0, 1] as 
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and L is operational matrix of integration for Taylor polynomials in [0, 1] as [7] 
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dimension of L̂  is N(M +1)×N(M +1). We want to present dual operational matrix of )(ˆ xX  

with taking the integration of the cross product of two Taylor polynomials function vectors in 
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where H is the present dual operational matrix of  Taylor polynomials in [0, 1] with 

)1()1(  MM  dimension so that [7] 
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Finally, we obtain operational matrix of derivative for )(ˆ xX as 
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B is operational matrix of derivative for Taylor polynomials in [0, 1]. 

 

3. FUNDAMENTAL RELATIONS 

 

3.1 Matrix relation for the differential part 

 

In this section we obtain approximation to the k-th derivative of y(x) by using Eqs. (9) 

and (14). Thus we get 
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According to Eq. (15), we have matrix form of differential part as 
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3.2 Matrix relation for the Fredholm integral part 

 

We approximate kernel function ),(1 txk  by the truncated Maclaurin series and 

truncated Bessel-hybrid series, respectively [10] 
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By substituting Eq. (8) in Eq. (18) and putting equal to Eq. (17) we obtain: 
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By using the Eqs. (5) and (18) in Fredholm integral part of  Eq. (1) we get 
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where 1Ĥ , the integration of dual operational matrix of Taylor polynomials is defined in Eq. 

(12). Finally, by substituting Eq. (8) in Eq. (20) we have matrix form of Fredholm integral 

part 
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3.3 Matrix relation for the Volterra integral part 

 

We can write kernel function ),(2 txk  such as ),(1 txk   and we approximate truncated 

Maclaurin series and truncated Bessel-hybrid series, so matrix form as [10]: 
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By substituting Eq. (8) in Eq. (23) and putting equal to Eq. (22) we obtain 
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By substituting the matrix form of Eqs. (9) and (23) in Volterra integral part of Eq. (1) we 

have 
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By substituting Eq. (8) in Eq. (25) we have matrix form of Volterra integral part 
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4. METHOD OF SOLUTION 

 

To solve Eq. (1) with conditions in Eq. (2), we substitute Eqs. (16), (21) and (26) in 

Eq. (1) as 
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In order to find A, we collocate Eq. (27) in nodal points of Newton-Cotes as [11] 
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Finally, we have fundamental matrix equations as 
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or briefly, we can write the fundamental matrix equations for initial conditions as 

(32)                                           ,,r-,,  jAU jj 110  ],[    

where  

              

.1,,1,0      ],,,,,,,[      

)ˆ)](1(ˆ)0(ˆ[

,0,1,10,

1

0








rjuuuu

DBXbXaU

NMjNjMjj

TTkT
jk

r

k

T
jkj



 

Ultimately, we are replacing the rows of jU  by last rows of W and the rows of j by last rows 

of G to obtain the solution of Eq. (1) under conditions 
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We obtain A from system of Eq. (33) and with substituting A in Eq. (9), we get approximate 

solution of Eq. (1). 

 

5. ILLUSTRATIVE EXAMPLES 
 

The aim of this method to obtain an approximate solution to the problem with 
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where y(x) is the exact solution of Eq. (1) and )(xyN  is the approximate of y(x). All the 

examples were performed on the computer using a program written in MATLAB. 

 

Example 5.1. Consider the FVIDE [18, 19]   
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Hence, by using Eq. (30) and matrices obtained above, we obtain Bessel coefficient matrix as 

.]200.300698.04250.02055.40181.10777.1[ TA   

Finally, by substituting A in Eq. (8) for N = 2 and M = 2, we have approximate solution of  

Eq. (34) by Bessel-hybrid functions as 
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which is the exact solution of  Eq. (34). 

 

 

Example 5.2. Consider the FVIE [4] 
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the exact solution to this example is xexy )( and .12)(  xx eexxg  The computational 

result of absolute error for M = 3, N = 3 and N = 3, M = 8,10 with the result of another method 

are given in Table 1. The values obtained in Table 1 show that if N and M increase, the 

accuracy will increase. 
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Table 1. Absolute errors of Example 5.2. 
 

x 

 

Present method 

 

   N=3, M=3      N=3, M=8      N=3, M=10 

Method 

of [4] 

K=3, M=3 

0.0   4.42 210      2.95 710      2.21 910   8.6 610  

0.1   2.36 210      3.30 710      2.46 910  5.3 710  

0.2   1.12 210      3.73 710      2.77 910  2.0 610  

0.3   5.27 310      4.25 710      3.16 910  3.0 610  

0.4   4.04 310      4.92 710      3.67 910  1.9 510  

0.5   5.61 310      5.79 710      4.34 910  9.9 810  

0.6   8.03 310      6.78 710      5.19 910  9.3 710  

0.7   9.28 310      7.40 710      5.98 910  4.3 610  

0.8   7.31 310      6.08 710      5.53 910  5.3 710  

0.9   2.43 310      1.73 710      5.99 1010  3.6 710  

1.0   1.48 210      2.79 610      2.65 810  - 

 

Example 5.3. Consider the FIDE [1, 6] 
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with condition y(0) = 1 and the exact solution is y(x) = exp(x). Respectively, the absolute error  

and maximum absolute error values are given for different values of N and M in Table 2 and 

Table 3. 

 
Table 2. Absolute errors of Example 5.3. 

 
x 

Present method 

 N=3, M=4      N=3, M=6      N=3, M=8 
Method 

of [1] 
Method 

of [6] 

0.05   2.86 310      1.42 610      5.63 910  4.89 510  8.90 610  

0.15   2.94 310      1.70 610      5.64 910  1.75 410  5.75 610  

0.25   3.03 310      1.84 610      5.65 910               3.14 410  2.45 510  

0.35   3.05 310      1.91 610      5.67 910  4.92 410  1.24 510  

0.45   3.06 310      1.96 610      5.53 910     6.97 410  2.18 610  

0.55   3.04 310      1.92 610      5.18 910  9.46 410  6.98 610  

0.65   3.01 310      1.57 610      4.17 910  1.23 410  9.17 610  

0.75   2.94 310      6.32 710      4.71 1010  1.59 310  2.99 510  

0.85   2.77 310      1.28 610      1.14 810  2.00 310  1.31 510  

0.95   2.39 310     5.04 610      4.49 810  3.40 710  1.03 510  

 
Table 3. Maximum absolute errors of Example 5.3. 

N M Maximum absolute error 

2 2 5.26 110  

2 3 5.95 210  

3 8 4.49 810  

3 10 2.76 1010  

4 4 1.05 210  

4 6 5.04 610  
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Example 5.4.  Consider the linear VIE [8] 

,10         ,)())(4)(6(42)3()(
0

22   xdttytxtxxxxexxy
x

x  

the exact solution to this equation is y(x) = exp(x). We obtained approximate solution of this 

equation by Bessel-hybrid functions. The values obtained in Table 4 show that if N and M 

increase, the accuracy will increase. 
Table 4. Absolute errors of Example 5.4. 

 

x 

 

Present method 

 

  N=3, M=3       N=3, M=8        N=3, M=10 

Method 

of [8] 

N=2, M=3 

0.0   2.15 310      1.02 1010      2.71 1310   3.48 210  

0.2   1.15 310      1.03 1110      8.08 1410  6.78 310  

0.4   2.46 310      2.28 1110      1.27 1210  1.79 210  

0.6   4.84 310      1.55 1110      2.20 1210  3.57 210  

0.8   9.48 310      1.56 1110      4.72 1210  1.98 210  

1.0   2.04 310      5.06 1010      6.65 1210  1.06 210  

 

Example 5.5. We consider the linear VIE [16] 

(35)                   
,10       sin82         

cos212cos2sin2cos2sinsin42

0

2

22





 x,(xt)y(t)dt)x(

xxxxx-xxx y(x)

x  

the exact solution to Eq. (35) is y(x)=sin(2x)+cos(2x). The maximum absolute error are given 

for different values of N and M in Table 5 and we wrote absolute error of this example for 

(N = 3, M = 8, 10) and (N = 4, M =4, 6) by Bessel-hybrid functions in Table 6. 

 
Table 5. Maximum absolute errors of Example 5.5. 

N M Maximum absolute error 

2 3 6.86 210  

2 5 1.46 310  

3 4 5.19 210  

3 10 3.20 710  

4 4 4.71 210  

 
Table 6. Absolute errors of Example 5.5. 

x Present method 

  N=3, M=8      N=3, M=10       N=4, M=4       N=4, M=6 

0.0   5.61 810       2.08 1010        1.70 310       1.68 710  

0.1   3.27 810       4.59 1210        3.53 510       1.75 610  

0.2   9.65 910       5.93 1210        1.25 410       4.07 610  

0.3   9.43 910       1.03 1110        8.87 510       4.33 610  

0.4   2.98 810       3.93 1210        3.83 410       5.36 610  

0.5   5.83 810       3.10 1110        8.87 410       6.29 610  

0.6   5.56 810       7.09 1110        8.17 410       8.23 610  

0.7   7.06 810       4.17 1010        1.22 310       6.25 510  

0.8   1.04 610       5.02 910         7.49 310       1.59 410  

0.9   6.54 610       4.72 810         2.12 210       5.73 410  

1.0   2.93 510       3.20 710         4.71 210       1.65 310  
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6. CONCLUSION 

 

In this paper, we have solved linear FVIDEs by Bessel-hybrid functions of the first 

kind and collocation points. One significant advantage of this method is that with the 

increasing values of N and M, approximate solution is convergent and the accuracy is 

increased sufficiently. Another reason for the increased accuracy of this method, using the 

transfer matrix from Bessel-hybrid functions to Taylor polynomials and produce sparse 

matrix. As you have seen, the results of the proposed method are more accurate than the 

results of Legendre-hybrid, Legendre wavelets and CAS wavelets functions. Also, our 

comparison with satisfactory results show that the proposed method is efficient. 
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