DOUBLY WARPED PRODUCTS IN S-SPACE FORMS Andreea Olteanu*

Abstract

Recently, the author established a general inequality for doubly warped products in arbitrary Riemannian manifolds [14].

In the present paper, we obtain a similar inequality for doubly warped products isometrically immersed in S-space forms. As applications, we derive certain obstructions to the existence of minimal isometric immersions of doubly warped product integral submanifolds in S-space forms.

Mathematics Subject Classification (2010): 53C40, 53C25.
Key words: warped product, doubly warped product, integral submanifold, S-space form.

1. Introduction

Singly warped products or simply warped products were first defined by Bishop and O'Neill in [1]. They used this concept to construct Riemannian manifolds with negative sectional curvature.

A warped product is defined as follows:
Let $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ be two Riemannian manifolds and f a positive differentiable function on M_{1}. Consider the product manifold $M_{1} \times M_{2}$ with its natural projections $\pi: M_{1} \times M_{2} \rightarrow M_{1}$ and $\eta: M_{1} \times M_{2} \rightarrow M_{2}$.

The warped product of M_{1} and $M_{2}, M=M_{1} \times_{f} M_{2}$ is the Riemannian manifold $M_{1} \times M_{2}$ equipped with the Riemannian structure g such that

$$
\|X\|^{2}=\left\|\pi_{*}(X)\right\|^{2}+f^{2}(\pi(p))\left\|\eta_{*}(X)\right\|^{2}
$$

for any tangent vector $X \in T_{p} M, p \in M$. Thus, we have $g=g_{1}+f^{2} g_{2}$. The function f is called the warping function of the warped product.

If the warping function is constant, then the manifold M is said to be trivial. Let us notice that if $f=1$, then $M_{1} \times M_{2}$ reduces to a Riemannian product manifold.

In general, doubly warped products can be considered as a generalization of singly warped products. Let $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ be two Riemannian manifolds and let $f_{1}: M_{1} \rightarrow(0, \infty)$ and $f_{2}: M_{2} \rightarrow(0, \infty)$ be differentiable functions.

[^0]The doubly warped product $M={ }_{f_{2}} M_{1} \times_{f_{1}} M_{2}$ is the product manifold $M_{1} \times M_{2}$ endowed with the metric

$$
g=f_{2}^{2} g_{1}+f_{1}^{2} g_{2} .
$$

More precisely, if $\pi_{1}: M_{1} \times M_{2} \rightarrow M_{1}$ and $\pi_{2}: M_{1} \times M_{2} \rightarrow M_{2}$ are natural projections, the metric g is defined by

$$
g=\left(f_{2} \circ \pi_{2}\right)^{2} \pi_{1}^{*} g_{1}+\left(f_{1} \circ \pi_{1}\right)^{2} \pi_{2}^{*} g_{2} .
$$

The function f_{1} and f_{2} are called warping functions. If either $f_{1} \equiv 1$ or $f_{2} \equiv 1$, but not both, then we obtain a warped product. If both $f_{1} \equiv 1$ and $f_{2} \equiv 1$, then we have a Riemannian product manifold. If neither f_{1} nor f_{2} is constant, then we have a non-trivial doubly warped product [16].

Let $x:_{f_{2}} M_{1} \times{ }_{f_{1}} M_{2} \rightarrow \tilde{M}$ be an isometric immersion of a doubly warped product ${ }_{f_{2}} M_{1} \times{ }_{f_{1}} M_{2}$ into a Riemannian manifold \tilde{M}. We denote by h the second fundamental form of x and by $H_{i}=\frac{1}{n_{i}} \operatorname{trace} h_{i}$ the partial mean curvatures, where trace h_{i} is the trace of h restricted to M_{i} and $n_{i}=\operatorname{dim} M_{i}(i=1,2)$.

The immersion x is said to be mixed totally geodesic if $h(X, Z)=0$, for any vector fields X and Z tangent to D_{1} and D_{2}, respectively, where D_{i} are the distributions obtained from the vectors tangent to M_{i} (or more precisely, vectors tangent to the horizontal lifts of M_{i}).

In [5], B.Y. Chen proved the following general optimal relationship between the warping function f and the extrinsic structures of the warped product $M_{1} \times{ }_{f} M_{2}$.

Theorem 1.1 Let $x: M_{1} \times M_{2} \rightarrow \tilde{M}(c)$ be an isometric immersion of an n-dimensional warped product $M_{1} \times M_{2}$ into an m-dimensional Riemannian manifold $\tilde{M}(c)$ of constant sectional curvature c. Then:

$$
\begin{equation*}
\frac{\Delta f}{f} \leq \frac{n^{2}}{4 n_{2}}\|H\|^{2}+n_{1} c \tag{1.1}
\end{equation*}
$$

where $n_{i}=\operatorname{dim} M_{i}, \mathrm{i}=1,2$, and Δ is the Laplacian operator of M_{1}. Moreover, the equality case of (1.1) holds if and only if x is a mixed totally geodesic immersion and $n_{1} H_{1}=n_{2} H_{2}$ where $H_{i}, i=1,2$, are the partial mean curvature vectors.

The inequality (1.1) was noticed by several authors and they established similar inequalities for different submanifolds in ambient manifolds possessing
different kind of structures. For example, in [8], K. Matsumoto and I. Mihai studied warped product submanifolds in Sasakian space forms. In [9] and [10], A. Mihai considered warped product submanifolds in complex space forms and quaternion space forms, respectively. In [11], C. Murathan, K. Arslan, R. Ezentas and I. Mihai studied warped product submanifolds in Kenmotsu space forms.

Later, in 2008, B. Y. Chen and F. Dillen extended this inequality to multiply warped product manifolds in arbitrary Riemannian manifolds (see [6]).

Recently, in [13], the present author studied warped product submanifolds in generalized Sasakian space forms. In [7], M. K. Dwivedi and J.-S. Kim considered warped product submanifolds in S-space forms.

In [14], the present author established the following general inequality for arbitrary isometric immersions of doubly warped product manifolds in arbitrary Riemannian manifolds:

Theorem 1.2 Let x be an isometric immersion of an n-dimensional doubly warped product $M={ }_{f_{2}} M_{1} \times{ }_{f_{1}} M_{2}$ into an m-dimensional arbitrary Riemannian manifold \tilde{M}^{m}. Then:

$$
\begin{equation*}
n_{2} \frac{\Delta_{1} f_{1}}{f_{1}}+n_{1} \frac{\Delta_{2} f_{2}}{f_{2}} \leq \frac{n^{2}}{4}\|H\|^{2}+n_{1} n_{2} \max \tilde{K}, \tag{1.2}
\end{equation*}
$$

where $n_{i}=\operatorname{dim} M_{i}, n=n_{1}+n_{2}, \Delta_{i}$ is the Laplacian operator of $M_{i}, \quad(i=1,2)$ and $\max \tilde{K}(p)$ denotes the maximum of the sectional curvature function of \tilde{M}^{m} restricted to 2-plane sections of the tangent space $T_{p} M$ of M at each point p in M. Moreover, the equality case of (1.2) holds if and only if the following two statements hold:

1. x is a mixed totally geodesic immersion satisfying $n_{1} H_{1}=n_{2} H_{2}$ where $H_{i}, i=1,2$, are the partial mean curvature vectors of M_{i}.
2. at each point $p=\left(p_{1}, p_{2}\right) \in M$, the sectional curvature function \tilde{K} of \tilde{M}^{m} satisfies $\widetilde{K}(u, v)=\max \tilde{K}(p)$ for each unit vector $u \in T_{p_{1}} M_{1}$ and each unit vector $v \in T_{p_{2}} M_{2}$.

Motivated by the studies of the above authors, we obtain a similar inequality for doubly warped products in S-space forms.

On the other hand, the concept of framed metric structure unifies the concepts of almost Hermitian and almost contact metric structures. In particular, an S-structure generalizes Kaehler and Sasakian structure. In [2], Blair discusses principal toroidal bundles and generalizes the Hopf fibration to give a canonical example of an S manifold playing the role of complex projective space in Kaehler geometry and the
odd-dimensional sphere in Sasakian geometry. An S-manifold of constant f-sectional curvature c is called an S-space form $\tilde{M}(c)$ [4], which generalizes the complex space form and Sasakian space form.

2. Preliminaries

In this section, we recall some definitions and basic formulas which we will use later.

Let M be a Riemannian n-manifold isometrically immersed in a Riemannian m-manifold \tilde{M}^{m}.

We choose a local field of orthonormal frame $e_{1}, \ldots, e_{n}, e_{n+1}, \ldots, e_{m}$ in \tilde{M}^{m} such that, restricted to M, the vectors e_{1}, \ldots, e_{n} are tangent to M and e_{n+1}, \ldots, e_{m} are normal to M.

Let $K\left(e_{i} \wedge e_{j}\right), 1 \leq i<j \leq n$, denote the sectional curvature of the plane section spanned by e_{i} and e_{j}. Then the scalar curvature of M is given by

$$
\begin{equation*}
\tau=\sum_{1 \leq i<j \leq n} K\left(e_{i} \wedge e_{j}\right) \tag{2.1}
\end{equation*}
$$

Let L be a subspace of $T_{p} M$ of dimension $r \geq 2$ and $\left\{e_{1}, \ldots, e_{r}\right\}$ an orthonormal basis of L. The scalar curvature $\tau(L)$ of the r-plane section L is defined by

$$
\begin{equation*}
\tau(L)=\sum_{1 \leq \alpha<\beta \leq r} K\left(e_{\alpha} \wedge e_{\beta}\right) . \tag{2.2}
\end{equation*}
$$

Let h be the second fundamental form and R the Riemann curvature tensor of M.

Then the equation of Gauss is given by
$\widetilde{R}(X, Y, Z, W)=R(X, Y, Z, W)+g(h(X, W), h(Y, Z))-g(h(X, Z), h(Y, W))$,
for any vectors X, Y, Z, W tangent to M.

The mean curvature vector H is defined by

$$
\begin{equation*}
H=\frac{1}{n} \text { traceh }=\frac{1}{n} \sum_{i=1}^{n} h\left(e_{i}, e_{i}\right) . \tag{2.4}
\end{equation*}
$$

As is known, M is said to be minimal if H vanishes identically.
Also, we set

$$
\begin{equation*}
h_{i j}^{r}=g\left(h\left(e_{i}, e_{j}\right), e_{r}\right), i, j \in\{1, \ldots, n\}, r \in\{n+1, \ldots, m\} \tag{2.5}
\end{equation*}
$$

the coefficients of the second fundamental form h with respect to e_{1}, \ldots, e_{n}, e_{n+1}, \ldots, e_{m}, and

$$
\begin{equation*}
\|h\|^{2}=\sum_{i, j=1}^{n} g\left(h\left(e_{i}, e_{j}\right), h\left(e_{i}, e_{j}\right)\right) . \tag{2.6}
\end{equation*}
$$

Let M be a Riemannian p-manifold and $\left\{e_{1}, \ldots ., e_{p}\right\}$ be an orthonormal basis of M. For a differentiable function f on M, the Laplacian Δf of f is defined by

$$
\begin{equation*}
\Delta f=\sum_{j=1}^{p}\left\{\left(\nabla_{e_{j}} e_{j}\right) f-e_{j} e_{j} f\right\} . \tag{2.7}
\end{equation*}
$$

We recall the following general algebraic lemma of Chen for later use.
Lemma 2.1 [5] Let $n \geq 2$ and $a_{1}, a_{2}, \ldots ., a_{n}, b$ real numbers such that

$$
\begin{equation*}
\left(\sum_{i=1}^{n} a_{i}\right)^{2}=(n-1)\left(\sum_{i=1}^{n} a_{i}^{2}+b\right) \tag{2.8}
\end{equation*}
$$

Then $2 a_{1} a_{2} \geq b$, with equality holding if and only if

$$
a_{1}+a_{2}=a_{3}=\ldots=a_{n} .
$$

3. S-space forms

Let \tilde{M} be a $(2 m+s)$-dimensional framed metric manifold [19] (also known as framed f-manifold [12] or almost s-contact metric manifold [17] with a framed structure $\left(f, \xi_{\alpha}, \eta^{\alpha}, \tilde{g}\right), \alpha \in\{1, \ldots, s\}$, that is, f is a $(1,1)$ tensor field defining a f structure of rank $m ; \xi_{1}, \ldots, \xi_{s}$ are vector fields; $\eta^{1}, \ldots, \eta^{s}$ are 1 -forms and \tilde{g} is a Riemannian metric on \tilde{M} such that for all $X, Y \in T \tilde{M}$ and $\alpha, \beta \in\{1, \ldots, s\}$

$$
\begin{align*}
& f^{2}=-I+\eta^{\alpha} \otimes \xi_{\alpha}, \eta^{\alpha}\left(\xi_{\beta}\right)=\delta_{\beta}^{\alpha}, f\left(\xi_{\alpha}\right)=0, \eta^{\alpha} \circ f=0, \tag{3.1}\\
& \quad\langle f X, f Y\rangle=\langle X, Y\rangle-\sum_{\alpha} \eta^{\alpha}(X) \eta^{\alpha}(Y), \tag{3.2}\\
& \Omega(X, Y) \equiv\langle X, f Y\rangle=-\Omega(Y, X),\left\langle X, \xi_{\alpha}\right\rangle=\eta^{\alpha}(X), \tag{3.3}
\end{align*}
$$

where \langle,$\rangle denotes the inner product of the metric \tilde{g}$. A framed metric structure is an S-structure if the Nijenhuis tensor of f equals $-2 d \eta^{\alpha} \otimes \xi_{\alpha}$ and $\Omega=d \eta^{\alpha}$, for all $\alpha \in\{1, \ldots, s\}$.

When $s=1$, a framed metric structure is an almost contact metric structure, while an S-structure is a Sasakian structure.

When $s=0$, a framed metric structure is an almost Hermitian structure, while an S-structure is a Kaehler structure.

If a framed metric structure on \tilde{M} is an S-structure then it is known [2] that

$$
\begin{align*}
&\left(\tilde{\nabla}_{X} f\right) Y= \sum_{\alpha}\left(\langle f X, f Y\rangle \xi_{\alpha}+\eta^{\alpha}(Y) f^{2} X\right) \tag{3.4}\\
& \tilde{\nabla}_{X} \xi_{\alpha}=-f X, \quad \alpha \in\{1, \ldots, s\} \tag{3.5}
\end{align*}
$$

The converse may also be proved. In case of Sasakian structure (that is $s=1$), (3.4) implies (3.5). In Kaehler case (that is $s=0$), we get $\tilde{\nabla} f=0$. For $s>1$, examples of S-structures are given in [2] and [3]. Thus, the bundle space of principal toroidal bundles over a Kaehler manifold with certain conditions is an S-manifold. Thus, a generalization of the Hopf fibration $\pi^{\prime}: S^{2 m+1} \rightarrow P C^{m}$ is a canonical example of an S-manifold playing the role of complex projective space in Kaehler geometry and the odd-dimensional sphere in Sasakian geometry.

A plane section in $T_{p} \tilde{M}$ is a f-section if there exists a vector $X \in T_{p} \tilde{M}$ orthogonal to ξ_{1}, \ldots, ξ_{s} such that $\{X, f X\}$ span the section. The sectional curvature of a f-section is called a f-sectional curvature. It is known that [4] in an S manifold of constant f-sectional curvature c

$$
\begin{gather*}
\tilde{R}(X, Y) Z=\sum_{\alpha, \beta}\left\{\eta^{\alpha}(X) \eta^{\beta}(Z) f^{2} Y-\eta^{\alpha}(Y) \eta^{\beta}(Z) f^{2} X-\right. \\
\left.-\langle f X, f Z\rangle \eta^{\alpha}(Y) \xi_{\beta}+\langle f Y, f Z\rangle \eta^{\alpha}(X) \xi_{\beta}\right\}+ \\
+\frac{c+3 s}{4}\left\{-\langle f Y, f Z\rangle f^{2} X+\langle f X, f Z\rangle f^{2} Y\right\}+ \\
+\frac{c-s}{4}\{\langle X, f Z\rangle f Y-\langle Y, f Z\rangle f X+2\langle X, f Y\rangle f Z\}, \tag{3.6}
\end{gather*}
$$

for all $X, Y, Z \in T \tilde{M}$ where \tilde{R} is the curvature tensor of \tilde{M}. An S-manifold of constant f-sectional curvature c is called an S-space form $\tilde{M}(c)$.

4. Doubly warped product integral submanifolds in S-space forms

Let \tilde{M} be an S-manifold equipped with an S-structure $\left(f, \xi_{\alpha}, \eta^{\alpha}, \tilde{g}\right)$. A submanifold M of \tilde{M} is an integral submanifold if $\eta^{\alpha}(X)=0, \alpha \in\{1, \ldots, s\}$, for every tangent vector X. It follows that f maps any tangent space to the normal space,
i.e. $f\left(T_{p} M\right) \subseteq T_{p}{ }^{\perp} M, \forall p \in M$. In particular case of $s=1$, an integral submanifold M of a Sasakian manifold is a C-totally real submanifold [18]. It is known that an n dimensional integral submanifold M, of an S-manifold \tilde{M} of dimension $(2 n+s)$, is of constant curvature s if and only if the normal connection is flat.

Next, we investigate doubly warped product integral submanifolds in an S space form $\tilde{M}(c)$

Theorem 4.1 Let x be an integral isometric immersion of an n-dimensional doubly warped product ${ }_{f_{2}} M_{1} \times{ }_{f_{1}} M_{2}$ into a $(2 m+s)$-dimensional S-space form $\tilde{M}(c)$.Then:

$$
\begin{equation*}
n_{2} \frac{\Delta_{1} f_{1}}{f_{1}}+n_{1} \frac{\Delta_{2} f_{2}}{f_{2}} \leq \frac{n^{2}}{4}\|H\|^{2}+n_{1} n_{2} \frac{c+3 s}{4} \tag{4.1}
\end{equation*}
$$

where $n_{i}=\operatorname{dim} M_{i}, \quad n=n_{1}+n_{2}$ and Δ_{i} is the Laplacian operator of M_{i}, $(i=1,2)$.

Moreover, the equality case of (4.1) holds if and only if x is a mixed totally geodesic immersion and $n_{1} H_{1}=n_{2} H_{2}$ where $H_{i}, i=1,2$, are the partial mean curvature vectors.

Proof. Let ${ }_{f_{2}} M_{1} \times{ }_{f_{1}} M_{2}$ be an integral doubly warped product submanifold into an S-space form $\tilde{M}(c)$ of constant f-sectional curvature c. Since ${ }_{f_{2}} M_{1} \times{ }_{f_{1}} M_{2}$ is a doubly warped product, then

$$
\left\{\begin{array}{l}
\nabla_{X} Y=\nabla_{X}^{1} Y-\frac{f_{2}^{2}}{f_{1}^{2}} g_{1}(X, Y) \nabla^{2}\left(\ln f_{2}\right) \tag{4.2}\\
\nabla_{X} Z=Z\left(\ln f_{2}\right) X+X\left(\ln f_{1}\right) Z
\end{array}\right.
$$

for any vector fields X, Y tangent to M_{1} and Z tangent to M_{2}, respectively, where ∇^{1} and ∇^{2} are the Levi-Civita connections of the Riemannian metrics g_{1} and g_{2}, respectively. Here, $\nabla^{2}\left(\ln f_{2}\right)$ denotes the gradient of $\ln f_{2}$ with respect to the metric g_{2}.

If X and Z are unit fields, X tangent to M_{1} and Z tangent to M_{2}, it follows from (4.2) that the sectional curvature $K(X \wedge Z)$ of the plane section spanned by X
and Z is given by

$$
\begin{equation*}
K(X \wedge Z)=\frac{1}{f_{1}}\left\{\left(\nabla_{X}^{1} X\right) f_{1}-X^{2} f_{1}\right\}+\frac{1}{f_{2}}\left\{\left(\nabla_{Z}^{2} Z\right) f_{2}-Z^{2} f_{2}\right\} . \tag{4.3}
\end{equation*}
$$

We choose a local orthonormal frame $\left\{e_{1}, \ldots, e_{n_{1}}, e_{n_{1}+1}, \ldots, e_{n}\right\}$ such that $e_{1}, \ldots, e_{n_{1}}$ are tangent to $M_{1}, e_{n_{1}+1}, \ldots, e_{n}$ are tangent to M_{2}. Since it is easily seen that the mean curvature vector H is orthogonal to ξ_{α}, we may choose e_{n+1} parallel to H and $e_{2 m+1}=\xi_{1}, \ldots, e_{2 m+s}=\xi_{s}$.

Then, using (4.3), we get

$$
\begin{equation*}
\sum_{\substack{1 \leq j \leq n_{1} \\ n_{1}+1 \leq \leq \leq n}} K\left(e_{j} \wedge e_{s}\right)=n_{2} \frac{\Delta_{1} f_{1}}{f_{1}}+n_{1} \frac{\Delta_{2} f_{2}}{f_{2}} . \tag{4.4}
\end{equation*}
$$

From the equation of Gauss (2.3) and taking account of (3.6), we have

$$
\begin{equation*}
n^{2}\|H\|^{2}=2 \tau+\|h\|^{2}-n(n-1) \frac{c+3 s}{4}, \tag{4.5}
\end{equation*}
$$

where τ denotes the scalar curvature of ${ }_{f_{2}} M_{1} \times{ }_{f_{1}} M_{2}$, that is,

$$
\tau=\sum_{1 \leq i<j \leq n} K\left(e_{i} \wedge e_{j}\right)
$$

We set

$$
\begin{equation*}
\delta=2 \tau-n(n-1) \frac{c+3 s}{4}-\frac{n^{2}}{2}\|H\|^{2} \tag{4.6}
\end{equation*}
$$

Then, (4.5) can be written as

$$
\begin{equation*}
n^{2}\|H\|^{2}=2\left(\delta+\|h\|^{2}\right) \tag{4.7}
\end{equation*}
$$

Obviously, $\left.h_{i j}^{2 m+\alpha}=<h\left(e_{i}, e_{j}\right), \xi_{\alpha}\right)=<\tilde{\nabla}_{e_{i}} e_{j}, \xi_{\alpha}>=<e_{j}, f e_{i}>=0$.

With respect to the above orthonormal frame, (4.7) takes the following form:

$$
\left(\sum_{i=1}^{n} h_{i i}^{n+1}\right)^{2}=2\left[\delta+\sum_{i=1}^{n}\left(h_{i i}^{n+1}\right)^{2}+\sum_{i \neq j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}\right] .
$$

If we put $a_{1}=h_{11}^{n+1}, a_{2}=\sum_{i=2}^{n_{1}} h_{i i}^{n+1}$ and $a_{3}=\sum_{t=n_{1}+1}^{n} h_{t t}^{n+1}$, the above equation becomes

$$
\begin{aligned}
\left(\sum_{i=1}^{3} a_{i}\right)^{2}= & 2\left[\delta+\sum_{i=1}^{3} a_{i}^{2}+\sum_{i \neq j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}-\right. \\
& \left.-\sum_{2 \leq j \neq k \leq n_{1}} h_{j i}^{n+1} h_{k k}^{n+1}-\sum_{n_{1}+1 \leq s \neq \leq \leq n_{1}} h_{s t}^{n+1} h_{t 1}^{n+1}\right] .
\end{aligned}
$$

Thus a_{1}, a_{2}, a_{3} satisfy the Lemma of Chen (for n=3), i.e.,

$$
\left(\sum_{i=1}^{3} a_{i}\right)^{2}=2\left(b+\sum_{i=1}^{3} a_{i}^{2}\right)
$$

with

$$
b=\delta+\sum_{1 \leq i \neq j \leq n}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}-\sum_{2 \leq j \neq k \leq n_{1}} h_{i j}^{n+1} h_{k k}^{n+1}-\sum_{n_{1}+1 \leq s \neq 1 \leq n} h_{s s}^{n+1} h_{t t}^{n+1} .
$$

Then $2 a_{1} a_{2} \geq b$, with equality holding if and only if $a_{1}+a_{2}=a_{3}$.

$$
\begin{gather*}
\text { In the case under consideration, this means } \\
\sum_{1 \leq j<k \leq n_{1}} h_{j j}^{n+1} h_{k k}^{n+1}+\sum_{n_{1}+1 \leq s \ll \leq n} h_{s s}^{n+1} h_{t t}^{n+1} \geq \frac{\delta}{2}+\sum_{1 \leq \alpha<\beta \leq n}\left(h_{\alpha \beta}^{n+1}\right)^{2}+\frac{1}{2} \sum_{r=n+2}^{2 m} \sum_{\alpha, \beta=1}^{n}\left(h_{\alpha \beta}^{r}\right)^{2} \tag{4.8}
\end{gather*}
$$

Equality holds if and only if

$$
\begin{equation*}
\sum_{i=1}^{n_{1}} h_{i i}^{n+1}=\sum_{t=n_{1}+1}^{n} h_{t t}^{n+1} \tag{4.9}
\end{equation*}
$$

Using again the Gauss equation (2.3) and the formulas (4.3) and (2.7), we have

$$
\begin{align*}
n_{2} \frac{\Delta_{1} f_{1}}{f_{1}}+ & n_{1} \frac{\Delta_{2} f_{2}}{f_{2}}=\tau-\sum_{1 \leq j<k \leq n_{1}} K\left(e_{j} \wedge e_{k}\right)-\sum_{n_{1}+1 \leq s \ll \leq n} K\left(e_{s} \wedge e_{t}\right) \\
= & \left.\tau-\frac{n_{1}\left(n_{1}-1\right)(c+3 s)}{8}-\sum_{r=n+1 \leq 1 \leq j<k \leq n_{1}}^{2 m} \sum_{i j}^{r} h_{k k}^{r}-\left(h_{j k}^{r}\right)^{2}\right)- \\
& -\frac{n_{2}\left(n_{2}-1\right)(c+3 s)}{8}-\sum_{r=n+1}^{2 m} \sum_{n_{1}+1 \leq s \ll \leq n}\left(h_{s s}^{r} h_{t t}^{r}-\left(h_{s t}^{r}\right)^{2}\right) \tag{4.10}
\end{align*}
$$

Combining (4.8) and (4.10) and taking account of (4.4), we obtain

$$
\begin{gathered}
n_{2} \frac{\Delta_{1} f_{1}}{f_{1}}+n_{1} \frac{\Delta_{2} f_{2}}{f_{2}} \leq \tau-\frac{n(n-1)(c+3 s)}{8}+n_{1} n_{2} \frac{c+3 s}{4}- \\
-\frac{\delta}{2}-\sum_{\substack{1 \leq j \leq n_{1} \\
n_{1}+1 \leq \leq n}}\left(h_{j t}^{n+1}\right)^{2}-\frac{1}{2} \sum_{r=n+2}^{2 m} \sum_{\alpha, \beta=1}^{n}\left(h_{\alpha \beta}^{r}\right)^{2}+ \\
+\sum_{r=n+2}^{2 m} \sum_{1 \leq j<k \leq n_{1}}\left(\left(h_{j k}^{r}\right)^{2}-h_{j j}^{r} h_{k k}^{r}\right)+\sum_{r=n+2}^{2 m} \sum_{n_{1}+1 \leq s<t \leq n}\left(\left(h_{s t}^{r}\right)^{2}-h_{s s}^{r} h_{t t}^{r}\right)= \\
=\tau-\frac{n(n-1)(c+3 s)}{8}+n_{1} n_{2} \frac{c+3 s}{4}-\frac{\delta}{2}-\sum_{r=n+1}^{2 m} \sum_{j=1}^{n_{1}} \sum_{t=n_{1}+1}^{n}\left(h_{j t}^{r}\right)^{2}- \\
-\frac{1}{2} \sum_{r=n+2}^{2 m}\left(\sum_{j=1}^{n_{1}} h_{i j}^{r}\right)^{2}-\frac{1}{2} \sum_{r=n+2}^{2 m}\left(\sum_{t n_{1}+1}^{n} h_{t t}^{r}\right)^{2} \leq \\
\leq \tau-\frac{n(n-1)(c+3 s)}{8}+n_{1} n_{2} \frac{c+3 s}{4}-\frac{\delta}{2}=\frac{n^{2}}{4}\|H\|^{2}+n_{1} n_{2} \frac{c+3 s}{4},
\end{gathered}
$$

which implies the inequality (4.1).
We see that the equality sign of (4.11) holds if and only if

$$
\begin{equation*}
h_{j t}^{r}=0,1 \leq j \leq n_{1}, n_{1}+1 \leq t \leq n, n+1 \leq r \leq 2 m \tag{4.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{n_{1}} h_{i i}^{r}=\sum_{t=n_{1}+1}^{n} h_{t t}^{r}=0, n+2 \leq r \leq 2 m \tag{4.13}
\end{equation*}
$$

Obviously (4.12) is equivalent to the mixed totally geodesicness of the doubly warped product ${ }_{f_{2}} M_{1} \times{ }_{f_{1}} M_{2}$ and (4.9) and (4.13) implies $n_{1} H_{1}=n_{2} H_{2}$.

The converse statement is straightforward.
Remark 4.2 If either $f_{1} \equiv 1$ or $f_{2} \equiv 1$, then the inequality (4.1) is exactly the inequality (4.15) from [7] for warped products.

Putting $s=1$ in (4.1), we have the following
Corollary 4.3 [14] Let x be a C-totally real isometric immersion of an n dimensional doubly warped product ${ }_{f_{2}} M_{1} \times{ }_{f_{1}} M_{2}$ into a $(2 m+1)$-dimensional Sasakian space form $\tilde{M}(c)$. Then

$$
\begin{equation*}
n_{2} \frac{\Delta_{1} f_{1}}{f_{1}}+n_{1} \frac{\Delta_{2} f_{2}}{f_{2}} \leq \frac{n^{2}}{4}\|H\|^{2}+n_{1} n_{2} \frac{c+3}{4} \tag{4.14}
\end{equation*}
$$

where $n_{i}=\operatorname{dim} M_{i}$, and Δ_{i} is the Laplacian operator of $M_{i}, \quad(i=1,2)$.

Moreover, the equality case of (4.14) holds if and only if x is a mixed totally geodesic immersion and $n_{1} H_{1}=n_{2} H_{2}$ where $H_{i}, i=1,2$, are the partial mean curvature vectors.

As an application, we obtain certain obstructions to the existence of minimal doubly warped product integral submanifolds in S-space forms.

By using the above theorem (Theorem 4.1), we can obtain some important consequences:

Corollary 4.4 Let ${ }_{f_{2}} M_{1} \times_{f_{1}} M_{2}$ be a doubly warped product whose warping functions are harmonic. Then ${ }_{f_{2}} M_{1} \times{ }_{f_{1}} M_{2}$ admits no minimal integral immersion into an S - space form $\tilde{M}(c)$ with $c<-3 s$.

Proof. Assume f_{1} is a harmonic function on M_{1}, f_{2} is a harmonic function on M_{2} and ${ }_{f_{2}} M_{1} \times{ }_{f_{1}} M_{2}$ admits a minimal integral immersion in an S-space form $\tilde{M}(c)$. Then, the inequality (4.1) becomes $c \geq-3 s$.

Corollary 4.5 If the warping functions f_{1} and f_{2} of a doubly warped product ${ }_{f_{2}} M_{1} \times{ }_{f_{1}} M_{2}$ are eigenfunctions of the Laplacian on M_{1} and M_{2}, respectively, with corresponding eigenvalues $\lambda_{1}>0$ and $\lambda_{2}>0$, respectively, then ${ }_{f_{2}} M_{1} \times_{f_{1}} M_{2}$ admits no minimal integral immersion into an S-space form $\tilde{M}(c)$ with $c \leq-3 s$.

Corollary 4.6 Let ${ }_{f_{2}} M_{1} \times{ }_{f_{1}} M_{2}$ be a doubly warped product. If one of the warping functions is harmonic and the other one is an eigenfunction of the Laplacian with corresponding eigenvalue $\lambda>0$, then ${ }_{f_{2}} M_{1} \times{ }_{f_{1}} M_{2}$ admits no minimal integral immersion into an S-space form $\tilde{M}(c)$ with $c \leq-3 s$.

Using $\mathrm{s}=1$ in the above corollaries, we immediately get the following results from [14], [15]:

Corollary 4.7 [14], [15] Let ${ }_{f_{2}} M_{1} \times{ }_{f_{1}} M_{2}$ be a doubly warped product whose warping functions are harmonic. Then ${ }_{f_{2}} M_{1} \times_{f_{1}} M_{2}$ admits no minimal C totally real immersion into a Sasakian space form $\tilde{M}(c)$ with $c<-3$.

Corollary 4.8 [14], [15] If the warping functions f_{1} and f_{2} of a doubly warped product ${ }_{f_{2}} M_{1} \times{ }_{f_{1}} M_{2}$ are eigenfunctions of the Laplacian on M_{1} and M_{2}, respectively, with corresponding eigenvalues $\lambda_{1}>0$ and $\lambda_{2}>0$, respectively, then ${ }_{f_{2}} M_{1} \times{ }_{f_{1}} M_{2}$ admits no minimal C-totally real immersion in a Sasakian space form $\tilde{M}(c)$ with $c \leq-3$.

Corollary 4.9 [14], [15] Let ${ }_{f_{2}} M_{1} \times{ }_{f_{1}} M_{2}$ be a doubly warped product. If one of the warping functions is harmonic and the other one is an eigenfunction of the Laplacian with corresponding eigenvalue $\lambda>0$, then ${ }_{f_{2}} M_{1} \times{ }_{f_{1}} M_{2}$ admits no minimal C-totally real immersion into a Sasakian space form $\tilde{M}(c)$ with $c \leq-3$.

Acknowledgments. The results of this work were presented at the $12^{\text {th }}$ Workshop of Scientific Communications, Department of Mathematics and Computer Science, Tehnical University of Civil Engineering Bucharest, Romania, May 24-25, 2013.

References

[1] Bishop R.L. and O’Neill B., Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1-49.
[2] Blair D.E., Geometry of manifolds with structural group $U(n) \times O(s)$, J. Diff. Geometry 4 (1970), 155-167.
[3] Blair D.E., Ludden G.D., Yano K., Differential geometric structures on principal toroidal bundles, Trans. Amer. Math. Soc. 181 (1973), 175-184.
[4] Cabrerizo J.L., Fernández L.M., Fernández M., The curvature of submanifolds of an S-space form, Acta Math. Ungar 62 (1993), 373-383.
[5] Chen B. Y., On isometric minimal immersions from warped products into real space forms, Proc. Edinburgh Math. Soc. 45 (2002), 579-587
[6] Chen B. Y. and Dillen F., Optimal inequalities for multiply warped product submanifolds, International Electronic Journal of Geometry, Vol 1 (2008), 111.
[7] Dwivedi M.K. and Kim J.-S., Chen-Tripathi inequality for warped product submanifold of S-space forms, An. Stiint. Univ. „Al. I. Cuza" Iasi (S.N.) Matematica, Tomul LVIII (2012), f.1.
[8] Matsumoto K. and Mihai I., Warped product submanifolds in Sasakian space forms, SUT Journal of Mathematics 38 (2002), 135-144.
[9] Mihai A., Warped product submanifolds in complex space forms, Acta Sci. Math. (Szeged) 70 (2004), 419-427.
[10] Mihai A., Warped product submanifolds in quaternion space forms, Rev. Roumaine Math. Pures Appl. 50 (2005), 283-291.
[11] Murathan C., Arslan K., Ezentas R. and Mihai I., Warped product submanifolds in Kenmotsu space forms, Taiwanese J. Math. 10 (2006), 1431-1441.
[12] Nagawa H., On framed f-manifolds, Kodai Math. Sem. Rep. 18 (1966), 293-306.
[13] Olteanu A., Legendrian warped product submanifolds in generalized Sasakian space forms, Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis 25 (1) (2009), 137-144.
[14] Olteanu A., A general inequality for doubly product warped product submanifolds, Math. J. Okayama Univ. 52 (2010), 133-142.
[15] Olteanu A., Recent results in the geometry of warped product submanifolds Matrix Rom, 2011.
[16] Ünal B., Doubly warped products, Differ. Geom. App. 15 (3) (2001), 253-263.
[17] Vanžura J., Almost r-contact structures, Ann. Scuola Norm. Sup. Pisa (3) 26 (1972), 97-115.
[18] Yamaguchi S., Kon M., Ikawa T., C-totally real submanifolds, J. Differential Geometry 11 (1976), 59-64.
[19] Yano K. and Kon M., Structures on Manifolds, Series in Pure Mathematics 3, World Scientific Publishing Co., Singapore, 1984.

[^0]: * Department of Mathematics, Physics and Terrestrial Measurements, Faculty of Land Reclamation and Environmental Engineering, University of Agronomic Sciences and Veterinary Medicine of Bucharest,E-mail: andreea_d_olteanu@yahoo.com

