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Abstract 

 
Recently, the author established a general inequality for doubly warped products in 

arbitrary Riemannian manifolds [14]. 
In the present paper, we obtain a similar inequality for doubly warped products  

isometrically immersed in S-space forms. As applications, we derive certain obstructions to the 
existence of minimal isometric immersions of doubly warped product integral submanifolds in 
S-space forms. 
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1. Introduction 

 

Singly warped products or simply warped products were first defined by 
Bishop and O’Neill in [1]. They used this concept to construct Riemannian manifolds 
with negative sectional curvature. 

A warped product is defined as follows: 

Let ( )11 , gM  and ( )22 , gM  be two Riemannian manifolds and f  a positive 

differentiable function on 1M . Consider the product manifold 21 MM ×  with its 

natural projections 121: MMM →×π  and 221: MMM →×η . 

The warped product  of  1M  and 2M , 21 MMM f×=  is the Riemannian 

manifold 21 MM ×  equipped with the Riemannian structure g  such that  

( ) ( )( ) ( ) 2

*
22

*

2
XpfXX ηππ +=  

for any tangent vector MpMTX p ∈∈ , . Thus, we have 2
2

1 gfgg += . The 

function f  is called the warping function of the warped product. 

 If the warping function is constant, then the manifold M  is said to be  trivial. 

Let us notice that if 1=f , then 21 MM f×  reduces to a Riemannian product 

manifold. 
In general, doubly warped products can be considered as a generalization of 

singly warped products. Let ( )11 , gM  and ( )22 , gM  be two Riemannian manifolds 

and let ( )∞→ ,0: 11 Mf  and ( )∞→ ,0: 22 Mf  be differentiable functions. 
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The doubly warped product 21 12
MMM ff ×=  is the product manifold 

21 MM ×  endowed with the metric  

2
2

11
2

2 gfgfg += . 

 More precisely, if  1211 : MMM →×π  and 2212 : MMM →×π  are 

natural projections, the metric g is defined by  

( ) ( ) 2
*
2

2

111
*
1

2

22 gfgfg ππππ oo += . 

The function 1f  and 2f  are called warping functions. If either 11 ≡f  or 

12 ≡f , but not both, then we obtain a warped product. If both 11 ≡f  and 12 ≡f , 

then we have a Riemannian product manifold. If neither 1f  nor 2f  is constant, then 

we have a non-trivial doubly warped product [16]. 

 Let MMMx ff

~
: 21 12

→×  be an isometric immersion of a doubly warped 

product  21 12
MM ff ×  into a Riemannian manifold M

~
. We denote by h the second 

fundamental form of x and by i

i

i htrace
n

H
1

=  the partial mean curvatures, where 

trace ih  is the trace of h restricted  to iM  and ( )2,1dim == iMn ii . 

 The immersion x is said to be mixed totally geodesic if ( ) 0, =ZXh , for any 

vector fields X and Z tangent to 1D  and 2D , respectively, where iD  are the 

distributions obtained from the vectors tangent to iM  (or more precisely, vectors 

tangent to the horizontal lifts of iM ). 

 In [5], B.Y. Chen proved the following general optimal relationship between 

the warping function f  and the extrinsic structures of the warped product 21 MM f× . 

 Theorem 1.1 Let )(
~

: 21 cMMMx f →×  be an isometric immersion of an 

n-dimensional warped product 21 MM f×  into an m-dimensional Riemannian 

manifold )(
~

cM of constant sectional curvature c. Then: 

,
4

1

2

2

2

cnH
n

n

f

f
+≤

∆
                                (1.1) 

where 1,2i,dim == ii Mn , and ∆  is the  Laplacian operator of 1M . Moreover, the 

equality case of  (1.1) holds if and only if  x is a mixed totally geodesic immersion and 

2211 HnHn =  where iH , i=1,2, are the partial mean curvature vectors. 

The inequality (1.1) was noticed by several authors and they established 
similar inequalities for different submanifolds in ambient manifolds possessing 
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different kind of structures. For example, in [8], K. Matsumoto and I. Mihai studied 
warped product submanifolds in Sasakian space forms. In [9] and [10], A. Mihai 
considered warped product submanifolds in complex space forms and quaternion 
space forms, respectively. In [11], C. Murathan, K. Arslan, R. Ezentas and I. Mihai 
studied warped product submanifolds in Kenmotsu space forms. 

Later, in 2008, B. Y. Chen and F. Dillen extended this inequality to multiply 
warped product manifolds in arbitrary Riemannian manifolds (see [6]). 

Recently, in [13], the present author studied warped product submanifolds in 
generalized Sasakian space forms. In [7], M. K. Dwivedi and J.-S. Kim considered 
warped product submanifolds in S-space forms. 

In [14], the present author established the following general inequality for 
arbitrary isometric immersions of doubly warped product manifolds in arbitrary 
Riemannian manifolds: 

Theorem 1.2 Let x be an isometric immersion of an n-dimensional doubly 

warped product 21 12
MMM ff ×=  into an m-dimensional arbitrary Riemannian 

manifold 
mM

~
. Then: 

     ,
~

max
4

21

2
2

2

22
1

1

11
2 KnnH

n

f

f
n

f

f
n +≤

∆
+

∆
                                             (1.2) 

where ii Mn dim= , 21 nnn += , i∆  is the Laplacian operator of iM , ( )2,1=i  

and )(
~

max pK denotes the maximum of the sectional curvature function of  mM
~

 

restricted to 2-plane sections of the tangent space MTp of  M at each point p in M. 

Moreover, the equality case of  (1.2) holds if and only if the following two statements 

hold: 

 

1. x is a mixed totally geodesic immersion satisfying 2211 HnHn =  where 

iH , i=1,2, are the partial mean curvature vectors of  iM . 

2. at each point ( ) Mppp ∈= 21 , , the sectional curvature function K
~

 of 

mM
~

 satisfies ( ) )(
~

max,
~

pKvuK =  for each unit vector 11
MTu p∈  and 

each unit vector 22
MTv p∈ . 

 
Motivated by the studies of the above authors, we obtain a similar inequality 

for doubly warped products in S-space forms. 
On the other hand, the concept of framed metric structure unifies the concepts 

of almost Hermitian and almost contact metric structures. In particular, an S-structure 
generalizes Kaehler and Sasakian structure. In [2], Blair discusses principal toroidal 
bundles and generalizes the Hopf fibration to give a canonical example of an S-
manifold playing the role of complex projective space in Kaehler geometry and the 
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odd-dimensional sphere in Sasakian geometry. An S-manifold of constant f-sectional 

curvature c is called an S-space form )(
~

cM  [4], which generalizes the complex space 

form and Sasakian space form. 
 

 

2. Preliminaries 

 

In this section, we recall some definitions and basic formulas which we will 
use later. 

Let M  be a Riemannian n-manifold  isometrically  immersed in a Riemannian 

m-manifold mM
~

. 

We choose a local field of orthonormal frame mnn eeee ,...,,,...., 11 +  in mM
~

 

such that, restricted to M, the vectors nee ,....,1  are tangent to M and mn ee ,...,1+  are 

normal to M. 

Let ( )
ji eeK ∧ , nji ≤<≤1 , denote the sectional curvature of the plane 

section spanned by ie  and je . Then the scalar curvature of M is given by 

                            ( )∑
≤<≤

∧=
nji

ji eeK
1

τ .                                                   (2.1)            

Let L be a subspace of MTp  of dimension 2≥r  and { }ree ,....,1  an 

orthonormal basis of L. The scalar curvature ( )Lτ  of the r-plane section L is defined 

by 

                             ( ) ( )∑
≤<≤

∧=
r

eeKL
βα

βατ
1

 .                                           (2.2) 

Let h be the second fundamental form and R the Riemann curvature tensor of 
M. 

Then the equation of Gauss is given by 

( ) ( ) ( ) ( )( ) ( ) ( )( )WYhZXhgZYhWXhgWZYXRWZYXR ,,,,,,,,,,,,
~

−+= ,     (2.3) 

for any vectors X, Y, Z, W  tangent to M. 

  
The mean curvature vector H is defined by  

                                           ( )∑
=

==
n

i

ii eeh
n

traceh
n

H
1

,
11

.                                    (2.4) 

 As is known, M is said to be minimal  if H vanishes identically. 
 Also, we set  

                       ( )( ) { } { }mnrnjieeehgh rji

r

ij ,....,1,,...,1,,,, +∈∈=                    (2.5) 
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the coefficients of the second fundamental form h with respect to nee ,....,1 , 

mn ee ,...,1+ , and 

                                         ( ) ( )( )∑
=

=
n

ji

jiji eeheehgh
1,

2
,,,  .                                    (2.6) 

 Let M  be a Riemannian p-manifold and { }
pee ,....,1  be an orthonormal basis 

of M. For a differentiable function f on M, the Laplacian f∆  of f is defined by  

                                             ( ){ }∑
=

−∇=∆
p

j

jjje feefef
j

1

    .                                 (2.7) 

 We recall the following general algebraic lemma of Chen for later use. 

 Lemma 2.1 [5] Let 2≥n  and baaa n ,....,,, 21  real numbers such that  

                                         







+−=








∑∑

==

n

i

i

n

i

i bana
1

2

2

1

)1(                                       (2.8) 

Then baa ≥212 , with equality holding if and only if  

naaaa ===+ ...321 . 

 
3. S-space forms 

Let M
~

 be a (2m+s)-dimensional framed metric manifold  [19] (also known as 
framed f-manifold [12] or almost s-contact metric manifold [17] with a framed 

structure ( )gf ~,,, α
α ηξ , { }s,...,1∈α , that is, f  is a (1,1) tensor field defining a f-

structure of rank m; sξξ ,...,1  are vector fields; sηη ,...,1  are 1-forms and g~  is a 

Riemannian metric on M
~

 such that for all MTYX
~

, ∈  and { }s,...,1, ∈βα  

  ( ) ( ) 0,0,,2 ===⊗+−= ffIf o
α

α
α
ββ

α
α

α ηξδξηξη ,               (3.1) 

     ( ) ( )∑−=
α

αα ηη YXYXfYfX ,, ,                                    (3.2) 

   ( ) ( ) ( )XXXYfYXYX
α

α ηξ =Ω−=≡Ω ,,,,, ,                          (3.3) 

where ,  denotes the inner  product of the metric g~ . A framed metric structure is an 

S-structure if the Nijenhuis tensor of f equals α
α ξη ⊗− d2  and αηd=Ω , for all 

{ }s,...,1∈α . 
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 When s=1, a framed metric structure is an almost contact metric structure, 
while an S-structure is a Sasakian structure. 
 When s=0, a framed metric structure is an almost Hermitian structure, while 
an S-structure is a Kaehler structure. 

 If a framed metric structure on M
~

 is an S-structure then it is known [2] that  

                       ( ) ( )( )∑ +=∇
α

α
α ηξ XfYfYfXYfX

2,
~

,                                   (3.4) 

                                          ,
~

fXX −=∇ αξ    { }s,...,1∈α .                                       (3.5) 

 The converse may also be proved. In case of Sasakian structure (that is s=1), 

(3.4) implies (3.5). In Kaehler case (that is s=0), we get 0
~

=∇f . For s>1, examples of 

S-structures are given in [2] and [3]. Thus, the bundle space of principal toroidal 
bundles over a Kaehler manifold with certain conditions is an S-manifold. Thus, a 

generalization of the Hopf fibration mm
PCS →+12' :π  is a canonical example of an 

S-manifold playing the role of complex projective space in Kaehler geometry and the 
odd-dimensional sphere in Sasakian geometry. 

 A plane section in MTp

~
 is a f-section if there exists a vector 

MTX p

~
∈ orthogonal to sξξ ,...,1  such that { }fXX ,  span the section. The sectional 

curvature of a f-section is called a f-sectional curvature. It is known that [4] in an S-
manifold of constant f-sectional curvature c 

( ) ( ) ( ) ( ) ( ){∑ −−=
βα

βαβα ηηηη
,

22,
~

XfZYYfZXZYXR  

- ( ) β
α ξη YfZfX , ( ) }β

α ξη XfZfY ,+ + 

                { }YffZfXXffZfY
sc 22 ,,

4

3
+−

+
+ + 

                { }fZfYXfXfZYfYfZX
sc

,2,,
4

+−
−

+ ,              (3.6)                                     

for all MTZYX
~

,, ∈  where R
~

 is the curvature tensor of M
~

. An S-manifold of 

constant f-sectional curvature c is called an S-space form )(
~

cM . 

  
4. Doubly warped product integral submanifolds in S-space forms 

 

Let M
~

 be an S-manifold equipped with an S-structure ( )gf ~,,, α
α ηξ . A 

submanifold M of M
~

 is an integral submanifold if { }sX ,...,1,0)( ∈= αη α , for 

every tangent vector X. It follows that f maps any tangent space to the normal space, 
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i.e.  ( ) MTMTf pp

⊥
⊆ , ∀ ∈p M . In particular case of s=1, an integral submanifold 

M of a Sasakian manifold is a C-totally real submanifold  [18]. It is known that an n-

dimensional integral submanifold M, of an S-manifold M
~

 of dimension (2n+s), is of 
constant curvature s if and only if the normal connection is flat. 

Next, we investigate doubly warped product integral submanifolds in an S-

space form )(
~

cM . 

Theorem 4.1 Let x be an integral isometric immersion of an n-dimensional 

doubly warped product 21 12
MM ff ×  into a (2m+s)-dimensional S-space form 

)(
~

cM .Then: 

       ,
4

3

4
21

2
2

2

22
1

1

11
2

sc
nnH

n

f

f
n

f

f
n

+
+≤

∆
+

∆
                                   (4.1) 

where ii Mn dim= , 21 nnn +=  and i∆  is the Laplacian operator of iM , 

( )2,1=i . 

 Moreover, the equality case of  (4.1) holds if and only if  x is a mixed totally 

geodesic immersion and 2211 HnHn =  where iH , i=1,2, are the partial mean 

curvature vectors. 

 Proof. Let 21 12
MM ff ×  be an integral doubly warped product submanifold 

into an S-space form )(
~

cM  of constant f-sectional curvature c. Since 21 12
MM ff ×  is 

a doubly warped product, then  

                          
( )

( ) ( )







+=∇

∇−∇=∇

ZfXXfZZ

fYXg
f

f
YY

X

XX

12

2
2

12
1

2
21

lnln

ln),(
,                                    (4.2) 

for  any vector fields X, Y  tangent to 1M  and Z tangent to 2M , respectively, where 
1∇  and 2∇ are the Levi-Civita connections of the Riemannian metrics 1g  and 2g , 

respectively. Here, ( )2
2 ln f∇  denotes the gradient of  2ln f  with respect to the metric 

2g . 

If  X and Z are unit fields, X  tangent to 1M  and Z tangent to 2M , it follows 

from (4.2) that the sectional curvature ( )ZXK ∧  of the plane section spanned by X 
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and Z is given by                                                           

( ) ( ){ } ( ){ }.11
2

2
2

2

2

1
2

1
1

1

fZfZ
f

fXfX
f

ZXK ZX −∇+−∇=∧                                 (4.3) 

 We choose a local orthonormal frame { }nnn eeee ,...,,,..., 11 11 +  such that 

1
,...,1 nee are tangent to 1M , nn ee ,...,11 +  are tangent to 2M . Since it is easily seen that 

the mean curvature vector H is orthogonal to ξα , we may choose 1+ne  parallel to H 

and ssmm ee ξξ == ++ 2112 ,..., . 

 Then, using (4.3), we get 

                                  ( )
2

22
1

1

11
2

1
1

1

1
f

f
n

f

f
neeK

nsn
nj

sj

∆
+

∆
=∧∑

≤≤+
≤≤

 .                               (4.4) 

From the  equation of Gauss (2.3) and taking account of (3.6), we have 

                       ( )
4

3
12

222 sc
nnhHn

+
−−+= τ ,                                (4.5) 

where τ  denotes the scalar curvature of 21 12
MM ff × , that is,  

( )∑
≤<≤

∧=
nji

ji eeK
1

τ . 

 We set  

                                
2

2

24

3
)1(2 H

nsc
nn −

+
−−= τδ .                                    (4.6) 

Then, (4.5) can be written as 

                                                   ( )222 2 hHn += δ .                                        (4.7) 

Obviously, h h e e e e feij

m

i j e j j ii

2 0+ =< =< ∇ >=< >=α
αξ ξ

α
( , ), )

~
, , .  

With respect to the above orthonormal frame, (4.7) takes the following form: 
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                                   ( ) ( ) ( )











+++=








∑ ∑∑∑∑

+= =≠

+

=

+

=

+
m

nr

n

ji

r

ij

ji

n

ij

n

i

n

ii

n

i

n

ii hhhh
2

2 1,

221

2

1

1

2

1

1 2 δ . 

 If we put 1
111

+= nha , ∑
=

+=
1

2

1
2

n

i

n

iiha  and ∑
+=

+=
n

nt

n

ttha
1

1
3

1

, the above equation 

becomes 

( ) ( ) −+++=







∑ ∑∑∑∑

+= =≠

+

==

m

nr

n

ji

r

ij

ji

n

ij

i

i

i

i hhaa
2

2 1,

221

23

1

23

1

[2 δ  

∑∑
≤≠≤+

++

≤≠≤

++ −−
111 1

11

2

11

ntsn

n

tt

n

ss

nkj

n

kk

n

jj hhhh ]. 

 Thus 1a , 2a , 3a  satisfy the Lemma of Chen (for n=3), i.e., 









+=








∑∑

==

3

1

2

23

1

2
i

i

i

i aba , 

with  

( ) ( ) ∑∑∑ ∑∑
≤≠≤+

++

≤≠≤

++

+= =≤≠≤

+ −−++=
ntsn

n

tt

n

ss

nkj

n

kk

n

jj

m

nr

n

ji

r

ij

nji

n

ij hhhhhhb
1

11

2

11
2

2 1,

2

1

21

11

δ . 

Then baa ≥212 , with equality holding if and only if  321 aaa =+ . 

In the case under consideration, this means        

( ) ( )∑ ∑∑∑∑
+= =≤<≤

+

≤<≤+

++

≤<≤

++ ++≥+
m

nr

n
r

n

n

ntsn

n

tt

n

ss

nkj

n

kk

n

jj hhhhhh
2

2 1,

2

1

21

1

11

1

11

2

1

2
11 βα

αβ
βα

αβ

δ
.              (4.8) 

Equality holds if and only if 

                                        ∑∑
+=

+

=

+ =
n

nt

n

tt

n

i

n

ii hh
1

1

1

1

1

1

                                                        (4.9) 
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Using again the Gauss equation (2.3) and the formulas (4.3) and (2.7), we 
have 

( ) ( )∑∑
≤<≤+≤<≤

∧−∧−=
∆

+
∆

ntsn

ts

nkj

kj eeKeeK
f

f
n

f

f
n

112

22
1

1

11
2

11

τ  

                    
( )( ) ( )( )−−−

+−
−= ∑ ∑

+= ≤<≤

m

nr nkj

r

jk

r

kk

r

jj hhh
scnn 2

11

211

1
8

31
τ  

                                     
( )( ) ( )( )∑ ∑

+= ≤<≤+

−−
+−

−
m

nr ntsn

r

st

r

tt

r

ss hhh
scnn 2

1 1

222

1
8

31
 .       (4.10) 

 Combining (4.8) and (4.10) and taking account of (4.4), we obtain 

                          ≤
∆

+
∆

2

22
1

1

11
2

f

f
n

f

f
n

( )( )
−

+
+

+−
−

4

3

8

31
21

sc
nn

scnn
τ  

                        ( ) ( )∑ ∑∑
+= =

≤≤+
≤≤

+ +−−−
m

nr

n
r

ntn
nj

n

jt hh
2

2 1,

2

1
1

21

2

1

2
1

1 βα
αβ

δ
 

                                                

( )( ) ( )( )∑ ∑∑ ∑
+= ≤<≤++= ≤<≤

−+−+
m

nr ntsn

r

tt

r

ss

r

st

m

nr nkj

r

kk

r

jj

r

jk hhhhhh
2

2 1

2
2

2 1

2

11

= 

                                                          

( )( )
−−

+
+

+−
−=

24

3

8

31
21

δ
τ

sc
nn

scnn ( )∑ ∑ ∑
+= = +=

−
m

nr

n

j

n

nt

r

jth
2

1 1 1

21

1

 

                                     ≤









−










− ∑ ∑∑ ∑

+= ++= =

m

nr

n

tn

r

tt

m

nr

n

j

r

jj hh
2

2

2

1

2

2

2

1 1

1

2

1

2

1
 

( )( )
=−

+
+

+−
−≤

24

3

8

31
21

δ
τ

sc
nn

scnn

4

3

4
21

2
2

sc
nnH

n +
+ , 
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which implies the inequality (4.1). 

 We see that the equality sign of (4.11) holds if and only if 

              mrnntnnjh
r

jt 21,1,1,0 11 ≤≤+≤≤+≤≤=                                  (4.12) 

and 

                              mrnhh
n

nt

r

tt

n

i

r

ii 22,0
11 1

1

≤≤+== ∑∑
+==

.                                      (4.13) 

 Obviously (4.12) is equivalent to the mixed totally geodesicness of the doubly 

warped product 21 12
MM ff ×  and (4.9) and (4.13) implies 2211 HnHn = . 

 The converse statement is straightforward. 

 Remark 4.2 If either 11 ≡f  or 12 ≡f , then the inequality (4.1)  is exactly 

the inequality (4.15) from [7]  for warped products. 

 Putting s=1 in (4.1), we have the following 

 Corollary 4.3 [14] Let x be a C-totally real isometric immersion of an n-

dimensional doubly warped product 21 12
MM ff ×  into a (2m+1)-dimensional 

Sasakian space form )(
~

cM  . Then 

                   ,
4

3

4
21

2
2

2

22
1

1

11
2

+
+≤

∆
+

∆ c
nnH

n

f

f
n

f

f
n                                   (4.14) 

where ii Mn dim= , and i∆  is the Laplacian operator of iM , ( )2,1=i . 

 Moreover, the equality case of  (4.14) holds if and only if  x is a mixed totally 

geodesic immersion and 2211 HnHn =  where iH , i=1,2, are the partial mean 

curvature vectors. 

  
As an application, we obtain certain obstructions to the existence of minimal 

doubly warped product integral submanifolds in S-space forms. 
 By using the above theorem (Theorem 4.1), we can obtain some important 
consequences: 
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 Corollary 4.4  Let 21 12
MM ff ×  be a doubly warped product whose warping 

functions are harmonic. Then 21 12
MM ff ×  admits no minimal integral immersion 

into an S- space form )(
~

cM  with c<-3s.  

 Proof. Assume 1f  is a harmonic function on 1M , 2f  is a harmonic function 

on 2M  and 21 12
MM ff ×  admits a minimal integral immersion in an S-space form 

)(
~

cM . Then, the inequality (4.1) becomes sc 3−≥ . 

 Corollary 4.5 If the warping functions 1f  and 2f  of a doubly warped product 

21 12
MM ff ×  are eigenfunctions of the Laplacian on 1M  and 2M , respectively, with 

corresponding eigenvalues 01 >λ  and 02 >λ , respectively, then 21 12
MM ff ×  

admits no minimal integral immersion into an S-space form )(
~

cM  with sc 3−≤ . 

 Corollary 4.6 Let 21 12
MM ff ×  be a doubly warped product. If one of the 

warping functions is harmonic and the other one is an eigenfunction of the Laplacian 

with corresponding eigenvalue 0>λ , then 21 12
MM ff ×  admits no minimal integral 

immersion into an S-space form )(
~

cM  with sc 3−≤ . 

 Using s=1 in the above corollaries, we immediately get the following results 
from [14], [15]: 

 Corollary 4.7 [14], [15]   Let 21 12
MM ff ×  be a doubly warped product 

whose warping functions are harmonic. Then  21 12
MM ff ×  admits no minimal C-

totally real immersion into a Sasakian space form )(
~

cM with c<-3. 

 Corollary 4.8 [14], [15]  If the warping functions  1f  and 2f  of a doubly 

warped product 21 12
MM ff ×  are eigenfunctions of the Laplacian on 1M  and 2M , 

respectively, with corresponding eigenvalues 01 >λ  and 02 >λ , respectively, then 

21 12
MM ff ×  admits no minimal C-totally real immersion in a Sasakian space  form 

)(
~

cM  with 3−≤c . 

 Corollary 4.9 [14], [15] Let 21 12
MM ff ×  be a doubly warped product. If 

one of the warping functions is harmonic and the other one is an eigenfunction of the 

Laplacian with corresponding eigenvalue 0>λ , then 21 12
MM ff ×  admits no 

minimal C-totally real immersion into a Sasakian space form )(
~

cM with 3−≤c . 
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