ON NEW CESÀRO-ORLICZ DOUBLE DIFFERENCE SEQUENCE SPACE

OĞUZ OĞUR AND CENAP DUYAR

Abstract

The aim of this paper is to introduce the Cesàro-Orlicz double difference sequence space $C e s_{M}^{(2)}(\triangle, p)$. We study some topological properties of this space and give some inclusion relations.

1. Introduction

Throughout this work, $\mathbb{N}, \mathbb{R}, w$ and w^{2} denote the sets of positive integers, real numbers, single real sequences and double real sequences, respectively.

First of all, let us recall preliminary definitions and notations.
A double sequence on a normed linear space X is a function x from $\mathbb{N} \times \mathbb{N}$ into X and briefly denoted by $x=\left(x_{k l}\right)$. If for every $\varepsilon>0$ there exists $n_{\varepsilon} \in \mathbb{N}$ such that $\left\|x_{k l}-a\right\|_{X}<\varepsilon$ whenever $k, l>n_{\varepsilon}$ then a double sequence $\left(x_{k l}\right)$ is said to be converges (in terms of Pringsheim) to $a \in X$ [16].

A double series $\sum_{k, l=1}^{\infty} x_{k l}$ is convergent if and only if its sequence of partial sums $\left(s_{n m}\right)$ is convergent (see $[2],[3]$), where $s_{n m}=\sum_{k=1}^{n} \sum_{l=1}^{m} x_{k l}$ for all $m, n \in \mathbb{N}$.

Let X be a linear space. A function $p: X \rightarrow \mathbb{R}$ is called paranorm, if
i) $p(0)=0$,
ii) $p(x) \geq 0$ for all $x \in X$,
iii) $p(-x)=p(x)$ for all $x \in X$,
iv) $p(x+y) \leq p(x)+p(y)$ for all $x, y \in X$,
$v)$ if $\left(\lambda_{n}\right)$ is a sequence of scalars with $\lambda_{n} \rightarrow \lambda$ as $n \rightarrow \infty$ and $\left(x_{n}\right)$ is a sequence of vectors with $p\left(x_{n}-x\right) \rightarrow 0$ as $n \rightarrow \infty$, then $p\left(\lambda_{n} x_{n}-\lambda x\right) \rightarrow 0$ as $n \rightarrow \infty$ (continuity of scalars multiplication).

A paranorm p for which $p(x)=0$ implies $x=0$ is called total [12].
An Orlicz function is a function $M:[0, \infty) \rightarrow[0, \infty)$ which is continuous, nondecreasing and convex with $M(0)=0, M(x)>0$ for $x>0$ and $M(x) \rightarrow \infty$ as $x \rightarrow \infty$.

An Orlicz function M can always be represented in the following integral form: $M(x)=\int_{0}^{x} \eta(t) d t$, where η is known as the kernel of M, is right differentiable for $t \geq 0, \eta(0)=0, \eta(t)>0$ for $t>0, \eta$ is nondecreasing and $\eta(t) \rightarrow \infty$ as $t \rightarrow \infty$.

An Orlicz function M is said to be satisfied the Δ_{2}-condition if there are $T>0$ and $a>0$ such that $M(a)>0$ and $M(2 u) \leq T M(u)$ for all $u \in[0, a]$ (see [10]).

For $1 \leq p<\infty$, the Cesàro sequence space $C e s_{p}$ is defined by

[^0]$$
C e s_{p}=\left\{x \in w: \sum_{j=1}^{\infty}\left(\frac{1}{j} \sum_{i=1}^{j}\left|x_{i}\right|\right)^{p}<\infty\right\}
$$
equipped with norm
$$
\|x\|=\left(\sum_{j=1}^{\infty}\left(\frac{1}{j} \sum_{i=1}^{j}\left|x_{i}\right|\right)^{p}\right)^{\frac{1}{p}}
$$

This space was first introduced by Shiue [18]. It is very useful in the theory of matrix operators and others. Sanhan and Suantai introduced and studied a generalized Cesàro sequence space $\operatorname{Ces}(p)$, where $p=\left(p_{j}\right)$ is a bounded sequence of positive real numbers (see [17]). Later, this space was studied by many authors in [4], [7], , [9], [11], [14], [15].

The notion of difference sequence space was introduced by Kızmaz in [8] in 1981 as follows:

$$
X(\triangle)=\left\{x=\left(x_{k}\right) \in w:\left(x_{k}-x_{k+1}\right) \in X\right\}
$$

for $X=\ell_{\infty}, c, c_{0}$. Subsequently difference sequence spaces has been discussed in Ahmad and Mursaleen [1], Malkowsky and Parashar [13], Et and Başarır [5], Et and Çolak [6] and others.

In this work, we introduce double sequence spaces $C e s_{M}^{(2)}(\triangle, p)$ as follows;
Let $p=\left(p_{n m}\right)$ be a bounded double sequence of positive real numbers and M be an Orlicz function. The space $C e s_{M}^{(2)}(\triangle, p)$ is defined by

$$
C e s_{M}^{(2)}(\triangle, p)=\left\{x \in w^{2}: \sum_{n, m=1}^{\infty}\left[M\left(\frac{1}{n m} \sum_{i, j=1}^{n, m} \frac{\left|\triangle x_{i j}\right|}{\rho}\right)\right]^{p_{n m}}<\infty, \exists \rho>0\right\}
$$

where $\triangle x_{i j}=x_{i-1, j-1}-x_{i-1, j}-x_{i, j-1}+x_{i j}$ for all $i, j \in \mathbb{N}$ and the terms with negative subscript are assume zero.

The following inequality will be used throughout this paper. Let $\left(p_{n m}\right)$ be a bounded double sequence of strictly positive real numbers and denote $H=$ $\sup _{n, m} p_{n m}$. For any complex $a_{n m}$ and $b_{n m}$ we have

$$
\left|a_{n m}+b_{n m}\right|^{p_{n m}} \leq D \cdot\left(\left|a_{n m}\right|^{p_{n m}}+\left|b_{n m}\right|^{p_{n m}}\right)
$$

where $D=\max \left(1,2^{H-1}\right)$. Also, for any complex λ,

$$
|\lambda|^{p_{n m}} \leq \max \left(1,|\lambda|^{H}\right)
$$

2. MAIN RESULTS

Theorem 1. Let $\left(p_{n m}\right)$ be bounded. The set $C e s_{M}^{(2)}(\triangle, p)$ of double sequences is a linear space over the real field \mathbb{R}.
Proof. Let $x, y \in C e s{ }_{M}^{(2)}(\triangle, p)$ and $\lambda, \beta \in \mathbb{C}$. Then there exist $\rho_{1}>0, \rho_{2}>0$ such that

$$
\sum_{n, m=1}^{\infty}\left[M\left(\frac{1}{n m} \sum_{i, j=1}^{n, m} \frac{\left|\triangle x_{i j}\right|}{\rho_{1}}\right)\right]^{p_{n m}}<\infty
$$

and

$$
\sum_{n, m=1}^{\infty}\left[M\left(\frac{1}{n m} \sum_{i, j=1}^{n, m} \frac{\left|\triangle y_{i j}\right|}{\rho_{2}}\right)\right]^{p_{n m}}<\infty
$$

Let $\alpha, \beta \in \mathbb{R}$ and $\rho_{3}=\max \left\{2|\alpha| \rho_{1}, 2|\beta| \rho_{2}\right\}$. Since M is non-decreasing convex function, we have

$$
\begin{aligned}
& \sum_{n, m=1}^{\infty}\left[M\left(\frac{1}{n m} \sum_{i, j=1}^{n, m} \frac{\left|\alpha \triangle x_{i j}+\beta \triangle y_{i j}\right|}{\rho_{3}}\right)\right]^{p_{n m}} \\
\leq & \sum_{n, m=1}^{\infty}\left[M\left(\frac{|\alpha|}{n m} \sum_{i, j=1}^{n, m} \frac{\left|\triangle x_{i j}\right|}{\rho_{3}}+\frac{|\beta|}{n m} \sum_{i, j=1}^{n, m} \frac{\left|\triangle y_{i j}\right|}{\rho_{3}}\right)\right]^{p_{n m}} \\
\leq & \sum_{n, m=1}^{\infty}\left[M\left(\frac{1}{2 n m} \sum_{i, j=1}^{n, m} \frac{\left|\triangle x_{i j}\right|}{\rho_{1}}+\frac{1}{2 n m} \sum_{i, j=1}^{n, m} \frac{\left|\triangle y_{i j}\right|}{\rho_{2}}\right)\right]^{p_{n m}} \\
\leq & \sum_{n, m=1}^{\infty} \frac{1}{2^{p_{n m}}}\left[M\left(\frac{1}{n m} \sum_{i, j=1}^{n, m} \frac{\left|\triangle x_{i j}\right|}{\rho_{1}}\right)+M\left(\frac{1}{n m} \sum_{i, j=1}^{n, m} \frac{\left|\triangle y_{i j}\right|}{\rho_{2}}\right)\right]^{p_{n m}} \\
< & \sum_{n, m=1}^{\infty}\left[M\left(\frac{1}{n m} \sum_{i, j=1}^{n, m} \frac{\left|\triangle x_{i j}\right|}{\rho_{1}}\right)+M\left(\frac{1}{n m} \sum_{i, j=1}^{n, m} \frac{\left|\triangle y_{i j}\right|}{\rho_{2}}\right)\right]^{p_{n m}} \\
\leq & D \cdot \sum_{n, m=1}^{\infty}\left[M\left(\frac{1}{n m} \sum_{i, j=1}^{n, m} \frac{\left|\triangle x_{i j}\right|}{\rho_{1}}\right)\right] \\
< & \infty \cdot \sum_{n, m=1}^{p_{n m}}\left[M\left(\frac{1}{n m} \sum_{i, j=1}^{n, m} \frac{\left|\triangle y_{i j}\right|}{\rho_{2}}\right)\right]^{p_{n m}} \\
< & \infty,
\end{aligned}
$$

where $D=\max \left(1,2^{H-1}\right)$. This shows that $\lambda x+\beta y \in C e s_{M}^{(2)}(\triangle, p)$ and so $C e s_{M}^{(2)}(\triangle, p)$ is a linear space.

Theorem 2. The double sequence space $C e s_{M}^{(2)}(\triangle, p)$ is a paranormed space with the paranorm

$$
g(x)=\inf \left\{\rho^{\frac{p_{q} r}{R}}>0:\left(\sum_{n, m=1}^{\infty}\left[M\left(\frac{1}{n m} \sum_{i, j=1}^{n, m} \frac{\left|\triangle x_{i j}\right|}{\rho}\right)\right]^{p_{n m}}\right)^{\frac{1}{R}} \leq 1, q, r \in \mathbb{N}\right\}
$$

where $H=\sup _{n, m} p_{n m}<\infty$ and $R=\max (1, H)$.
Proof. It is clear that $g(x)=g(-x)$ and $g(0)=0$. For any $x, y \in C e s_{M}^{(2)}(\triangle, p)$, there exist $\rho_{1}, \rho_{2}>0$ such that

$$
\left(\sum_{n, m=1}^{\infty}\left[M\left(\frac{1}{n m} \sum_{i, j=1}^{n, m} \frac{\left|\triangle x_{i j}\right|}{\rho_{1}}\right)\right]^{p_{n m}}\right)^{\frac{1}{R}} \leq 1
$$

and

$$
\left(\sum_{n, m=1}^{\infty}\left[M\left(\frac{1}{n m} \sum_{i, j=1}^{n, m} \frac{\left|\triangle y_{i j}\right|}{\rho_{2}}\right)\right]^{p_{n m}}\right)^{\frac{1}{R}} \leq 1
$$

Let $\rho_{3}=2^{\frac{R}{h}}\left(\rho_{1}+\rho_{2}\right)$, where $h=\inf p_{n m}>0$. Since M is a non-decreasing convex function, we have

$$
\begin{aligned}
& \left(\sum_{n, m=1}^{\infty}\left[M\left(\frac{1}{n m} \sum_{i, j=1}^{n, m} \frac{\left|\triangle x_{i j}+\Delta y_{i j}\right|}{\rho_{3}}\right)\right]^{p_{n m}}\right)^{\frac{1}{R}} \\
\leq & \left(\sum_{n, m=1}^{\infty}\left[M\left(\frac{1}{n m} \sum_{i, j=1}^{n, m} \frac{\left|\triangle x_{i j}\right|}{2^{\frac{R}{h}}\left(\rho_{1}+\rho_{2}\right)}+\frac{1}{n m} \sum_{i, j=1}^{n, m} \frac{\left|\triangle y_{i j}\right|}{2^{\frac{R}{h}}\left(\rho_{1}+\rho_{2}\right)}\right)\right]^{p_{n m}}\right)^{\frac{1}{R}} \\
\leq & \left(\sum _ { n , m = 1 } ^ { \infty } \left[\frac{\rho_{1}}{2^{\frac{R}{h}}\left(\rho_{1}+\rho_{2}\right)} M\left(\frac{1}{n m} \sum_{i, j=1}^{n, m} \frac{\left|\triangle x_{i j}\right|}{\rho_{1}}\right)^{\rho_{1}}\right.\right. \\
& \left.\left.+\frac{\rho_{2}}{2^{\frac{R}{h}}\left(\rho_{1}+\rho_{2}\right)} M\left(\frac{1}{n m} \sum_{i, j=1}^{n, m} \frac{\left|\triangle y_{i j}\right|}{\rho_{2}}\right)\right]^{p_{n m}}\right)^{\frac{1}{R}} \\
\leq & \left(\sum_{n, m=1}^{\infty}\left[\frac{1}{2^{\frac{R}{h}}} M\left(\frac{1}{n m} \sum_{i, j=1}^{n, m} \frac{\left|\triangle x_{i j}\right|}{\rho_{1}}\right)\right]^{p_{n m}}\right)^{\frac{1}{R}} \\
& +\left(\sum_{n, m=1}^{\infty}\left[\frac{1}{2^{\frac{R}{h}}} M\left(\frac{1}{n m} \sum_{i, j=1}^{n, m} \frac{\left|\triangle y_{i j}\right|}{\rho_{2}}\right)\right]^{p_{n m}}\right)^{\frac{1}{R}} \\
= & \frac{1}{2}\left(\sum_{n, m=1}^{\infty}\left[M\left(\frac{1}{n m} \sum_{i, j=1}^{n, m} \frac{\left|\triangle x_{i j}\right|}{\rho_{1}}\right)\right]^{p_{n m}}\right)^{\frac{1}{R}} \\
\leq & +\frac{1}{2}\left(\sum_{n, m=1}^{\infty}\left[M\left(\frac{1}{n m} \sum_{i, j=1}^{n, m} \frac{\left|\triangle y_{i j}\right|}{\rho_{2}}\right)\right]^{p_{n m}}\right)^{\frac{1}{R}} \\
& 1
\end{aligned}
$$

Since $\rho_{1}, \rho_{2}, \rho_{3}$ are positive real numbers we get

$$
\begin{gathered}
g(x+y)=\inf \left\{\rho_{3}^{\frac{p_{q r}}{R}}>0:\left(\sum_{n, m=1}^{\infty}\left[M\left(\frac{1}{n m} \sum_{i, j=1}^{n, m} \frac{\left|\triangle x_{i j}+\triangle y_{i j}\right|}{\rho_{3}}\right)\right]^{p_{n m}}\right)^{\frac{1}{R}}\right. \\
\leq 1 ; q, r \in \mathbb{N}\}
\end{gathered}
$$

$$
\begin{aligned}
\leq & \inf \left\{\rho_{1}^{\frac{p_{q r}}{R}}>0:\left(\sum_{n, m=1}^{\infty}\left[M\left(\frac{1}{n m} \sum_{i, j=1}^{n, m} \frac{\left|\triangle x_{i j}\right|}{\rho_{1}}\right)\right]^{p_{n m}}\right)^{\frac{1}{R}} \leq 1 ; q, r \in \mathbb{N}\right\} \\
& +\inf \left\{\rho_{2}^{\frac{p_{q} r}{R}}>0:\left(\sum_{n, m=1}^{\infty}\left[M\left(\frac{1}{n m} \sum_{i, j=1}^{n, m} \frac{\left|\triangle y_{i j}\right|}{\rho_{2}}\right)\right]^{p_{n m}}\right)^{\frac{1}{R}} \leq 1 ; q, r \in \mathbb{N}\right\} \\
= & g(x)+g(y) .
\end{aligned}
$$

Let $\left(x^{n}\right)=\left\{x_{i j}^{n}\right\}$ be any sequence in the space $C e s_{M}^{(2)}(\triangle, p)$ such that $g\left(x^{n}-x\right) \rightarrow$ 0 , as $n \rightarrow \infty$ and $\left(\lambda_{n}\right)$ is a sequence of reals with $\lambda_{n} \rightarrow \lambda$, as $n \rightarrow \infty$. Then, since the inequality

$$
g\left(x^{n}\right) \leq g(x)+g\left(x^{n}-x\right)
$$

holds by subadditivity of the function $g,\left\{g\left(x^{n}\right)\right\}$ is bounded. Taking into account this fact we therefore derive the inequality

$$
g\left(\lambda_{n} x^{n}-\lambda x\right) \leq\left|\lambda_{n}-\lambda\right| g\left(x^{n}\right)+|\lambda| g\left(x^{n}-x\right)
$$

which tends to zero as $n \rightarrow \infty$. Hence, the scalar multiplication is continuous.
That is to say that g is a paranorm on the space $C e s_{M}^{(2)}(\triangle, p)$, as asserted.
Theorem 3. The space $C e s_{M}^{(2)}(\triangle, p)$ is complete with respect to its paranorm.
Proof. Let $\left(x^{s}\right)=\left\{x_{i j}^{s}\right\}$ be any Cauchy sequence in the space $C e s{ }_{M}^{(2)}(\triangle, p)$. Since $\left(x^{s}\right)$ is a Cauchy sequence, we have

$$
\begin{equation*}
g\left(x^{s}-x^{t}\right) \rightarrow 0 \tag{1}
\end{equation*}
$$

as $s, t \rightarrow \infty$. Hence, we get

$$
\left|\triangle x_{i j}^{s}-\triangle x_{i j}^{t}\right| \rightarrow 0
$$

as $s, t \rightarrow \infty$ for all $i, j \in \mathbb{N}$. Then, we have $\left\{x_{i j}^{s}\right\}$ is a Cauchy sequence in \mathbb{R} for each fixed $i, j \in \mathbb{N}$.

Thus, there exists $x_{i j} \in \mathbb{R}$ such that $x_{i j}^{s} \rightarrow x_{i j}$ as $s \rightarrow \infty$ and say $x=x_{i j}$. Since M is continuous, by (1) we get

$$
g\left(x^{s}-x\right) \rightarrow 0
$$

as $t \rightarrow \infty$.
Since $C e s_{M}^{(2)}(\triangle, p)$ is linear space, we get $x=\left\{x_{i j}\right\} \in C e s_{M}^{(2)}(\triangle, p)$. This completes the proof.
Theorem 4. Let $0<p_{n m} \leq q_{n m}<\infty$. Then $C e s s_{M}^{(2)}(\triangle, p) \subset C e s_{M}^{(2)}(\triangle, q)$.
Proof. Let $x \in C e s_{M}^{(2)}(\triangle, p)$, then there exists $\rho>0$ such that

$$
\sum_{n, m=1}^{\infty}\left[M\left(\frac{1}{n m} \sum_{i, j=1}^{n, m} \frac{\left|\triangle x_{i j}\right|}{\rho}\right)\right]^{p_{n m}}<\infty
$$

Hence we have $M\left(\frac{1}{n m} \sum_{i, j=1}^{n, m} \frac{\left|\triangle x_{i j}\right|}{\rho}\right)<1$ for large values of n, m. Then, we get

$$
\sum_{n, m=1}^{\infty}\left[M\left(\frac{1}{n m} \sum_{i, j=1}^{n, m} \frac{\left|\triangle x_{i j}\right|}{\rho}\right)\right]^{q_{n m}} \leq \sum_{n, m=1}^{\infty}\left[M\left(\frac{1}{n m} \sum_{i, j=1}^{n, m} \frac{\left|\triangle x_{i j}\right|}{\rho}\right)\right]^{p_{n m}}<\infty
$$

and so $x \in C e s_{M}^{(2)}(\triangle, q)$.
Theorem 5. Let M_{1} and M_{2} be Orlicz functions satisfying \triangle_{2}-condition. Then
(a) $C e s_{M_{1}}^{(2)}(\triangle, p) \subset C e s_{M_{2} \circ M_{1}}^{(2)}(\triangle, p)$,
(b) $C e s_{M_{1}}^{(2)}(\triangle, p) \cap C e s_{M_{2}}^{(2)}(\triangle, p) \subset C e s_{M_{1}+M_{2}}^{(2)}(\triangle, p)$.

Proof. (a) Let $x \in C e s s_{M_{1}}^{(2)}(\triangle, p)$. Then there exists $\rho>0$ such that

$$
\sum_{n, m=1}^{\infty}\left[M_{1}\left(\frac{1}{n m} \sum_{i, j=1}^{n, m} \frac{\left|\triangle x_{i j}\right|}{\rho}\right)\right]^{p_{n m}}<\infty
$$

Since M_{1} is a continuous function, we can find a real number δ with $0<\delta<1$ such that $M_{1}(t)<\varepsilon$. Let $y_{n m}=M_{1}\left(\frac{1}{n m} \sum_{i, j=1}^{n, m} \frac{\left|\triangle x_{i j}\right|}{\rho}\right)$. Hence we write

$$
\sum_{n, m=1}^{\infty}\left[M_{2}\left(y_{n m}\right)\right]^{p_{n m}}=\sum_{y_{n m} \leq \delta}^{\infty}\left[M_{2}\left(y_{n m}\right)\right]^{p_{n m}}+\sum_{y_{n m}>\delta}^{\infty}\left[M_{2}\left(y_{n m}\right)\right]^{p_{n m}}
$$

By the properties of M_{2}, we have

$$
\begin{equation*}
\sum_{y_{n m} \leq \delta}^{\infty}\left[M_{2}\left(y_{n m}\right)\right]^{p_{n m}} \leq \max \left\{1, M_{2}(1)^{H}\right\} \sum_{y_{n m} \leq \delta}^{\infty}\left[y_{n m}\right]^{p_{n m}} \tag{2}
\end{equation*}
$$

Also,

$$
M_{2}\left(y_{n m}\right)<M_{2}\left(1+\frac{y_{n m}}{\delta}\right)<\frac{1}{2} M_{2}(2)+\frac{1}{2}\left(\frac{2 y_{n m}}{\delta}\right)
$$

for $y_{n m}>\delta$. Since M_{2} satisfying \triangle_{2}-condition and $\frac{y_{n m}}{\delta}>1$, there exists $T>0$ such that

$$
M_{2}\left(y_{n m}\right)<\frac{1}{2} T \frac{y_{n m}}{\delta} M_{2}(2)+\frac{1}{2} T \frac{y_{n m}}{\delta} M_{2}(2)=T \frac{y_{n m}}{\delta} M_{2}(2)
$$

Therefore we have

$$
\begin{equation*}
\sum_{y_{n m}>\delta}^{\infty}\left[M_{2}\left(y_{n m}\right)\right]^{p_{n m}} \leq \max \left\{1,\left(T \frac{M_{2}(2)}{\delta}\right)^{H}\right\} \sum_{y_{n m}>\delta}^{\infty}\left[y_{n m}\right]^{p_{n m}} \tag{3}
\end{equation*}
$$

Hence by the (2), (3), we get

$$
\begin{aligned}
\sum_{n, m=1}^{\infty}\left[\left(M_{2} \circ M_{1}\right)\left(\frac{1}{n m} \sum_{i, j=1}^{n, m} \frac{\left|\triangle x_{i j}\right|}{\rho}\right)\right]^{p_{n m}}= & \sum_{n, m=1}^{\infty}\left[M_{2}\left(y_{n m}\right)\right]^{p_{n m}} \\
\leq & B \cdot \sum_{y_{n m} \leq \delta}^{\infty}\left[y_{n m}\right]^{p_{n m}} \\
& +F \cdot \sum_{y_{n m}>\delta}^{\infty}\left[y_{n m}\right]^{p_{n m}} \\
< & \infty,
\end{aligned}
$$

where $B=\max \left\{1, M_{2}(1)^{H}\right\}$ and $F=\max \left\{1,\left(T \frac{M_{2}(2)}{\delta}\right)^{H}\right\}$. Hence $C e s_{M_{1}}^{(2)}(\triangle, p)$ $\subset C e s_{M_{2} \circ M_{1}}^{(2)}(\triangle, p)$.
(b) Let $x \in C e s_{M_{1}}^{(2)}(\triangle, p) \cap C e s_{M_{2}}^{(2)}(\triangle, p)$. Then there exists $\rho>0$ such that

$$
\sum_{n, m=1}^{\infty}\left[M_{1}\left(\frac{1}{n m} \sum_{i, j=1}^{n, m} \frac{\left|\triangle x_{i j}\right|}{\rho}\right)\right]^{p_{n m}}<\infty
$$

and

$$
\sum_{n, m=1}^{\infty}\left[M_{2}\left(\frac{1}{n m} \sum_{i, j=1}^{n, m} \frac{\left|\triangle x_{i j}\right|}{\rho}\right)\right]^{p_{n m}}<\infty
$$

Hence we get

$$
\begin{aligned}
& \sum_{n, m=1}^{\infty}\left(\left(M_{1}+M_{2}\right)\left(\frac{1}{n m} \sum_{i, j=1}^{n, m} \frac{\left|\triangle x_{i j}\right|}{\rho}\right)\right)^{p_{n m}} \\
\leq & A \cdot \sum_{n, m=1}^{\infty}\left(M_{1}\left(\frac{1}{n m} \sum_{i, j=1}^{n, m} \frac{\left|\triangle x_{i j}\right|}{\rho}\right)\right)^{p_{n m}} \\
& +A \cdot \sum_{n, m=1}^{\infty}\left(M_{2}\left(\frac{1}{n m} \sum_{i, j=1}^{n, m} \frac{\left|\triangle x_{i j}\right|}{\rho}\right)\right)^{p_{n m}} \\
< & \infty
\end{aligned}
$$

where $A=\max \left\{1,2^{H-1}\right\}$. This completes the proof.

References

[1] Ahmad Z. U., Mursaleen, Köthe-Toeplitz Duals of Some New Sequence Spaces and Their Matrix Maps, Pub. Inst. Math. Beograd, 42 (56) (1987), 57-61.
[2] Başar, F., Sever Y., The Space L_{q} of Double Sequences, Math. J. Okayama Univ. 51(2009), 149-157.
[3] Başar, F., Summability Theory and Its Applications, Bentham Science Publishers, e-books, Monographs, İstanbul, 2012.
[4] Dutta H., Başar F., A generalization of Orlicz sequence spaces by Cesáro mean of order one, Acta Math. Univ. Comen. 80 (2) (2011), 185-200.
[5] Et M., Başarır M., On Some New Generalized Difference Sequence Spaces, Periodica Math. Hung., 35 (3) (1997), 169-176.
[6] Et M., Çolak R., On Some Generalized Difference Sequence Spaces, Soochow J. Math. 21 (4), (1995), 377-386.
[7] Cui Y., Hudzik H., Petrot N., Suantai S., Szkymaszkiewicz A., Basic Topological and Geometric Properties of Cesàro-Orlicz Spaces, Proc. Indian Acad. Sci. (Math. Sci.) Vol. 115, No. 4, 2005.
[8] Kızmaz H., On Certain Sequence Spaces, Canad. Math. Bull., Vol. 24 (2), 1981.
[9] Kubiak D., A Note on Cesàro-Orlicz Sequence Spaces, J. Math. Anal. Appl. 349 (2009) 291-296.
[10] Krasnoselskii M. A., Rutickii Ya. B., Convex Functions and Orlicz Spaces, (Groningen: P. Nordhoff Ltd.), 1961.
[11] Lee P. Y., Cesàro Sequence Space, Math. Chronicle, 13 (1984), 29-45.
[12] Maddox I. J., Elements of Functional Analysis, Cambridge Univ. Press, 1970.
[13] Malkowsky E., Parashar E. D., Matrix Transformation in Spaces of Bounded and convergent difference sequences of order m, Analysis, 17 (1997), 87-97.
[14] Mursaleen M., Başar F., Domain of Cesàro mean of order one in some spaces of double sequences, Stud. Sci. Math. Hungar. 51 (3) (2014), 335-356.
[15] Petrot N., Suantai S., On Uniform Kadec-Klee Properties and Rodundity in Generalized Cesàro Sequence Spaces, Internat. J. Math. Sci., 2 (2004), 91-97.
[16] Pringsheim A., Zur Theorie de Zweifach Unendlichen Zahlenfolgen, Math. Ann., 53 (1900), 289-321.
[17] Sanhan W., Suantai S., On k-nearly Uniform Convex Property in Generalized Cesàro Sequence Spaces, Internat. J. Math. Sci., 57 (2003), 3599-3607.
[18] Shiue J. S., On the Cesàro Sequence Spaces, Tamkang J. Math., 1 (1970), 19-25.
(O.Oğur) Giresun University, Art and Science Faculty, Department of Mathematics, Güre, Giresun, TURKEy, [C.Duyar] Ondokuz Mayis University, Art and Science Faculty, Department of Mathematics, Kurupelit campus, Samsun, TURKEY

E-mail address: oguz.ogur@giresun.edu.tr
E-mail address: cenapd@omu.edu.tr

[^0]: 2000 Mathematics Subject Classification. 40A05, 40A25, 40A30.
 Key words and phrases. Double sequences, Orlicz function, paranorm, Cesàro sequence space.

