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ON VANISHING OF GENERALIZED LOCAL HOMOLOGY MODULES AND
ITS DUALITY

KARIM MOSLEHI AND MOHAMMAD R. AHMADI

ABSTRACT. In this paper we study the vanishing and non-vanishing of generalized local coho-
mology and generalized local homology. In particular for a Noetherian local ring (R, m) and
two non-zero finitely generated R-modules M and N, it is shown that HﬂlmN(M, N) #0.

1. INTRODUCTION

Local cohomology was first defined and studied by Grothendieck [Gro]. Let R be a commu-
tative Noetherian ring with non-zero identity and M be an R-module. For an ideal I of R, the
i-th local cohomology modules with support in [ is defined as follows:

H}(M) = lim Ext), (R/1', 1),

teN
On the other hand, a natural generalization of local cohomology modules was introduced by
Herzog [Her| as follows: For a pair of R-module (M, N) the i-th generalized local cohomology
module of (M, N) with respect to I is the R-module

H}(M, N) = lim Exty, (M/I'M,N) .

teN
Clearly whenever M = R, the generalized local cohomology module H}(R, N) is the ordinary
local cohomology module H(N). Moslehi and Bijan-Zadeh introduced a natural generalization

of local homology modules [BM]. For ¢ € Ny, we defined generalized local homology module
UX(M, N) of pair (M, N) with respect to I as follows:
U{ (M, N) = lim Tor] (M/I'M, N).
teN
Whenever M = R, for simplicity of notation we denote Ul (R, N) by U/(N).
Two important type of theorems concerning local homology and cohomology are vanishing and

non-vanishing results. We collect the known vanishing and non-vanishing results for generalized
local homology and cohomology in the following theorems.

Theorem 1.1. Let M and N be two non-zero finitely generated R-modules such that pdM< oo
(pd abbreviates projective dimension).

(i) ([Yas, 3.7]) Suppose diim N < oo. Then H{(M,N) =0, for all i > pdM + dim (M ®@g N).
(ii) (/Bij, 5.5]) Let
t = gradey (M/IM) = inf {i : Ext}z(M/IM,N) #0} .

Ift < oo, then HY(M,N) =0 for all i < t and H{(M,N) # 0.
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(iii) (/Yas, 2.5]))Hi(M,N) = 0, for all i > ara(I) + pdM, where ara(I) the arithmetic rank of
the ideal I is the least number of elements of R required to generate an ideal which has the same
radical as I.

(iv) ([Suz, 2.3]) Let (R,m) be a local ring. Then depthN is the least integer i such that
Hi(M,N) # 0.

(v) ([Suz, 3.18, 3.21]) Let (R,m) be a Cohen-Macaulay local ring, M and N be two non-zero
R-modules such that N is finitely generated and Supp(N) C Supp(M). Then HI™N (M, N) # 0.

Definition 1.2. (a) We say that an element a € R is M -coregular if aM = M.

(b) The sequence ay,asz,--- ,a, of R is called an M -coregular sequence if
(i) Annpy(ar, -, an) # 0;
(ii) a; is an Annps(ag, - -+ ,a;—1)-coregular element, for all i = 1,2,--- | n.

(c) Let M and N be R-modules, where M is finitely generated and N is Artinian. We call
the length of any maximal N-coregular sequence contained in Anng(M) the Cogradey (M). We
note that this is well-defined by [Ooi, 3.10].

Now we recall the concept of Krull dimension of an Artinian module, denoted by KdimM,
due to Roberts [Rob]: let M be an Artinian R-module. When M = 0 we put KdimM = —1.
Then by induction, for any ordinal «, we put KdimM = « when (i) KdimM < « is false, and
(ii) for every ascending chain My C M; C ... of submodules of M, there exists a positive integer
mg such that Kdim(M,,+1/M,,) < « for all m > mgy. Thus M is non-zero and Noetherian if
and only if KdimM = 0.

Theorem 1.3. Let (R, m) be a local ring, M a finitely generated and N an Artinian R-modules.
Then

(i) (/BM, 4.2]) Cogradey (M/IM) = inf {i : U} (M, N) # 0}.

(ii) (/BM, 4.4]) For alli > KdimN, UMM, N) = 0 and if there exists an element x € I which
is N-coregular, U} (M, N) = 0.

Theorem 1.4. ([BM, 2.3]) Let D(—) := Hompg(—, E(R/m)) be the Matlis dual functor with
respect to the injective hull of R/m.

(i) Ul (M, D(N)) =0 if and only if H{(M,N) = 0.

(ii) If N is an Artinian R-module, then Ul (M, N) =0 if and only if H: (M, D(N)) = 0.

2. MAIN RESULTS

In this section, some results on vanishing and non-vanishing of generalized local homology
and cohomology modules are presented. From now on, we assume that R is a Noetherian local
ring with a unique maximal ideal m.

Remark 2.1. Let ~ be a m-adic completion functor. The following items will be required to
prove Theorems.

(i) If M is a finitely generated R-module, then R ®r M = M by [EJ, 2.5.14].

(ii) If N is an Artinian R-module, then R®pr N = N and N is also Artinian as an R-module
by [Ooi, 3.14].

(iii) If M is a finitely generated and N an Artinian R-modules, then Homg (]\/4\ N ) =
Hompg (M, N) by [EJ, 2.5.15] and [Rot, 11.65].
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(iv) If M is a finitely generated R-module with pdp M = n, then by [Rot, 11.64],
Torfil (N, ]\7) = Torfz_l (N,M@R f?)
> Torll, (N, M) =0,

for all R-module N. Thus pdﬁﬁ <n

(v) If M is a finitely generated and Cohen-Macaulay R-module, then M is also Cohen-
Macaulay as an R-module by [BH, 2.1.8(b)].
(vi) Let M be a finitely generated and N an Artinian R-modules. If Cosuppr(N) C

Suppg (M), then Cosuppz(N) C Suppp (M) by [AM, Ch. 3, Exercise 19, viii].
The following Corollary is a consequence of Theorem 1.1.

Corollary 2.2. Let M be a finitely generated and N an Artinian R-modules such that pd M< oc.
(i) Suppose dim N < oco. Then UI(M N) =0, for all i > pdM + dim (Hompg(M, N)).
(ii) UL(M,N) = 0, for all i > ara(l I) + pdM.
(iii) Also, let M and N be two non-zero R-module with Cosupp(/N) C Supp(M). Then if R is
Cohen-Macaulay, then UL (M, N) # 0.

Proof. (i) By [BM, 2.5], without loss of generality, we may assume that (R, m) is a complete local
ring. Also, D(N) (where D(—) := Hompg(—, E(R/m)) is the Matlis dual functor with respect to
the injective hull of R/m) is a finitely generated R-module and

dim (Homp (M, N)) = dim (D (Hompg(M, N))) = dim (M ®r D(N))

by [Ooi, 1.6(3),(8)]. The assertion is now immediate from Theorem 1.1(i) and 1.4(ii).

( i) The assertion is now immediate from Theorem 1.1(iii) and 1.4(ii).

(iii) By [Ooi, 2.11], Cosupp(N) = Supp(D(N)). Therefore HI™ N (M, D(N)) # 0 by Theorem
1.1(v). The claim now follows from [Ooi, 1.6(2)] and Theorem 1.4(ii). O

Lemma 2.3. Let M be a finitely generated and N a non-zero, Artinian of dimension d. Then

the set
Z = {N’ : N is a submodule of N and dim N/N' < d}
has a minimal element with respect to inclusion. If Ny is a minimal element of >, then
(i) dim No = d;
(ii) No has no non-zero submodule N’ such that dim No/N' < d;
(iii) Attr(No) = {p € Attr(N) : dim R/p = d}; and
(iv) UMM,N) = U}M, Ny).

Proof. (i),(ii), (iii) See [Maf, 2.2].
(iv) Since dim N/N < d, it follows from [BM, 4.4(i)] that U (M, N/No) = U, (M, N/Np) =
0. The claim now follows from [BM, 3.2(ii)], by using the exact sequence

0— Ny — N — N/Ny — 0.
O

Theorem 2.4. Let M be a non-zero finitely generated and N a non-zero Artinian R-modules
with dim N = d. Then UJ(M,N) # 0 and

Assp (UMM, N)) = {p € Attp(N) : dim R/p = d} .

46


Galaxy
Text Box
46


ROMANIAN JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2014, VOLUME 4, ISSUE 1, p.44-49

KARIM MOSLEHI AND MOHAMMAD R. AHMADI

Proof. We use induction on d. When d = 0, the module N has finite length, and so it is annihi-
lated by some power of m. Hence there exists a positive integer n such that m"” (M ®r N) = 0.
Thus

UMM, N)= M & N = MegN,

where ~ is the completion functor with respect to m. Hence UJ'(M, N) # 0, by [Ooi, 3.8]. By
[Mat, Exercise 6.9],

Assg (Uy'(M,N)) = Assp(M ®g N)

= {m}

= Assp(N)

= Attgr(N)

= {p € Attg(N):dimR/p =0} .
Thus the result has been proved in this case. Assume, inductively, that d > 0 and that the
result has been proved for non-zero Artinian R-modules of dimension d — 1. By Lemma 2.3,
we can assume that N has no non-zero homomorphic image of dimension less than d. We shall
make this assumption our aim to show that Assg (U (M, N)) = Attgr(NN) (see Lemma 2.3(iii)).
Since d > 0, we have m ¢ Attp(N), and so there exists N-coregular element z in m. We suppose
that UJ'(M, N) = 0, and look for a contradiction. If d = 1, we have 1 < Cogradey (M /mM) =
Widthy(N) < dim N = 1 by [Ooi, 3.17]. Thus Cogradey (M/mM) = 1 which is impossible
by Theorem 1.3. Thus we can assume d > 1. Now, for each N-coregular element = in m, the
module (0 :x z) (is non-zero and Artinian and) has dim (0 :y ) = d — 1, by [Maf, 2.1], and the
exact sequence

0—(0:xyz) — N-"5N-—0
induces a long exact sequence
0— UPy(M,0:y2) — UPy(M,N) UL (M,N).

In view of our assumption UJ'(M, N) = 0. Thus, for each N-coregular element x in m, we have
that

(0 “UF (M,N) x) =2 Ug (M, 0:N ),

which is non-zero, by the inductive hypothesis. Therefore U} (M, N) # 0. Our next step is to
prove that m € Assg (UM, (M, N)).

We suppose that m & Assg (UT (M, N)) and look for a contradiction. Then, by the Prime
Avoidance Theorem,

mg J o »Ul U

pEAssr(UT_ | (M,N)) qeAttR(N)

Hence there exists an N-coregular element y that belongs to m such that
<O ‘Um L (M,N) y) = 0. This is a contradiction (note that, for each N-coregular element y in m, we

have that <O Um (M.N) y) = UT, (M,0:5 y), which is non-zero, by the inductive hypothesis).

47


Galaxy
Text Box
47


ROMANIAN JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2014, VOLUME 4, ISSUE 1, p.44-49

ON VANISHING OF GENERALIZED LOCAL HOMOLOGY MODULES AND ITS DUALITY

Thus m € Assg (UCTA(Mv N)) By [BM, 3.1], we can assume that pi,...p; are the remaining
members of Assp (USLI(M , N )) Again, by the Prime Avoidance Theorem, there exists

t
zem~ (U pi> U U
i=1 q€Attr(N)

Thus UJ | (M,0:y 2) = (0 Um L (M,N) z), since z € m is an N-coregular element, and by the
induction hypothesis, UJ' | (M,0 :y z) # 0 and

Assgp (US, (M,0:n 2)) = {p € Attg (0 :n 2) : dimR/p =d — 1}.
On the other hand,

Assp (O Um (M,N) z) - {p € Assg (UC}“_I(M,N)) 1z € p}

and m is the only member of this set. Since d > 1, we have a contradiction. Thus we have proved
that UJ'(M, N) # 0. To complete the inductive step, since N now has no non-zero homomorphic
image of dimension less than d, it remains for us to prove that Assg (UJ'(M,N)) = Attg(N).
Since Cogradey (M /mM) > 1, there exists a coregular element  in mon N. Thus dim (0 :x z) =
d — 1, which implies that U} (M,0 :y x) = 0, and we have the long exact sequence induced by
the exact sequence

0—(0:yz) — N-"5N-—0

yields that (0 [Um (M, N) J;) = 0. It therefore follows that

me | J p]cms U p

pEAttR(N) pEAssg (U (M,N))

Suppose that q € Assg (UJ'(M,N)). it follows from the above inclusion and by the Prime
Avoidance Theorem that q C p, for some p € Attr(N). Since UJ'(M, —) is an R-linear functor,
it follows that (0 : N) C (0: UJ(M,N)) € q C p. As d = dimR/Anng(N) = dim R/p, it
follows that ¢ = p. Hence Assg (UJ'(M,N)) C Attr(N). To establish the reverse inclusion,
let p € Attr(N), so that dim R/p = d. Thus there exists a p-secondary submodule @ of N
(see [Mac, 5.2]). Note that @ can not have any non-zero homomorphic image of dimension
less than d (or else it would have an attached prime other than p). Now if we use @ rather
than N in the above, we have Assg (UJ'(M,Q)) C Attr(Q) = {p} and UT(M,Q) # 0. Thus
Assg (UJ(M,Q)) = {p}. However, the exact sequence

0—Q—N-—N/Q—0

induces a monomorphism UJ'(M,Q) — UJ(M,N), since dim N/Q < d. It now follows that
{p} = Assp (U}(M,Q)) C Assg (U}(M,N)). Hence Attgr(N) C Assg (U (M, N)). This com-
plete the inductive step. O

Corollary 2.5. Let M and N be two non-zero finitely generated R-modules such that dim N = d.
Then
HE(M,N) # 0.

Proof. The assertion is immediate from [Ooi, 1.6 (2) and (8)] and Theorem 1.4 (i). O
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