ON THE FRÉCHET DIFFERENTIABILITY OF LUXEMBURG NORM IN THE SEQUENCE SPACES $l^{\left(p_{n}\right)}$ WITH VARIABLE EXPONENTS

PAVEL MATEI
Department of Mathematics and Computer Science
Technical University of Civil Engineering
124, Lacul Tei Blvd., 020396 Bucharest, Romania
E-mail: pavel.matei@gmail.com

Abstract

It is shown that the Luxemburg norm in the sequence space $l^{\left(p_{n}\right)}$ with variable exponents is Fréchet - differentiable and a formula expressing the Fréchet derivative of this norm at any nonzero $x \in l^{\left(p_{n}\right)}$ is given.

1 Preliminaries

We consider the discrete analogue of generalized Lebesgue spaces $L^{p(\cdot)}(\Omega)$, namely the sequence spaces $l^{\left(p_{n}\right)}$ with variable exponents. In this section various definitions and basic properties related to the sequence spaces $l^{\left(p_{n}\right)}$ are given. Some interesting properties of these spaces are proved in [7], [5], and [8]. Also a discrete version of Hardy-Littlewood maximal operator on $l^{\left(p_{n}\right)}$ is studied in [9]. Also we mention that the Gâteaux and Fréchet - differentiability of the norm in the generalized Lebesgue spaces $L^{p(\cdot)}(\Omega)$ and corresponding Sobolev spaces was already studied in [3], [4] and [1].

Denote by \mathcal{P} the set of all those real sequences $\left(p_{n}\right)_{n \in \mathbb{N}}$ which satisfy

$$
1<p^{-}:=\inf _{n \in N} p_{n} \leq p^{+}:=\sup _{n \in N} p_{n}<\infty .
$$

In this paper we fix $\left(p_{n}\right)_{n \in \mathbb{N}} \in \mathcal{P}$. If $x=\left(x_{n}\right)_{n \in \mathbb{N}}, x_{n} \in \mathbb{R}$ for any $n \in \mathbb{N}$, we define

$$
\rho_{\left(p_{n}\right)}(x):=\sum_{n=0}^{\infty}\left|x_{n}\right|^{p_{n}} .
$$

Since for $s>1$ the function $t \geq 0, t \rightarrow t^{s}$, is convex, it follows that $x \longmapsto \rho_{\left(p_{n}\right)}(x)$ is convex and therefore $\rho_{\left(p_{n}\right)}$ is a convex modular in the sense of Musielack [7].

The space $l^{\left(p_{n}\right)}$ is defined as

$$
l^{\left(p_{n}\right)}:=\left\{x=\left(x_{n}\right)_{n \in \mathbb{N}} ; \rho_{\left(p_{n}\right)}(x)<\infty\right\} .
$$

[^0]If $\lambda \in \mathbb{R}$ and $x, y \in l^{\left(p_{n}\right)}$, we get away

$$
\begin{gather*}
\rho_{\left(p_{n}\right)}(x+y) \leq 2^{p^{+}-1}\left(\rho_{\left(p_{n}\right)}(x)+\rho_{\left(p_{n}\right)}(y)\right) \tag{1}\\
\rho_{\left(p_{n}\right)}(\lambda x) \leq \max \left(|\lambda|^{p^{-}},|\lambda|^{p^{+}}\right) \rho_{\left(p_{n}\right)}(x)
\end{gather*}
$$

therefore $l^{\left(p_{n}\right)}$ is a linear space.
The space $l^{\left(p_{n}\right)}$ is a Banach space with the Luxemburg norm:

$$
\|x\|_{\left(p_{n}\right)}:=\inf \left\{\lambda>0 ; \rho_{\left(p_{n}\right)}\left(\lambda^{-1} x\right) \leq 1\right\} .
$$

Obviously, if $p_{0}=p_{1}=\ldots=p_{n}=\ldots=p=$ const., then the space $l^{\left(p_{n}\right)}$ coincides with the classical sequence space l^{p} and the norms on these spaces are equal.

Remark 1 From definition we can deduce that

$$
\rho_{\left(p_{n}\right)}\left(x /\|x\|_{\left(p_{n}\right)}\right) \leq 1
$$

for any $x \in l^{\left(p_{n}\right)}$. Indeed, for any $k \in \mathbb{N}^{*}$ there exists $\lambda_{k},\|x\|_{\left(p_{n}\right)} \leq \lambda_{k} \leq$ $\|x\|_{\left(p_{n}\right)}+1 / k$, such that $\rho_{\left(p_{n}\right)}\left(x / \lambda_{k}\right) \leq 1$. Consequently

$$
\sum_{n=0}^{m} \frac{\left|x_{n}\right|^{p_{n}}}{\left(\|x\|_{\left(p_{n}\right)}+\frac{1}{k}\right)^{p_{n}}}<\sum_{n=0}^{\infty} \frac{\left|x_{n}\right|^{p_{n}}}{\left(\|x\|_{\left(p_{n}\right)}+\frac{1}{k}\right)^{p_{n}}}<\rho_{\left(p_{n}\right)}\left(\frac{x}{\lambda_{k}}\right) \leq 1
$$

Then

$$
\sum_{n=0}^{m} \frac{\left|x_{n}\right|^{p_{n}}}{\left(\|x\|_{\left(p_{n}\right)}\right)^{p_{n}}}=\lim _{k \rightarrow \infty} \sum_{n=0}^{m} \frac{\left|x_{n}\right|^{p_{n}}}{\left(\|x\|_{\left(p_{n}\right)}+\frac{1}{k}\right)^{p_{n}}} \leq 1
$$

Therefore

$$
\rho_{\left(p_{n}\right)}\left(\frac{x}{\|x\|_{\left(p_{n}\right)}}\right)=\lim _{m \rightarrow \infty} \sum_{n=0}^{m} \frac{\left|x_{n}\right|^{p_{n}}}{\left(\|x\|_{\left(p_{n}\right)}\right)^{p_{n}}} \leq 1
$$

Proposition 2 Considering the given $x \in l^{\left(p_{n}\right)}$, then $\rho_{\left(p_{n}\right)}(x)=1$ if and only if $\|x\|_{\left(p_{n}\right)}=1$.

Proof. Let us suppose that $\rho_{\left(p_{n}\right)}(x)=1$. By applying the definition of the $\|\cdot\|_{\left(p_{n}\right)}$-norm, the following inequality holds

$$
1=\rho_{\left(p_{n}\right)}(x)=\rho_{\left(p_{n}\right)}(x / 1) \geq\|x\|_{\left(p_{n}\right)}
$$

If $\|x\|_{\left(p_{n}\right)}<1$, then, by taking into account the convexity of $\rho_{\left(p_{n}\right)}$ and Remark 1, we have

$$
\rho_{\left(p_{n}\right)}(x) \leq\|x\|_{\left(p_{n}\right)} \rho_{\left(p_{n}\right)}\left(x /\|x\|_{\left(p_{n}\right)}\right)<1
$$

contradiction.
Reciprocally, if $\|x\|_{\left(p_{n}\right)}=1$, we can write

$$
\rho_{\left(p_{n}\right)}(x)=\rho_{\left(p_{n}\right)}\left(x /\|x\|_{\left(p_{n}\right)}\right) \leq 1
$$

The strict inequality cannot hold. Indeed, if for some x with $\|x\|_{\left(p_{n}\right)}=1$, we have $\rho_{\left(p_{n}\right)}(x)<1$, then there exists $\varepsilon>0$ such that $\rho_{\left(p_{n}\right)}(x)+\varepsilon<1$. Since the function $x \longmapsto \rho_{\left(p_{n}\right)}(x)$ is convex and upper bounded if $\|x\|_{\left(p_{n}\right)}<1$, it is therefore continuous, hence $\lim _{\lambda \rightarrow 1^{+}} \rho_{\left(p_{n}\right)}(\lambda x)=\rho_{\left(p_{n}\right)}(x)$. Consequently, there exists $\delta>0$, such that for each λ with $|\lambda-1|<\delta$, we have $\left|\rho_{\left(p_{n}\right)}(\lambda x)-\rho_{\left(p_{n}\right)}(x)\right|<\varepsilon$. It results that, for $1<\lambda<1+\delta, \rho_{\left(p_{n}\right)}(\lambda x)<\rho_{\left(p_{n}\right)}(x)+\varepsilon<1$. Since $\rho_{\left(p_{n}\right)}(\lambda x)<1$, we infer that $\|x\|_{\left(p_{n}\right)}<1 / \lambda<1$, contradiction.
Corollary 3 Considering the given $x \in l^{\left(p_{n}\right)}$. If $\|x\|_{\left(p_{n}\right)}<1$, then

$$
\begin{equation*}
\|x\|_{\left(p_{n}\right)}^{p^{+}} \leq \rho_{\left(p_{n}\right)}(x) \leq\|x\|_{\left(p_{n}\right)}^{p^{-}} . \tag{2}
\end{equation*}
$$

If $\|x\|_{\left(p_{n}\right)}>1$, then

$$
\begin{equation*}
\|x\|_{\left(p_{n}\right)}^{p^{-}} \leq \rho_{\left(p_{n}\right)}(x) \leq\|x\|_{\left(p_{n}\right)}^{p^{+}} . \tag{3}
\end{equation*}
$$

Proof. Since $p^{-} \leq p_{n} \leq p^{+}$, it follows that

$$
\|x\|_{\left(p_{n}\right)}^{p^{+}} \leq\|x\|_{\left(p_{n}\right)}^{p_{n}} \leq\|x\|_{\left(p_{n}\right)}^{p^{-}} . \text {for any } n \in \mathbb{N} .
$$

Then, by using Proposition 2, we obtain

$$
\rho_{\left(p_{n}\right)}(x)=\sum_{n=0}^{\infty}\|x\|_{\left(p_{n}\right)}^{p_{n}}\left(\frac{\left|x_{n}\right|}{\|x\|_{\left(p_{n}\right)}}\right)^{p_{n}} \leq\|x\|_{\left(p_{n}\right)}^{p^{-}} \rho_{\left(p_{n}\right)}\left(\frac{x}{\|x\|_{\left(p_{n}\right)}}\right)=\|x\|_{\left(p_{n}\right)}^{p^{-}},
$$

that is the right inequality (2). Similarly one can establish the left inequality (2). If $\|x\|_{\left(p_{n}\right)}>1$, the proof is the same.

A subset $A \subset l^{\left(p_{n}\right)}$ is called mean bounded if there exists a positive constant $C>0$ such that $\rho_{\left(p_{n}\right)}(x) \leq C$ for any $x \in A$.

Remark 4 It follows from Corollary 3 that a set in $l^{\left(p_{n}\right)}$ is norm bounded if and only if it is mean bounded.
Corollary 5 Let x and $\left(x^{(k)}\right), k=1,2, \ldots$ be in $l^{\left(p_{n}\right)}$. Then the following statements are equivalent:
(a) $\lim _{k \rightarrow \infty}\left\|x^{(k)}-x\right\|_{\left(p_{n}\right)}=0$;
(b) $\lim _{k \rightarrow \infty} \rho_{\left(p_{n}\right)}\left(x^{(k)}-x\right)=0$.

Proof. We use Corollary 3.
The spaces $l^{\left(p_{n}\right)}$ have various properties in common with their classical counterparts. We give an extension of Hölder's inequality. The conjugate $q=\left(q_{n}\right)_{n \in \mathbb{N}}$ of $p=\left(p_{n}\right)_{n \in \mathbb{N}} \in \mathcal{P}$ is defined by

$$
p_{n}^{-1}+q_{n}^{-1}=1, n \in \mathbb{N} .
$$

Obviously, $p \in \mathcal{P}$ implies $q \in \mathcal{P}$.
Proposition 6 If $q=\left(q_{n}\right)_{n \in \mathbb{N}}$ is the conjugate of $p=\left(p_{n}\right)_{n \in \mathbb{N}} \in \mathcal{P}$, then for all $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in l^{\left(p_{n}\right)}$ and all $y=\left(y_{n}\right)_{n \in \mathbb{N}} \in l^{\left(q_{n}\right)}$ we have

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left|x_{n} y_{n}\right| \leq\left(\frac{1}{p^{-}}+\frac{1}{q^{-}}\right)\|x\|_{\left(p_{n}\right)}\|y\|_{\left(q_{n}\right)} . \tag{4}
\end{equation*}
$$

Proof. The inequality (4) is obvious if $\|x\|_{\left(p_{n}\right)}\|y\|_{\left(q_{n}\right)}=0$. Suppose that $\|x\|_{\left(p_{n}\right)}\|y\|_{\left(q_{n}\right)} \neq 0$. In the inequality

$$
a b \leq \frac{a^{p_{n}}}{p_{n}}+\frac{b^{q_{n}}}{q_{n}}
$$

take $a=x_{n} /\|x\|_{\left(p_{n}\right)}, b=y_{n} /\|y\|_{\left(q_{n}\right)}$, add over n, and use Proposition 2. We obtain

$$
\sum_{n=0}^{\infty} \frac{\left|x_{n} y_{n}\right|}{\|x\|_{\left(p_{n}\right)}\|y\|_{\left(q_{n}\right)}} \leq \frac{1}{p^{-}}+\frac{1}{q^{-}}
$$

that is (4).
Proposition 7 Let $x=\left(x_{n}\right)_{n \in \mathbb{N}}$ and $x^{(k)}=\left(x_{n}^{(k)}\right)_{n \in \mathbb{N}}, k=1,2, \ldots$ be in $l^{\left(p_{n}\right)}$. Then $\lim _{k \rightarrow \infty}\left\|x^{(k)}-x\right\|_{\left(p_{n}\right)}=0$ if and only if $\lim _{k \rightarrow \infty} \rho_{\left(p_{n}\right)}\left(x^{(k)}\right)=\rho_{\left(p_{n}\right)}(x)$ and $\lim _{k \rightarrow \infty} x_{n}^{(k)}=x_{n}$ for any $n \in \mathbb{N}$.
Proof. Suppose that $\lim _{k \rightarrow \infty}\left\|x^{(k)}-x\right\|_{\left(p_{n}\right)}=0$. For any $n \in \mathbb{N}$, there exists $0<\theta_{n}<1$ such that

$$
\left(x_{n}^{(k)}\right)^{p_{n}}=x_{n}^{p_{n}}+p_{n}\left(x_{n}^{(k)}-x_{n}\right)\left(x_{n}+\theta_{n}\left(x_{n}^{(k)}-x_{n}\right)\right)^{p_{n}-1}
$$

therefore

$$
\left|x_{n}^{(k)}\right|^{p_{n}}<\left|x_{n}\right|^{p_{n}}+p^{+}\left|x_{n}^{(k)}-x_{n}\right|\left(\left|x_{n}\right|+\left|x_{n}^{(k)}-x_{n}\right|\right)^{p_{n}-1} .
$$

Consequently

$$
\begin{gathered}
\left|\rho_{\left(p_{n}\right)}\left(x^{(k)}\right)-\rho_{\left(p_{n}\right)}(x)\right| \leq p^{+} \sum_{n=0}^{\infty}\left|x_{n}^{(k)}-x_{n}\right|\left(\left|x_{n}\right|+\left|x_{n}^{(k)}-x_{n}\right|\right)^{p_{n}-1} \\
\leq p^{+} \sum_{n=0}^{\infty}\left|x_{n}^{(k)}-x_{n}\right|\left(2\left|x_{n}\right|+\left|x_{n}^{(k)}\right|\right)^{p_{n}-1} . \\
\text { Denote } y^{(k)}:=\left(\left(2\left|x_{n}\right|+\left|x_{n}^{(k)}\right|\right)^{p_{n}-1}\right)_{n \in \mathbb{N}} . \text { Since } q_{n}\left(p_{n}-1\right)=p_{n}, \text { we have } \\
\rho_{\left(q_{n}\right)}\left(y^{(k)}\right)=\rho_{\left(p_{n}\right)}\left(z^{(k)}\right)
\end{gathered}
$$

where $z^{(k)}:=\left(2\left|x_{n}\right|+\left|x_{n}^{(k)}\right|\right)_{n \in \mathbb{N}}$. But $z^{(k)} \in l^{\left(p_{n}\right)}$, therefore $\rho_{\left(q_{n}\right)}\left(y^{(k)}\right)<\infty$, that is $y^{(k)} \in l^{\left(q_{n}\right)}$.

Taking into account the generalized Hölder inequality (4), from (5) we obtain:

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left|x_{n}^{(k)}-x_{n}\right|\left(\left|x_{n}\right|+\left|x_{n}^{(k)}-x_{n}\right|\right)^{p_{n}-1} \leq M\left\|x^{(k)}-x\right\|_{\left(p_{n}\right)}\left\|y^{(k)}\right\|_{\left(q_{n}\right)} \tag{6}
\end{equation*}
$$

where $M:=\frac{1}{p^{-}}+\frac{1}{q^{-}}$.

On the other hand, it follows :167

$$
\rho_{\left(p_{n}\right)}\left(z^{(k)}\right) \leq 2^{p^{+}-1}\left(2^{p^{+}} \rho_{\left(p_{n}\right)}(x)+\rho_{\left(p_{n}\right)}\left(x^{(k)}\right)\right) .
$$

According to Remark 4 the convergent sequence $\left(x^{(k)}\right)$ is mean bounded, therefore the sequence $\left(z^{(k)}\right)$ is mean bounded. and thus it is norm bounded (also Remark 4). Taking into account (5) and (6) it follows that

$$
\lim _{k \rightarrow \infty} \rho_{\left(p_{n}\right)}\left(x^{(k)}\right)=\lim _{k \rightarrow \infty} \rho_{\left(p_{n}\right)}(x)
$$

Also we have

$$
\left|x_{n}^{(k)}-x_{n}\right|^{p_{n}} \leq \rho_{\left(p_{n}\right)}\left(x^{(k)}-x\right) \text { for any } n \in \mathbb{N} .
$$

Since $1<p^{-} \leq p_{n} \leq p^{+}$, from $\lim _{k \rightarrow \infty} \rho_{\left(p_{n}\right)}\left(x^{(k)}-x\right)=0$ it follows that $\lim _{k \rightarrow \infty} x_{n}^{(k)}=x_{n}$ for any $n \in \mathbb{N}$.

Reciprocally, let $\left(x^{(k)}\right)_{k}$ be a sequence such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \rho_{\left(p_{n}\right)}\left(x^{(k)}\right)=\rho_{\left(p_{n}\right)}(x) \text { and } \lim _{k \rightarrow \infty} x_{n}^{(k)}=x_{n} \text { for any } n \in \mathbb{N} . \tag{7}
\end{equation*}
$$

We will show that $\lim _{k \rightarrow \infty} \rho_{\left(p_{n}\right)}\left(x^{(k)}-x\right)=0$. Then, from Corollary 5 it follows that $\lim _{k \rightarrow \infty}\left\|x^{(k)}-x\right\|_{\left(p_{n}\right)}=0$ and lemma is proved.

It suffices to show that there exists a subsequence $\left(x^{\left(j_{k}\right)}\right)_{k} \subset\left(x^{(k)}\right)_{k}$ such that $\lim _{k \rightarrow \infty} \rho_{\left(p_{n}\right)}\left(x^{\left(j_{k}\right)}-x\right)=0$.

Indeed, taking into account (1), we obtain that

$$
\rho_{\left(p_{n}\right)}\left(x^{(k)}-x\right) \leq 2^{p^{+}-1}\left(\rho_{\left(p_{n}\right)}\left(x^{(k)}\right)+\rho_{\left(p_{n}\right)}(x)\right) .
$$

Therefore, it follows from (7) that the sequence

$$
b_{k}:=\sum_{n=0}^{\infty}\left|x_{n}^{(k)}-x_{n}\right|^{p_{n}}=\rho_{\left(p_{n}\right)}\left(x^{(k)}-x\right), k \in \mathbb{N},
$$

is bounded. Consequently

$$
0 \leq \liminf b_{k} \leq L:=\limsup b_{k}<\infty .
$$

Assume that do not have $\lim _{k \rightarrow \infty} \rho_{\left(p_{n}\right)}\left(x^{(k)}-x\right)=0$. Then $L>0$. There exist an ε_{0} and a subsequence $\left(x^{\left(l_{k}\right)}\right)_{k} \subset\left(x^{(k)}\right)_{k}$ such that

$$
\begin{equation*}
\rho_{\left(p_{n}\right)}\left(x^{\left(l_{k}\right)}-x\right) \geq \varepsilon_{0} . \tag{8}
\end{equation*}
$$

For the subsequence $\left(x^{\left(l_{k}\right)}\right)_{k}(7)$ holds. Therefore there exists another subsequence $\left(x^{\left(j_{l_{k}}\right)}\right)_{k} \subset\left(x^{\left(l_{k}\right)}\right)_{k}$ such that $\lim _{k \rightarrow \infty} \rho_{\left(p_{n}\right)}\left(x^{\left(j_{l_{k}}\right)}-x\right)=0$, which contradicts (8).

Now, we have

$$
\rho_{\left(p_{n}\right)}\left(x^{(k)}-x\right)=\sum_{n=0}^{\infty}\left|x_{n}^{(k)}-x_{n}\right|^{p_{n}}=\lim _{m \rightarrow \infty} s_{m}^{(k)},
$$

where

$$
s_{m}^{(k)}:=\sum_{n=0}^{m}\left|x_{n}^{(k)}-x_{n}\right|^{p_{n}} .
$$

Since $\lim _{k \rightarrow \infty} x_{n}^{(k)}=x_{n}$ for any $n \in \mathbb{N}$, we have

$$
\lim _{k \rightarrow \infty} s_{m}^{(k)}=0
$$

therefore

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(\lim _{k \rightarrow \infty} s_{m}^{(k)}\right)=0 \tag{9}
\end{equation*}
$$

On the other hand, taking into account that $\lim _{k \rightarrow \infty} \rho_{\left(p_{n}\right)}\left(x^{(k)}\right)=\lim _{k \rightarrow \infty} \rho_{\left(p_{n}\right)}(x)$ and (1), it follows that

$$
s_{m}^{(k)} \leq \sum_{n=0}^{\infty}\left|x_{n}^{(k)}-x_{n}\right|^{p_{n}} \leq 2^{p^{+}-1}\left(\rho_{\left(p_{n}\right)}\left(x^{(k)}\right)+\rho_{\left(p_{n}\right)}(x)\right) \text { for any } m, k \in \mathbb{N} .
$$

Consequently, the sequence $\left(s_{m}^{(k)}\right)_{m, k}$ is bounded. According to a classical result concerning the double sequences, there exists a convergent subsequence $\left(s_{p_{m}}^{\left(j_{k}\right)}\right)_{m, k}$ such that the iterated limits $\lim _{k \rightarrow \infty}\left(\lim _{m \rightarrow \infty} s_{p_{m}}^{\left(j_{k}\right)}\right)$ and $\lim _{m \rightarrow \infty}\left(\lim _{k \rightarrow \infty} s_{p_{m}}^{\left(j_{k}\right)}\right)$ exist, and are both equal to the double limit $\lim _{k, m \rightarrow \infty} s_{p_{m}}^{\left(j_{k}\right)}$. Taking into account (9) it follows that
or

$$
\lim _{k \rightarrow \infty}\left(\lim _{m \rightarrow \infty} s_{p_{m}}^{\left(j_{k}\right)}\right)=0
$$

$$
\lim _{k \rightarrow \infty} \sum_{n=0}^{\infty}\left|x_{n}^{\left(j_{k}\right)}-x_{n}\right|^{p_{n}}=0
$$

Consequently

$$
\lim _{k \rightarrow \infty} \rho_{\left(p_{n}\right)}\left(x^{\left(j_{k}\right)}-x\right)=0
$$

The proof is complete.

2 On the Fréchet - differentiability of the norm in the sequence spaces $l^{\left(p_{n}\right)}$

First we will show that if $p^{-}>1$, then $\left(l^{\left(p_{n}\right)},\|x\|_{\left(p_{n}\right)}\right)$ is smooth, that is, given any nonzero element $x \in l^{\left(p_{n}\right)}$, there exists a unique support functional, i.e. there exists a unique element $x^{*}(x) \in\left(l^{\left(p_{n}\right)}\right)^{*}$ for which $\left\langle x^{*}(x), x\right\rangle=\|x\|_{\left(p_{n}\right)}$ and $\left\|x^{*}(x)\right\|_{\left(l\left(p_{n}\right)\right)^{*}}=1$. According to Theorem 1 in Chapter 2 of [2], the proof of the smoothness of $\left(l^{\left(p_{n}\right)},\|x\|_{\left(p_{n}\right)}\right)$ is demonstrated by equivalently showing that $\|\cdot\|_{\left(p_{n}\right)}$ is Gâteaux differentiable. Moreover, a formula giving expression of the derivative of the $\|\cdot\|_{\left(p_{n}\right)}$ - norm at any $x \neq 0$ is provided as $\|\cdot\|_{\left(p_{n}\right)}^{\prime}(x)$.

Theorem 8 ([6]) If $p^{-}>1$, then $\left(l^{\left(p_{n}\right)},\|x\|_{\left(p_{n}\right)}\right)$ is smooth. At any $x=$ $\left(x_{0}, x_{1}, \ldots, x_{n}, \ldots\right) \in l^{\left(p_{n}\right)}, x \neq 0$, the gradient of the norm,

$$
\|\cdot\|_{\left(p_{n}\right)}^{\prime}(x) \in\left(l^{\left(p_{n}\right)},\|\cdot\|_{\left(p_{n}\right)}\right)^{*}
$$

is given by

$$
\begin{equation*}
\left\langle\|\cdot\|_{\left(p_{n}\right)}^{\prime}(x), h\right\rangle=\frac{\sum_{n=0}^{\infty} \frac{p_{n}\left|x_{n}\right|^{p_{n}-1} \operatorname{sgn}\left(x_{n}\right) h_{n}}{\|x\|_{\left(p_{n}\right)}^{p_{n}-1}}}{\sum_{n=0}^{\infty} \frac{p_{n}\left|x_{n}\right|^{p_{n}}}{\|x\|_{\left(p_{n}\right)}^{p_{n}}}} \tag{10}
\end{equation*}
$$

for any $h=\left(h_{0}, h_{1}, \ldots, h_{n}, \ldots\right) \in l^{\left(p_{n}\right)}$.
Proof. What we have to prove is that, for a given $x=\left(x_{0}, x_{1}, \ldots, x_{n}, \ldots\right) \in$ $l^{\left(p_{n}\right)}, x \neq 0$, and any $h=\left(h_{0}, h_{1}, \ldots, h_{n}, \ldots\right) \in l^{\left(p_{n}\right)} \backslash\{0\}$, the function $t \in$ $\mathbb{R}, t \longmapsto\|x+t h\|_{\left(p_{n}\right)}$ is differentiable at $t=0$. Since $l^{\left(p_{n}\right)} \backslash\{0\}$ is open, there exists $r>0$ such that $B(x, r) \subset l^{\left(p_{n}\right)} \backslash\{0\}$. Consequently for any $t \in\left(-\frac{r}{\|h\|_{\left(p_{n}\right)}}, \frac{r}{\|h\|_{\left(p_{n}\right)}}\right)$, we have $u_{0}+t h \in B(x, r)$; therefore $x+t h \neq 0$.

Let $k>1$ be a fixed real number, let $\underline{k}:=\min \left(1, \frac{r}{\|h\|_{\left(p_{n}\right)}}\right), D:=(-\underline{k}, \underline{k}) \times$ $\left(\frac{1}{k}\|x\|_{\left(p_{n}\right)}, k\|x\|_{\left(p_{n}\right)}\right)$, and let us consider the following series of functions:

$$
\sum_{n=0}^{\infty} \frac{\left|x_{n}+t h_{n}\right|^{p_{n}}}{\lambda^{p_{n}}},(t, \lambda) \in D
$$

Since $|t|<1$ and $\lambda>\frac{1}{k}\|x\|_{\left(p_{n}\right)}$, we can easily deduce that

$$
\frac{\left|x_{n}+t h_{n}\right|^{p_{n}}}{\lambda^{p_{n}}} \leq \frac{k^{p_{n}}\left(\left|x_{n}\right|+\left|h_{n}\right|\right)^{p_{n}}}{\|x\|_{\left(p_{n}\right)}^{p_{n}}} \leq \frac{k^{p^{+}}}{\min \left(\|x\|_{\left(p_{n}\right)}^{p^{-}},\|x\|_{\left(p_{n}\right)}^{p^{+}}\right)}\left(\left|x_{n}\right|+\left|h_{n}\right|\right)^{p_{n}} .
$$

But $x, h \in l^{\left(p_{n}\right)}$, therefore

$$
\sum_{n=0}^{\infty}\left(\left|x_{n}\right|+\left|h_{n}\right|\right)^{p_{n}}<\infty
$$

so, according to a classical result, the series of functions $\sum_{n=0}^{\infty} \frac{\left|x_{n}+t h_{n}\right|^{p_{n}}}{\lambda^{p_{n}}}$ is uniformly convergent on D. Consequently, the function $\phi: D \rightarrow \mathbb{R}$,

$$
\begin{equation*}
\phi(t, \lambda):=\rho_{\left(p_{n}\right)}\left(\frac{x+t h}{\lambda}\right)-1=\sum_{n=0}^{\infty} \frac{\left|x_{n}+t h_{n}\right|^{p_{n}}}{\lambda^{p_{n}}}-1, \tag{11}
\end{equation*}
$$

is well-defined. We will show that

$$
\phi \in \mathcal{C}^{1}(D), \phi\left(0,\|x\|_{\left(p_{n}\right)}\right)=0, \text { and } \frac{\partial \phi}{\partial \lambda}\left(0,\|x\|_{\left(p_{n}\right)}\right)<0 .
$$

Then on the basis of the implicit function theorem, we will obtain that there exist neighborhoods U of 0 and V of $\|x\|_{\left(p_{n}\right)}$ such that $U \times V \subset D$ and a unique
\mathcal{C}^{1}-mapping $\lambda: U \rightarrow V$ which satisfies $\lambda(0)=\|x\|_{\left(p_{n}\right)}, \phi(t, \lambda(t))=0$, for any $t \in U$, and

$$
\begin{equation*}
\lambda^{\prime}(t)=-\frac{\frac{\partial \phi}{\partial t}(t, \lambda(t))}{\frac{\partial \phi}{\partial \lambda}(t, \lambda(t))} \text { for any } t \in U . \tag{12}
\end{equation*}
$$

Taking into account the definition of ϕ (see (11)), $\phi(t, \lambda(t))=0$, for any $t \in U$, is equivalent to

$$
\rho_{\left(p_{n}\right)}\left(\frac{x+t h}{\lambda(t)}\right)=1 \text { for any } t \in U
$$

By applying Proposition 2, we deduce from this that

$$
\begin{equation*}
\lambda(t)=\|x+t h\|_{\left(p_{n}\right)} \text { for any } t \in U \tag{13}
\end{equation*}
$$

By combining (12) and (13) we derive, in particular, that $\lambda^{\prime}(0)$ exists and

$$
\begin{equation*}
\lambda^{\prime}(0)=\lim _{t \rightarrow 0} \frac{\|x+t h\|_{\left(p_{n}\right)}-\|x\|_{\left(p_{n}\right)}}{t}=-\frac{\frac{\partial \phi}{\partial t}\left(0,\|x\|_{\left(p_{n}\right)}\right)}{\frac{\partial \phi}{\partial \lambda}\left(0,\|x\|_{\left(p_{n}\right)}\right)} \tag{14}
\end{equation*}
$$

that is, the $\|\cdot\|_{\left(p_{n}\right)}$ - norm is Gâteaux differentiable at x.
To complete the proof, we will prove that the above-defined statements (i), (ii) and (iii) concerning the function ϕ are true. In order to prove that $\phi \in$ $\mathcal{C}^{1}(D)$, first we will show that we can compute $\frac{\partial \phi}{\partial \lambda}$ and $\frac{\partial \phi}{\partial t}$. Let us consider $f_{n}: D \rightarrow \mathbb{R}, n \in \mathbb{N}$, defined by

$$
\begin{equation*}
f_{n}(t, \lambda):=\frac{\left|x_{n}+t h_{n}\right|^{p_{n}}}{\lambda^{p_{n}}},(t, \lambda) \in D . \tag{15}
\end{equation*}
$$

We can observe that the map $(t, \lambda) \in D,(t, \lambda) \mapsto f_{n}(t, \lambda)$, is a \mathcal{C}^{1} - mapping. Indeed, applying a partial derivative on (15),

$$
\begin{align*}
\frac{\partial f_{n}}{\partial t}(t, \lambda) & =\frac{p_{n}\left|x_{n}+t h_{n}\right|^{p_{n}-1} \operatorname{sgn}\left(x_{n}+t h_{n}\right) h_{n}}{\lambda^{p_{n}}} \tag{16}\\
\frac{\partial f_{n}}{\partial \lambda}(t, \lambda) & =-\frac{p_{n}\left|x_{n}+t h_{n}\right|^{p_{n}}}{\lambda^{p_{n}+1}} \text { for any }(t, \lambda) \in D \tag{17}
\end{align*}
$$

and, from (16) and (17), we can conclude that the mappings

$$
(t, \lambda) \in D \longmapsto \frac{\partial f_{n}}{\partial t}(t, \lambda)
$$

and

$$
(t, \lambda) \in D \longmapsto \frac{\partial f_{n}}{\partial \lambda}(t, \lambda)
$$

are continuous.
First, we estimate $\left|\frac{\partial f_{n}}{\partial t}\right|$. Let $(t, \lambda) \in D$. Since $|t|<1$ and $\lambda>\frac{1}{k}\|x\|_{\left(p_{n}\right)}$, one easily follows that

$$
\left|p_{n}\right| x_{n}+\left.t h_{n}\right|^{p_{n}-1} \operatorname{sgn}\left(x_{n}+t h_{n}\right) h_{n} \mid \leq p^{+}\left(\left|\underline{x}_{n}\right|+\left|h_{n}\right|\right)^{p_{n}}
$$

and

$$
\lambda^{p_{n}}>k^{-p_{n}}\|x\|_{\left(p_{n}\right)}^{p_{n}} \geq k^{-p^{-}} \min \left(\|x\|_{\left(p_{n}\right)}^{p^{-}},\|x\|_{\left(p_{n}\right)}^{p^{+}} .\right.
$$

Consequently, according to (16), one has

$$
\left|\frac{\partial f_{n}}{\partial t}(t, \lambda)\right|<c\left(\left|x_{n}\right|+\left|h_{n}\right|\right)^{p_{n}}
$$

with $c:=p^{+} k^{-p^{+}} / \min \left(\|x\|_{\left(p_{n}\right)}^{p^{-}},\|x\|_{\left(p_{n}\right)}^{p^{+}}\right)$.
Similarly,

$$
\left|\frac{\partial f_{n}}{\partial t}(t, \lambda)\right|<c_{1}^{p_{n}}\left(\left|x_{n}\right|+\left|h_{n}\right|^{p_{n}}\right),
$$

with $c_{1}:=p^{+} k^{-p^{+}+1} / \min \left(\|x\|_{\left(p_{n}\right)}^{p^{-}+1},\|x\|_{\left(p_{n}\right)}^{p^{+}+1}\right)$. According to a well - known classical result, the mapping ϕ defined by (11) is a \mathcal{C}^{1} - mapping and

$$
\begin{gather*}
\frac{\partial \phi}{\partial t}(t, \lambda)=\sum_{n=0}^{\infty} \frac{p_{n}\left|x_{n}+t h_{n}\right|^{p_{n}-1} \operatorname{sgn}\left(x_{n}+t h_{n}\right) h_{n}}{\lambda^{p_{n}}}, \tag{18}\\
\frac{\partial \phi}{\partial \lambda}(t, \lambda)=-\sum_{n=0}^{\infty} \frac{p_{n}\left|x_{n}+t h_{n}\right|^{p_{n}}}{\lambda^{p_{n}+1}} \tag{19}
\end{gather*}
$$

The claims (ii) and (iii) are obviously validated. Indeed, by applying Proposition 2,

$$
\phi\left(0,\|x\|_{\left(p_{n}\right)}\right)=\sum_{n=0}^{\infty} \frac{\left|x_{n}\right|^{p_{n}}}{\|x\|_{\left(p_{n}\right)}^{p_{n}}}-1=0 .
$$

Finally, according to Proposition 2 again

$$
\frac{\partial \phi}{\partial \lambda}\left(0,\|x\|_{\left(p_{n}\right)}\right)=-\sum_{n=0}^{\infty} \frac{p_{n}\left|x_{n}\right|^{p_{n}}}{\|x\|_{\left(p_{n}\right)}^{p_{n}+1}} \leq \frac{-p^{-}}{\|x\|_{\left(p_{n}\right)}} \sum_{n=0}^{\infty} \frac{\left|x_{n}\right|^{p_{n}}}{\|x\|_{\left(p_{n}\right)}^{p_{n}}}=-\frac{p^{-}}{\|x\|_{\left(p_{n}\right)}}<0 .
$$

Clearly, formula (10) is a direct consequence of (14), (18) and (19).
Theorem 9 The norm $\|\cdot\|_{\left(p_{n}\right)}$ is Fréchet-differentiable at any nonzero $x \in l^{\left(p_{n}\right)}$ and the Fréchet-differential of this norm at any nonzero $x \in l^{\left(p_{n}\right)}$ is given for any $h \in l^{\left(p_{n}\right)}$ by (10).

Proof. We prove that the map

$$
x \in l^{\left(p_{n}\right)} \backslash\{0\} \mapsto\|x\|_{\left(p_{n}\right)}^{\prime}
$$

is continuous. The Fréchet - differentiability of the map $x \in l^{\left(p_{n}\right)} \backslash\{0\} \mapsto$ $\|x\|_{\left(p_{n}\right)}$ will then follows. Let $x=\left(x_{0}, x_{1}, \ldots, x_{n}, \ldots\right)$ be in $l^{\left(p_{n}\right)} \backslash\{0\}$. Let $\varphi: l^{\left(p_{n}\right)} \backslash\{0\} \rightarrow\left(l^{\left(p_{n}\right)} \backslash\{0\}\right)^{*}$ be defined by

$$
\langle\varphi(x), h\rangle:=\sum_{n=0}^{\infty} p_{n} \frac{\left|x_{n}\right|^{p_{n}-1} \operatorname{sgn}\left(x_{n}\right)}{\|x\|_{\left(p_{n}\right)}^{p_{n}-1}} h_{n} \text { for each } h \in l^{\left(p_{n}\right)},
$$

$h=\left(h_{0}, h_{1}, \ldots, h_{n}, \ldots\right)$ and let $q: l^{\left(p_{n}\right)} \backslash\{0\} \rightarrow \mathbb{R}$ be defined by

$$
q(x):=\sum_{n=0}^{\infty} p_{n} \frac{\left|x_{n}\right|^{p_{n}}}{\|x\|_{\left(p_{n}\right)}^{p_{n}}} .
$$

Since

$$
\left\langle\|\cdot\|_{\left(p_{n}\right)}^{\prime}(x), \cdot\right\rangle=\frac{\langle\varphi(x), \cdot\rangle}{q(x)}, \text { for all } x \in l^{\left(p_{n}\right)} \backslash\{0\},
$$

it is sufficient to prove that φ and q are continuous.
Fix $x=\left(x_{0}, x_{1}, \ldots, x_{n}, \ldots\right) \in l^{\left(p_{n}\right)} \backslash\{0\}$ and let $\left(x^{(k)}\right)_{k} \subset l^{\left(p_{n}\right)} \backslash\{0\}, x^{(k)}=$ $\left(x_{0}^{(k)}, x_{1}^{(k)}, \ldots, x_{n}^{(k)}, \ldots\right)$ be such that $x^{(k)} \rightarrow x$ as $k \rightarrow \infty$ in the space $\left(l^{\left(p_{n}\right)},\|\cdot\|_{\left(p_{n}\right)}\right)$. It suffices to show that there exists a subsequence $\left(x^{\left(j_{k}\right)}\right)_{k} \subset\left(x^{(k)}\right)_{k}$ such that $\varphi\left(x^{\left(j_{k}\right)}\right) \rightarrow \varphi(x)$ and $q\left(x^{\left(j_{k}\right)}\right) \rightarrow q(x)$ as $k \rightarrow \infty$. We begin with the map q.

We have

$$
\left|q\left(x^{(k)}\right)-q(x)\right| \leq p^{+} \sum_{n=0}^{\infty}\left|\frac{\left|x_{n}^{(k)}\right|^{p_{n}}}{\left\|x^{(k)}\right\|_{\left(p_{n}\right)}^{p_{n}}}-\frac{\left|x_{n}\right|^{p_{n}}}{\|x\|_{\left(p_{n}\right)}^{p_{n}}}\right| .
$$

Denote

$$
s_{m}^{(k)}:=\sum_{n=0}^{m}\left|\frac{\left|x_{n}^{(k)}\right|^{p_{n}}}{\left\|x^{(k)}\right\|_{\left(p_{n}\right)}^{p_{n}}}-\frac{\left|x_{n}\right|^{p_{n}}}{\|x\|_{\left(p_{n}\right)}^{p_{n}}}\right|
$$

We will show that there exists a subsequence $\left(x^{\left(j_{k}\right)}\right)_{k} \subset\left(x^{(k)}\right)_{k}$ such that

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left|\frac{\left|x_{n}^{\left(j_{k}\right)}\right|^{p_{n}}}{\left\|x^{\left(j_{k}\right)}\right\|_{\left(p_{n}\right)}^{p_{n}}}-\frac{\left|x_{n}\right|^{p_{n}}}{\|x\|_{\left(p_{n}\right)}^{p_{n}}}\right| \rightarrow 0 \text { as } k \rightarrow \infty \tag{20}
\end{equation*}
$$

Since $x^{(k)} \rightarrow x$ as $k \rightarrow \infty$ in $l^{\left(p_{n}\right)}$, according to Proposition 7, we infer that

$$
\begin{equation*}
x_{n}^{(k)} \rightarrow x_{n} \text { as } k \rightarrow \infty, \text { for any } n \in \mathbb{N} . \tag{21}
\end{equation*}
$$

Hence, for any $n \in \mathbb{N}$, we have

$$
\begin{equation*}
\frac{\left|x_{n}^{(k)}\right|^{p_{n}}}{\left\|x^{(k)}\right\|_{\left(p_{n}\right)}^{p_{n}}} \rightarrow \frac{\left|x_{n}\right|^{p_{n}}}{\|x\|_{\left(p_{n}\right)}^{p_{n}}} \text { as } k \rightarrow \infty . \tag{22}
\end{equation*}
$$

Consequently

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(\lim _{k \rightarrow \infty} s_{m}^{(k)}\right)=0 \tag{23}
\end{equation*}
$$

On the other hand

$$
s_{m}^{(k)} \leq \sum_{n=0}^{m}\left(\frac{\left|x_{n}^{(k)}\right|^{p_{n}}}{\left\|x^{(k)}\right\|_{\left(p_{n}\right)}^{p_{n}}}+\frac{\left|x_{n}\right|^{p_{n}}}{\|x\|_{\left(p_{n}\right)}^{p_{n}}}\right) \leq \rho_{\left(p_{n}\right)}\left(\frac{x^{(k)}}{\left\|x^{(k)}\right\|_{\left(p_{n}\right)}}\right)+\rho_{\left(p_{n}\right)}\left(\frac{x}{\|x\|_{\left(p_{n}\right)}}\right) .
$$

Taking into account (22) and Remark 4, it follows that the sequence $\left(\frac{x^{(k)}}{\left\|x^{(k)}\right\|_{\left(p_{n}\right)}}\right)_{k}$ is mean bounded, therefore the double sequence $\left(s_{m}^{(k)}\right)_{m, k}$ is bounded. According to a classical result, there exists a convergent subsequence $\left(s_{p_{m}}^{\left(j_{k}\right)}\right)_{m, k}$ such that the iterated limits $\lim _{k \rightarrow \infty}\left(\lim _{m \rightarrow \infty} s_{p_{m}}^{\left(j_{k}\right)}\right)$ and $\lim _{m \rightarrow \infty}\left(\lim _{k \rightarrow \infty} s_{p_{m}}^{\left(j_{k}\right)}\right)$ exist, and are both equal to the double limit $\lim _{k, m \rightarrow \infty} s_{p_{m}}^{\left(j_{k}\right)}$. Taking into account (23) it follows that

$$
\lim _{k \rightarrow \infty}\left(\lim _{m \rightarrow \infty} s_{p_{m}}^{\left(j_{k}\right)}\right)=0
$$

or

$$
\lim _{k \rightarrow \infty} \sum_{n=0}^{\infty}\left|\frac{\left|x_{n}^{\left(j_{k}\right)}\right|^{p_{n}}}{\left\|x^{\left(j_{k}\right)}\right\|_{\left(p_{n}\right)}^{p_{n}}}-\frac{\left|x_{n}\right|^{p_{n}}}{\|x\|_{\left(p_{n}\right)}^{p_{n}}}\right|=0
$$

that is (20).
We now show that there exists a subsequence of $\left(x^{\left(j_{k}\right)}\right)_{k}$, still denoted by $\left(x^{\left(j_{k}\right)}\right)_{k}$ for convenience, such that

$$
\varphi\left(x^{\left(j_{k}\right)}\right) \rightarrow \varphi(x) \text { in }\left(l^{\left(p_{n}\right)} \backslash\{0\}\right)^{*} \text { as } k \rightarrow \infty .
$$

But

$$
\begin{equation*}
\left\langle\varphi\left(x^{\left(j_{k}\right)}\right)-\varphi(x), h\right\rangle=\sum_{n=0}^{\infty} p_{n} y_{n}^{\left(j_{k}\right)} h_{n} \tag{24}
\end{equation*}
$$

where

$$
y_{n}^{\left(j_{k}\right)}:=\frac{\left|x_{n}^{\left(j_{k}\right)}\right|^{p_{n}-1} \operatorname{sgn} x_{n}^{\left(j_{k}\right)}}{\left\|x^{\left(j_{k}\right)}\right\|_{\left(p_{n}\right)}^{p_{n}-1}}-\frac{\left|x_{n}\right|^{p_{n}-1} \operatorname{sgn} x_{n}}{\|x\|_{\left(p_{n}\right)}^{p_{n}-1}}, n \in \mathbb{N} .
$$

Clearly, for any $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in l^{\left(p_{n}\right)} \backslash\{0\}$, the sequence

$$
\begin{equation*}
z:=\left(\frac{\left|x_{n}\right|^{p_{n}-1} \operatorname{sgn} x_{n}}{\|x\|_{\left(p_{n}\right)}^{p_{n}-1}}\right)_{n \in \mathbb{N}} \in l^{\left(q_{n}\right)} \tag{25}
\end{equation*}
$$

because of

$$
\left|\frac{\left|x_{n}\right|^{p_{n}-1} \operatorname{sgn} x_{n}}{\|x\|_{\left(p_{n}\right)}^{p_{n}-1}}\right|=\left(\frac{\left|x_{n}\right|}{\|x\|_{\left(p_{n}\right)}}\right)^{p_{n}-1}
$$

and similarly, for any $k \in \mathbb{N}$,

$$
\begin{equation*}
z^{\left(j_{k}\right)}:=\left(\frac{\left|x_{n}^{\left(j_{k}\right)}\right|^{p_{n}-1} \operatorname{sgn} x_{n}^{\left(j_{k}\right)}}{\left\|x^{\left(j_{k}\right)}\right\|_{\left(p_{n}\right)}^{p_{n}-1}}\right)_{n \in \mathbb{N}} \in l^{\left(q_{n}\right)} \tag{26}
\end{equation*}
$$

Then $y^{\left(j_{k}\right)}:=\left(y_{n}^{\left(j_{k}\right)}\right)_{n \in \mathbb{N}} \in l^{\left(q_{n}\right)}$. But $h \in l^{\left(p_{n}\right)}$. Therefore, taking (24) and (4) into account, we obtain

$$
\left|\left\langle\varphi\left(x^{\left(j_{k}\right)}\right) \rightarrow \varphi(x), h\right\rangle\right| \leq p^{+} \sum_{n=0}^{\infty}\left|y_{n}^{\left(j_{k}\right)}\right|\left|h_{n}\right| \leq M\left\|y^{\left(j_{k}\right)}\right\|_{\left(q_{n}\right)}\|h\|_{\left(p_{n}\right)}
$$

where $M=p^{+}\left(\frac{1}{p^{-}}+\frac{1}{(q)^{-}}\right)$.
Consequently,

$$
\begin{equation*}
\left\|\varphi\left(x^{\left(j_{k}\right)}\right) \rightarrow \varphi(x)\right\| \leq M\left\|y^{\left(j_{k}\right)}\right\|_{\left(q_{n}\right)} . \tag{27}
\end{equation*}
$$

Now, it is clear that, for proving the continuity of φ, it suffices to show that

$$
\begin{equation*}
\left\|y^{\left(j_{k}\right)}\right\|_{\left(q_{n}\right)} \rightarrow 0 \text { as } k \rightarrow \infty . \tag{28}
\end{equation*}
$$

According to Proposition 7, (28) may be equivalently written as

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \rho_{\left(q_{n}\right)}\left(z^{\left(j_{k}\right)}\right)=\rho_{\left(q_{n}\right)}(z) \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{k \rightarrow \infty} z_{n}^{\left(j_{k}\right)}=z_{n} \text { for any } n \in \mathbb{N} \tag{30}
\end{equation*}
$$

where $z^{\left(j_{k}\right)}$ and z are given by (25) and (26) respectively.
But

$$
\begin{aligned}
\rho_{\left(q_{n}\right)}\left(z^{\left(j_{k}\right)}\right) & =\rho_{\left(p_{n}\right)}\left(\frac{x^{\left(j_{k}\right)}}{\left\|x^{\left(j_{k}\right)}\right\|_{\left(p_{n}\right)}}\right)=1, \\
\rho_{\left(q_{n}\right)}(z) & =\rho_{\left(p_{n}\right)}\left(\frac{x}{\|x\|_{\left(p_{n}\right)}}\right)=1,
\end{aligned}
$$

so that (29) holds.
Also (30) is a direct consequence of the fact that

$$
\frac{x^{\left(j_{k}\right)}}{\left\|x^{\left(j_{k}\right)}\right\|_{\left(p_{n}\right)}} \rightarrow \frac{x}{\|x\|_{\left(p_{n}\right)}} \text { as } k \rightarrow \infty .
$$

Hence we conclude that

$$
\left\|\varphi\left(x^{\left(j_{k}\right)}\right)-\varphi(x)\right\| \rightarrow 0 \text { as } k \rightarrow \infty .
$$

References

[1] Ciarlet, P. G., Dinca, G., and Matei, P., Fréchet differentiability of the norm on a Sobolev space with a variable exponent, Analysis and Applications, DOI: 10.1142/S0219530513500127.
[2] Diestel, J., Geometry of Banach Spaces - Selected Topics, Lect. Notes Math., 485, Springer-Verlag, 1975.
[3] Dinca, G. and Matei, P., Geometry of Sobolev spaces with variable exponents and a generalization of the p-Laplacian, Analysis and Applications 7(4) (2009), 373-390.
[4] Dinca, G. and Matei, P., Geometry of Sobolev spaces with variable exponent: smoothness and uniform convexity, C. R. Math. Acad. Sci. Paris 347(15-16) (2009), 885-889.
[5] Edmunds, D. E. and Nekvinda, A., Averaging operators on $l^{\mathbf{p}}$ and $L^{p(x)}$, Math. Inequal. Appl. 5(2) (2002), 235-246.
[6] Matei, P., On the smoothness of the space $l^{\left(p_{n}\right)}$, Proc. Math. Educ. Symp., Dep. Math. Comp. Sc. TUCEB, June, 14, 2014, 96-100.
[7] Musielak, J., Orlicz Spaces and modular spaces, Lect. Notes Math., 1034, Springer-Verlag, Berlin, 1983.
[8] Nekvinda, A., Equivalence on $l^{\left\{p_{n}\right\}}$ norms and shift operators, Math. Inequal. Appl. 5(4) (2002), 711-723.
[9] Nekvinda, A., A note on maximal operator on $l^{\left\{p_{n}\right\}}$ and $L^{p(x)}(\mathbb{R})$, J. Funct. Spaces. Appl. 5(7) (2007), 49-88.

[^0]: ${ }^{0}$ Mathematics Subject Classification (2010): 46B45, 46A80, 46B20
 ${ }^{0}$ Keywords: Banach sequence space, smooth space, Fréchet - differentiability of the norm

