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Abstract

It is shown that the Luxemburg norm in the sequence space l(pn) with
variable exponents is Fréchet - differentiable and a formula expressing the
Fréchet derivative of this norm at any nonzero x ∈ l(pn) is given.

1 Preliminaries

We consider the discrete analogue of generalized Lebesgue spaces Lp(·) (Ω),
namely the sequence spaces l(pn) with variable exponents. In this section various
definitions and basic properties related to the sequence spaces l(pn) are given.
Some interesting properties of these spaces are proved in [7], [5], and [8]. Also a
discrete version of Hardy-Littlewood maximal operator on l(pn) is studied in [9].
Also we mention that the Gâteaux and Fréchet - differentiability of the norm
in the generalized Lebesgue spaces Lp(·) (Ω) and corresponding Sobolev spaces
was already studied in [3], [4] and [1].

Denote by P the set of all those real sequences (pn)n∈N which satisfy

1 < p− := inf
n∈N

pn ≤ p+ := sup
n∈N

pn <∞.

In this paper we fix (pn)n∈N ∈ P. If x = (xn)n∈N, xn ∈ R for any n ∈ N, we
define

ρ(pn)(x) :=

∞∑
n=0

|xn|pn .

Since for s > 1 the function t ≥ 0, t → ts, is convex, it follows that
x 7−→ ρ(pn)(x) is convex and therefore ρ(pn) is a convex modular in the sense of
Musielack [7].

The space l(pn) is defined as

l(pn) := {x = (xn)n∈N; ρ(pn)(x) <∞}.
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If λ ∈ R and x, y ∈ l(pn), we get away

ρ(pn)(x+ y) ≤ 2p
+−1 (ρ(pn)(x) + ρ(pn)(y)

)
ρ(pn)(λx) ≤ max

(
|λ|p

−
, |λ|p

+
)
ρ(pn)(x)

, (1)

therefore l(pn) is a linear space.
The space l(pn) is a Banach space with the Luxemburg norm:

‖x‖(pn) := inf{λ > 0; ρ(pn)(λ
−1x) ≤ 1}.

Obviously, if p0 = p1 = . . . = pn = . . . = p = const., then the space l(pn)

coincides with the classical sequence space lp and the norms on these spaces are
equal.

Remark 1 From definition we can deduce that

ρ(pn)

(
x/ ‖x‖(pn)

)
≤ 1

for any x ∈ l(pn). Indeed, for any k ∈ N∗ there exists λk, ‖x‖(pn) ≤ λk ≤
‖x‖(pn) + 1/k, such that ρ(pn)(x/λk) ≤ 1. Consequently

m∑
n=0

| xn |pn(
‖x‖(pn) + 1

k

)pn <

∞∑
n=0

| xn |pn(
‖x‖(pn) + 1

k

)pn < ρ(pn)(
x

λk
) ≤ 1.

Then
m∑
n=0

| xn |pn(
‖x‖(pn)

)pn = lim
k→∞

m∑
n=0

| xn |pn(
‖x‖(pn) + 1

k

)pn ≤ 1.

Therefore

ρ(pn)

(
x

‖x‖(pn)

)
= lim
m→∞

m∑
n=0

| xn |pn(
‖x‖(pn)

)pn ≤ 1.

Proposition 2 Considering the given x ∈ l(pn), then ρ(pn)(x) = 1 if and only
if ‖x‖(pn) = 1.

Proof. Let us suppose that ρ(pn)(x) = 1. By applying the definition of the
‖·‖(pn)-norm, the following inequality holds

1 = ρ(pn)(x) = ρ(pn)(x/1) ≥ ‖x‖(pn) .

If ‖x‖(pn) < 1, then, by taking into account the convexity of ρ(pn) and
Remark 1, we have

ρ(pn)(x) ≤ ‖x‖(pn) ρ(pn)
(
x/ ‖x‖(pn)

)
< 1,

contradiction.
Reciprocally, if ‖x‖(pn) = 1, we can write

ρ(pn)(x) = ρ(pn)(x/ ‖x‖(pn)) ≤ 1.
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The strict inequality cannot hold. Indeed, if for some x with ‖x‖(pn) = 1, we

have ρ(pn)(x) < 1, then there exists ε > 0 such that ρ(pn)(x) + ε < 1. Since the
function x 7−→ ρ(pn)(x) is convex and upper bounded if ‖x‖(pn) < 1, it is there-

fore continuous, hence lim
λ→1+

ρ(pn)(λx) = ρ(pn)(x). Consequently, there exists

δ > 0, such that for each λ with |λ− 1| < δ, we have
∣∣ρ(pn)(λx)− ρ(pn)(x)

∣∣ < ε.
It results that, for 1 < λ < 1 + δ, ρ(pn)(λx) < ρ(pn)(x) + ε < 1. Since
ρ(pn)(λx) < 1, we infer that ‖x‖(pn) < 1/λ < 1, contradiction.

Corollary 3 Considering the given x ∈ l(pn). If ‖x‖(pn) < 1, then

‖x‖p
+

(pn)
≤ ρ(pn)(x) ≤ ‖x‖p

−

(pn)
. (2)

If ‖x‖(pn) > 1, then

‖x‖p
−

(pn)
≤ ρ(pn)(x) ≤ ‖x‖p

+

(pn)
. (3)

Proof. Since p− ≤ pn ≤ p+, it follows that

‖x‖p
+

(pn)
≤ ‖x‖pn(pn) ≤ ‖x‖

p−

(pn)
. for any n ∈ N.

Then, by using Proposition 2, we obtain

ρ(pn)(x) =

∞∑
n=0

‖x‖pn(pn)

(
| xn |
‖x‖(pn)

)pn
≤ ‖x‖p

−

(pn)
ρ(pn)(

x

‖x‖(pn)
) = ‖x‖p

−

(pn)
,

that is the right inequality (2). Similarly one can establish the left inequality
(2). If ‖x‖(pn) > 1, the proof is the same.

A subset A ⊂ l(pn) is called mean bounded if there exists a positive constant
C > 0 such that ρ(pn)(x) ≤ C for any x ∈ A.

Remark 4 It follows from Corollary 3 that a set in l(pn) is norm bounded if
and only if it is mean bounded.

Corollary 5 Let x and
(
x(k)

)
, k = 1, 2, . . . be in l(pn). Then the following

statements are equivalent:
(a) lim

k→∞

∥∥x(k) − x∥∥
(pn)

= 0;

(b) lim
k→∞

ρ(pn)(x
(k) − x) = 0.

Proof. We use Corollary 3.
The spaces l(pn) have various properties in common with their classical

counterparts. We give an extension of Hölder’s inequality. The conjugate
q = (qn)n∈N of p = (pn)n∈N ∈ P is defined by

p−1n + q−1n = 1, n ∈ N.

Obviously, p ∈ P implies q ∈ P.

Proposition 6 If q = (qn)n∈N is the conjugate of p = (pn)n∈N ∈ P, then for
all x = (xn)n∈N ∈ l(pn) and all y = (yn)n∈N ∈ l(qn) we have

∞∑
n=0

|xnyn| ≤
(

1

p−
+

1

q−

)
‖x‖(pn) ‖y‖(qn) . (4)
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Proof. The inequality (4) is obvious if ‖x‖(pn) ‖y‖(qn) = 0. Suppose that

‖x‖(pn) ‖y‖(qn) 6= 0. In the inequality

ab ≤ apn

pn
+
bqn

qn

take a = xn/ ‖x‖(pn), b = yn/ ‖y‖(qn), add over n, and use Proposition 2. We
obtain

∞∑
n=0

|xnyn|
‖x‖(pn) ‖y‖(qn)

≤ 1

p−
+

1

q−
,

that is (4).

Proposition 7 Let x = (xn)n∈N and x(k) = (x
(k)
n )n∈N, k = 1, 2, . . . be in l(pn).

Then lim
k→∞

∥∥x(k) − x∥∥
(pn)

= 0 if and only if lim
k→∞

ρ(pn)(x
(k)) = ρ(pn)(x) and

lim
k→∞

x
(k)
n = xn for any n ∈ N.

Proof. Suppose that lim
k→∞

∥∥x(k) − x∥∥
(pn)

= 0. For any n ∈ N, there exists

0 < θn < 1 such that(
x(k)n

)pn
= xpnn + pn

(
x(k)n − xn

)(
xn + θn

(
x(k)n − xn

))pn−1
,

therefore ∣∣∣x(k)n

∣∣∣pn < |xn|pn + p+
∣∣∣x(k)n − xn

∣∣∣ (|xn|+ ∣∣∣x(k)n − xn
∣∣∣)pn−1 .

Consequently∣∣∣ρ(pn) (x(k))− ρ(pn) (x)
∣∣∣ ≤ p+ ∞∑

n=0

∣∣∣x(k)n − xn
∣∣∣ (|xn|+ ∣∣∣x(k)n − xn

∣∣∣)pn−1
≤ p+

∞∑
n=0

∣∣∣x(k)n − xn
∣∣∣ (2 |xn|+

∣∣∣x(k)n

∣∣∣)pn−1 . (5)

Denote y(k) :=

((
2 |xn|+

∣∣∣x(k)n

∣∣∣)pn−1)
n∈N

. Since qn (pn − 1) = pn, we have

ρ(qn)

(
y(k)

)
= ρ(pn)

(
z(k)

)
,

where z(k) :=
(

2 |xn|+
∣∣∣x(k)n

∣∣∣)
n∈N

. But z(k) ∈ l(pn), therefore ρ(qn)
(
y(k)

)
<∞,

that is y(k) ∈ l(qn).
Taking into account the generalized Hölder inequality (4), from (5) we ob-

tain:

∞∑
n=0

∣∣∣x(k)n − xn
∣∣∣ (|xn|+ ∣∣∣x(k)n − xn

∣∣∣)pn−1 ≤M ∥∥∥x(k) − x∥∥∥
(pn)

∥∥∥y(k)∥∥∥
(qn)

, (6)

where M :=
1

p−
+

1

q−
.
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On the other hand, it follows from (1) that

ρ(pn)

(
z(k)

)
≤ 2p

+−1
(

2p
+

ρ(pn) (x) + ρ(pn)

(
x(k)

))
.

According to Remark 4 the convergent sequence
(
x(k)

)
is mean bounded,

therefore the sequence
(
z(k)

)
is mean bounded. and thus it is norm bounded

(also Remark 4). Taking into account (5) and (6) it follows that

lim
k→∞

ρ(pn)(x
(k)) = lim

k→∞
ρ(pn)(x).

Also we have∣∣∣x(k)n − xn
∣∣∣pn ≤ ρ(pn) (x(k) − x) for any n ∈ N.

Since 1 < p− ≤ pn ≤ p+, from lim
k→∞

ρ(pn)
(
x(k) − x

)
= 0 it follows that

lim
k→∞

x
(k)
n = xn for any n ∈ N.

Reciprocally, let (x(k))k be a sequence such that

lim
k→∞

ρ(pn)(x
(k)) = ρ(pn)(x) and lim

k→∞
x(k)n = xn for any n ∈ N. (7)

We will show that lim
k→∞

ρ(pn)(x
(k) − x) = 0. Then, from Corollary 5 it follows

that lim
k→∞

∥∥x(k) − x∥∥
(pn)

= 0 and lemma is proved.

It suffices to show that there exists a subsequence
(
x(jk)

)
k
⊂
(
x(k)

)
k

such

that lim
k→∞

ρ(pn)(x
(jk) − x) = 0.

Indeed, taking into account (1), we obtain that

ρ(pn)(x
(k) − x) ≤ 2p

+−1
(
ρ(pn)(x

(k)) + ρ(pn)(x)
)

.

Therefore, it follows from (7) that the sequence

bk :=
∞∑
n=0

∣∣∣x(k)n − xn
∣∣∣pn = ρ(pn)(x

(k) − x), k ∈ N,

is bounded. Consequently

0 ≤ lim inf bk ≤ L := lim sup bk <∞.

Assume that do not have lim
k→∞

ρ(pn)(x
(k)− x) = 0. Then L > 0. There exist

an ε0 and a subsequence
(
x(lk)

)
k
⊂
(
x(k)

)
k

such that

ρ(pn)(x
(lk) − x) ≥ ε0. (8)

For the subsequence
(
x(lk)

)
k

(7) holds. Therefore there exists another sub-

sequence

(
x

(
jlk

))
k

⊂
(
x(lk)

)
k

such that lim
k→∞

ρ(pn)(x

(
jlk

)
− x) = 0, which

contradicts (8).
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Now, we have

ρ(pn)(x
(k) − x) =

∞∑
n=0

∣∣∣x(k)n − xn
∣∣∣pn = lim

m→∞
s(k)m ,

where

s(k)m :=
m∑
n=0

∣∣∣x(k)n − xn
∣∣∣pn .

Since lim
k→∞

x
(k)
n = xn for any n ∈ N, we have

lim
k→∞

s(k)m = 0,

therefore

lim
m→∞

(
lim
k→∞

s(k)m

)
= 0. (9)

On the other hand, taking into account that lim
k→∞

ρ(pn)(x
(k)) = lim

k→∞
ρ(pn)(x)

and (1), it follows that

s(k)m ≤
∞∑
n=0

∣∣∣x(k)n − xn
∣∣∣pn ≤ 2p

+−1
(
ρ(pn)(x

(k)) + ρ(pn)(x)
)

for any m, k ∈ N.

Consequently, the sequence
(
s
(k)
m

)
m,k

is bounded. According to a classical

result concerning the double sequences, there exists a convergent subsequence(
s
(jk)
pm

)
m,k

such that the iterated limits lim
k→∞

(
lim
m→∞

s
(jk)
pm

)
and lim

m→∞

(
lim
k→∞

s
(jk)
pm

)
exist, and are both equal to the double limit lim

k,m→∞
s
(jk)
pm . Taking into account

(9) it follows that

lim
k→∞

(
lim
m→∞

s(jk)pm

)
= 0

or

lim
k→∞

∞∑
n=0

∣∣∣x(jk)n − xn
∣∣∣pn = 0.

Consequently
lim
k→∞

ρ(pn)(x
(jk) − x) = 0.

The proof is complete.

2 On the Fréchet - differentiability of the norm
in the sequence spaces l(pn)

First we will show that if p− > 1, then
(
l(pn), ‖x‖(pn)

)
is smooth, that is, given

any nonzero element x ∈ l(pn), there exists a unique support functional, i.e.
there exists a unique element x∗(x) ∈ (l(pn))∗ for which 〈x∗(x), x〉 = ‖x‖(pn)
and ‖x∗(x)‖(l(pn))∗ = 1. According to Theorem 1 in Chapter 2 of [2], the proof

of the smoothness of
(
l(pn), ‖x‖(pn)

)
is demonstrated by equivalently showing

that ‖·‖(pn) is Gâteaux differentiable. Moreover, a formula giving expression of

the derivative of the ‖·‖(pn) - norm at any x 6= 0 is provided as ‖·‖′(pn) (x).
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Theorem 8 ([6]) If p− > 1, then
(
l(pn), ‖x‖(pn)

)
is smooth. At any x =

(x0, x1, . . . , xn, . . .) ∈ l(pn), x 6= 0, the gradient of the norm,

‖·‖′(pn) (x) ∈
(
l(pn), ‖·‖(pn)

)∗
is given by

〈
‖·‖′(pn) (x), h

〉
=

∞∑
n=0

pn |xn|pn−1 sgn(xn)hn

‖x‖pn−1(pn)

∞∑
n=0

pn |xn|pn

‖x‖pn(pn)

(10)

for any h = (h0, h1, . . . , hn, . . .) ∈ l(pn).

Proof. What we have to prove is that, for a given x = (x0, x1, . . . , xn, . . .) ∈
l(pn), x 6= 0, and any h = (h0, h1, . . . , hn, . . .) ∈ l(pn)\ {0}, the function t ∈
R, t 7−→ ‖x+ th‖(pn) is differentiable at t = 0. Since l(pn)\ {0} is open,

there exists r > 0 such that B (x, r) ⊂ l(pn)\ {0}. Consequently for any

t ∈
(
− r
‖h‖(pn)

, r
‖h‖(pn)

)
, we have u0 + th ∈ B (x, r); therefore x+ th 6= 0.

Let k > 1 be a fixed real number, let k := min
(

1, r
‖h‖(pn)

)
, D := (−k, k)×

(
1

k
‖x‖(pn) , k ‖x‖(pn)), and let us consider the following series of functions:

∞∑
n=0

|xn + thn|pn

λpn
, (t, λ) ∈ D.

Since |t| < 1 and λ > 1
k ‖x‖(pn), we can easily deduce that

|xn + thn|pn

λpn
≤ kpn (|xn|+ |hn|)pn

‖x‖pn(pn)
≤ kp

+

min(‖x‖p
−

(pn)
, ‖x‖p

+

(pn)
)

(|xn|+ |hn|)pn .

But x, h ∈ l(pn), therefore

∞∑
n=0

(|xn|+ |hn|)pn <∞,

so, according to a classical result, the series of functions
∞∑
n=0

|xn+thn|pn
λpn is uni-

formly convergent on D . Consequently, the function φ : D → R,

φ(t, λ) := ρ(pn)

(
x+ th

λ

)
− 1 =

∞∑
n=0

|xn + thn|pn

λpn
− 1, (11)

is well-defined. We will show that

φ ∈ C1(D), φ
(

0, ‖x‖(pn)
)

= 0, and
∂φ

∂λ
(0, ‖x‖(pn)) < 0.

Then on the basis of the implicit function theorem, we will obtain that there
exist neighborhoods U of 0 and V of ‖x‖(pn)such that U ×V ⊂ D and a unique
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C1-mapping λ : U → V which satisfies λ(0) = ‖x‖(pn), φ(t, λ(t)) = 0, for any
t ∈ U , and

λ′(t) = −
∂φ
∂t (t, λ(t))
∂φ
∂λ (t, λ(t))

for any t ∈ U . (12)

Taking into account the definition of φ ( see (11)), φ(t, λ(t)) = 0, for any
t ∈ U , is equivalent to

ρ(pn)

(
x+ th

λ(t)

)
= 1 for any t ∈ U .

By applying Proposition 2, we deduce from this that

λ(t) = ‖x+ th‖(pn) for any t ∈ U . (13)

By combining (12) and (13) we derive, in particular, that λ′(0) exists and

λ′(0) = lim
t→0

||x+ th||(pn) − ||x||(pn)
t

= −

∂φ

∂t
(0, ||x||(pn))

∂φ

∂λ
(0, ||x||(pn))

, (14)

that is, the ‖·‖(pn)- norm is Gâteaux differentiable at x.

To complete the proof, we will prove that the above-defined statements (i),
(ii) and (iii) concerning the function φ are true. In order to prove that φ ∈

C1(D), first we will show that we can compute
∂φ

∂λ
and

∂φ

∂t
. Let us consider

fn : D → R, n ∈ N, defined by

fn(t, λ) :=
|xn + thn|pn

λpn
, (t, λ) ∈ D. (15)

We can observe that the map (t, λ) ∈ D, (t, λ) 7→ fn (t, λ), is a C1 - mapping.
Indeed, applying a partial derivative on (15),

∂fn
∂t

(t, λ) =
pn |xn + thn|pn−1 sgn(xn + thn)hn

λpn
, (16)

∂fn
∂λ

(t, λ) = −pn |xn + thn|pn

λpn+1
for any (t, λ) ∈ D, (17)

and, from (16) and (17), we can conclude that the mappings

(t, λ) ∈ D 7−→ ∂fn
∂t

(t, λ)

and

(t, λ) ∈ D 7−→ ∂fn
∂λ

(t, λ)

are continuous.

First, we estimate

∣∣∣∣∂fn∂t
∣∣∣∣. Let (t, λ) ∈ D. Since |t| < 1 and λ > 1

k ‖x‖(pn),

one easily follows that∣∣∣pn |xn + thn|pn−1 sgn(xn + thn)hn

∣∣∣ ≤ p+ (|xn|+ |hn|)
pn
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and
λpn > k−pn ‖x‖pn(pn) ≥ k

−p− min(‖x‖p
−

(pn)
, ‖x‖p

+

(pn)
.

Consequently, according to (16), one has∣∣∣∣∂fn∂t (t, λ)

∣∣∣∣ < c (|xn|+ |hn|)pn ,

with c := p+k−p
+

/min(‖x‖p
−

(pn)
, ‖x‖p

+

(pn)
).

Similarly, ∣∣∣∣∂fn∂t (t, λ)

∣∣∣∣ < cpn1 (|xn|+ |hn|pn) ,

with c1 := p+k−p
++1/min(‖x‖p

−+1
(pn)

, ‖x‖p
++1

(pn)
). According to a well - known

classical result, the mapping φ defined by (11) is a C1 - mapping and

∂φ

∂t
(t, λ) =

∞∑
n=0

pn |xn + thn|pn−1 sgn(xn + thn)hn
λpn

, (18)

∂φ

∂λ
(t, λ) = −

∞∑
n=0

pn |xn + thn|pn

λpn+1
. (19)

The claims (ii) and (iii) are obviously validated. Indeed, by applying Propo-
sition 2,

φ(0, ‖x‖(pn)) =

∞∑
n=0

|xn|pn

‖x‖pn(pn)
− 1 = 0.

Finally, according to Proposition 2 again

∂φ

∂λ
(0, ‖x‖(pn)) = −

∞∑
n=0

pn |xn|pn

‖x‖pn+1
(pn)

≤ −p−

‖x‖(pn)

∞∑
n=0

|xn|pn

‖x‖pn(pn)
= − p−

‖x‖(pn)

< 0.

Clearly, formula (10) is a direct consequence of (14), (18) and (19).

Theorem 9 The norm ‖·‖(pn) is Fréchet-differentiable at any nonzero x ∈ l(pn)

and the Fréchet-differential of this norm at any nonzero x ∈ l(pn) is given for
any h ∈ l(pn) by (10).

Proof. We prove that the map

x ∈ l(pn)\ {0} 7→ ‖x‖′(pn)

is continuous. The Fréchet - differentiability of the map x ∈ l(pn)\ {0} 7→
‖x‖(pn) will then follows. Let x = (x0, x1, . . . , xn, . . .) be in l(pn)\ {0}. Let

ϕ : l(pn)\ {0} →
(
l(pn)\ {0}

)∗
be defined by

〈ϕ(x), h〉 :=

∞∑
n=0

pn
|xn|pn−1 sgn (xn)

‖x‖pn−1(pn)

hn for each h ∈ l(pn),
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h = (h0, h1, . . . , hn, . . .) and let q : l(pn)\ {0} → R be defined by

q(x) :=

∞∑
n=0

pn
|xn|pn

‖x‖pn(pn)
.

Since 〈
‖·‖′(pn) (x) , ·

〉
=
〈ϕ(x), ·〉
q(x)

, for all x ∈ l(pn)\ {0} ,

it is sufficient to prove that ϕ and q are continuous.
Fix x = (x0, x1, . . . , xn, . . .) ∈ l(pn)\ {0} and let

(
x(k)

)
k
⊂ l(pn)\ {0}, x(k) =

(x
(k)
0 , x

(k)
1 , . . . , x

(k)
n , . . .) be such that x(k) → x as k →∞ in the space

(
l(pn), ‖·‖(pn)

)
.

It suffices to show that there exists a subsequence
(
x(jk)

)
k
⊂
(
x(k)

)
k

such that

ϕ(x(jk))→ ϕ(x) and q(x(jk))→ q(x) as k →∞. We begin with the map q.
We have

∣∣∣q (x(k))− q (x)
∣∣∣ ≤ p+ ∞∑

n=0

∣∣∣∣∣∣
∣∣∣x(k)n

∣∣∣pn∥∥x(k)∥∥pn
(pn)

− |xn|
pn

‖x‖pn(pn)

∣∣∣∣∣∣ .
Denote

s(k)m :=

m∑
n=0

∣∣∣∣∣∣
∣∣∣x(k)n

∣∣∣pn∥∥x(k)∥∥pn
(pn)

− |xn|
pn

‖x‖pn(pn)

∣∣∣∣∣∣ .
We will show that there exists a subsequence

(
x(jk)

)
k
⊂
(
x(k)

)
k

such that

∞∑
n=0

∣∣∣∣∣∣
∣∣∣x(jk)n

∣∣∣pn∥∥x(jk)∥∥pn
(pn)

− |xn|
pn

‖x‖pn(pn)

∣∣∣∣∣∣→ 0 as k →∞. (20)

Since x(k) → x as k →∞ in l(pn), according to Proposition 7, we infer that

x(k)n → xn as k →∞, for any n ∈ N. (21)

Hence, for any n ∈ N, we have∣∣∣x(k)n

∣∣∣pn∥∥x(k)∥∥pn
(pn)

→ |xn|pn

‖x‖pn(pn)
as k →∞. (22)

Consequently

lim
m→∞

(
lim
k→∞

s(k)m

)
= 0. (23)

On the other hand

s(k)m ≤
m∑
n=0


∣∣∣x(k)n

∣∣∣pn∥∥x(k)∥∥pn
(pn)

+
|xn|pn

‖x‖pn(pn)

 ≤ ρ(pn)
(

x(k)∥∥x(k)∥∥
(pn)

)
+ ρ(pn)

(
x

‖x‖(pn)

)
.
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Taking into account (22) and Remark 4, it follows that the sequence

(
x(k)

‖x(k)‖
(pn)

)
k

is mean bounded, therefore the double sequence
(
s
(k)
m

)
m,k

is bounded. Accord-

ing to a classical result, there exists a convergent subsequence
(
s
(jk)
pm

)
m,k

such

that the iterated limits lim
k→∞

(
lim
m→∞

s
(jk)
pm

)
and lim

m→∞

(
lim
k→∞

s
(jk)
pm

)
exist, and are

both equal to the double limit lim
k,m→∞

s
(jk)
pm . Taking into account (23) it follows

that
lim
k→∞

(
lim
m→∞

s(jk)pm

)
= 0

or

lim
k→∞

∞∑
n=0

∣∣∣∣∣∣
∣∣∣x(jk)n

∣∣∣pn∥∥x(jk)∥∥pn
(pn)

− |xn|
pn

‖x‖pn(pn)

∣∣∣∣∣∣ = 0

that is (20).
We now show that there exists a subsequence of

(
x(jk)

)
k
, still denoted by(

x(jk)
)
k

for convenience, such that

ϕ(x(jk))→ ϕ(x) in
(
l(pn)\ {0}

)∗
as k →∞.

But 〈
ϕ(x(jk))− ϕ(x), h

〉
=

∞∑
n=0

pny
(jk)
n hn, (24)

where

y(jk)n :=

∣∣∣x(jk)n

∣∣∣pn−1 sgnx
(jk)
n∥∥x(jk)∥∥pn−1

(pn)

− |xn|
pn−1 sgnxn

‖x‖pn−1(pn)

, n ∈ N.

Clearly, for any x = (xn)n∈N ∈ l(pn)\ {0}, the sequence

z :=

(
|xn|pn−1 sgnxn

‖x‖pn−1(pn)

)
n∈N

∈ l(qn) (25)

because of ∣∣∣∣∣ |xn|pn−1 sgnxn

‖x‖pn−1(pn)

∣∣∣∣∣ =

(
|xn|
‖x‖(pn)

)pn−1
,

and similarly, for any k ∈ N,

z(jk) :=


∣∣∣x(jk)n

∣∣∣pn−1 sgnx
(jk)
n∥∥x(jk)∥∥pn−1

(pn)


n∈N

∈ l(qn). (26)

Then y(jk) :=
(
y
(jk)
n

)
n∈N
∈ l(qn). But h ∈ l(pn). Therefore, taking (24) and

(4) into account , we obtain∣∣∣〈ϕ(x(jk))→ ϕ(x), h
〉∣∣∣ ≤ p+ ∞∑

n=0

∣∣∣y(jk)n

∣∣∣ |hn| ≤M ∥∥∥y(jk)∥∥∥
(qn)
‖h‖(pn) ,
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where M = p+
(

1

p−
+

1

(q)
−

)
.

Consequently, ∥∥∥ϕ(x(jk))→ ϕ(x)
∥∥∥ ≤M ∥∥∥y(jk)∥∥∥

(qn)
. (27)

Now, it is clear that, for proving the continuity of ϕ, it suffices to show that∥∥∥y(jk)∥∥∥
(qn)
→ 0 as k →∞. (28)

According to Proposition 7, (28) may be equivalently written as

lim
k→∞

ρ(qn)

(
z(jk)

)
= ρ(qn)(z) (29)

and
lim
k→∞

z(jk)n = zn for any n ∈ N, (30)

where z(jk) and z are given by (25) and (26) respectively.
But

ρ(qn)

(
z(jk)

)
= ρ(pn)

(
x(jk)∥∥x(jk)∥∥

(pn)

)
= 1,

ρ(qn) (z) = ρ(pn)

(
x

‖x‖(pn)

)
= 1,

so that (29) holds.
Also (30) is a direct consequence of the fact that

x(jk)∥∥x(jk)∥∥
(pn)

→ x

‖x‖(pn)
as k →∞.

Hence we conclude that∥∥∥ϕ(x(jk))− ϕ(x)
∥∥∥→ 0 as k →∞.

———————-
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