NEMYTSKIJ OPERATORS IN LEBESGUE SPACES WITH A VARIABLE EXPONENT

Pavel Matei
Department of Mathematics and Computer Science
Technical University of Civil Engineering
124 Lacul Tei Blvd., 020396 Bucharest, Romania
E-mail: pavel.matei@gmail.com

Abstract

In this paper we prove a result concerning sufficient conditions for the continuity of the general nonlinear superposition operator (generalized Nemytskij operator) acting in Lebesgue spaces with a variable exponent. We also provide an application to the study of the Fréchet-differentiability of the gradient norm on a Sobolev space with a variable exponent. Mathematics Subject Classification (2010): 47H30, 49J50 Key words: Nemytskij operators; Lebesgue spaces with a variable exponent; Fréchet-differentiability of the gradient norm.

1. Introduction

Suppose that $\Omega \subset \mathbf{R}^{N}$ is a bounded domain. Let $f: \Omega \times \mathbf{R}^{M} \rightarrow \mathbf{R}$ be a function satisfying the Carathéodory conditions:
(i) for each $s \in \mathbf{R}^{M}$, the function $x \rightarrow f(x, s)$ is Lebesgue measurable in Ω;
(ii) for almost all $x \in \Omega$, the function $s \rightarrow f(x, s)$ is continuous in \mathbf{R}^{M}.

To such a function we associate the Nemytskij operator

$$
\left(N_{f} u\right)(x):=f(x, u(x)) \text { for each } x \in \Omega,
$$

defined on classes of vector functions $u: \Omega \rightarrow \mathbf{R}^{M}, u(x)=\left(u_{1}(x), u_{2}(x), \ldots, u_{M}(x)\right)$.
Let us make the following convention for the Carathéodory function, the assertion " $x \in \Omega$ " is to be understood in the sense "almost all $x \in \Omega$ ".

It is well known that, for any measurable function $u: \Omega \rightarrow \mathbf{R}^{M}$, the function Ω э $x \mapsto f(x, u(x)) \in \mathbf{R}$ is also measurable.

We now review some definitions and properties related to Lebesgue spaces with variable exponents needed throughout the paper. For proofs and references see [3].

Given a function $p(\cdot) \in L^{\infty}(\Omega)$ that satisfies

$$
1 \leq p^{-}:=\operatorname{ess} \inf _{x \in \Omega} p(x) \leq \text { ess } \sup _{x \in \Omega} p(x)=: p^{+}<\infty
$$

the Lebesgue space $L^{p(\cdot)}(\Omega)$ with variable exponent $p(\cdot)$ is defined as

$$
L^{p(\cdot)}(\Omega):=\left\{v: \Omega \rightarrow \mathbf{R} ; v \text { is measurable and } \rho_{p(\cdot)}(v):=\int_{\Omega}|v(x)|^{p(x)} d x<\infty\right\} .
$$

Equipped with the norm

$$
u \in L^{p(\cdot)}(\Omega) \rightarrow\|u\|_{p(\cdot)}:=\inf \left\{\lambda>0 ; \int_{\Omega}\left|\frac{u(x)}{\lambda}\right|^{p(x)} \leq 1\right\}
$$

the space $L^{p(\cdot)}(\Omega)$ is a separable Banach space.
Given $p(\cdot) \in L^{\infty}(\Omega)$ such that $p^{-}>1$, let $p^{\prime}(\cdot) \in L^{\infty}(\Omega)$ be defined by

$$
\frac{1}{p(x)}+\frac{1}{p^{\prime}(x)}=1 \text { for almost all } x \in \Omega
$$

For any $u \in L^{p(\cdot)}(\Omega)$ and $v \in L^{p^{(\cdot)}}(\Omega)$, the following inequality holds:

$$
\begin{equation*}
\int_{\Omega}|u(x) v(x)| \mathrm{d} x \leq\left(\frac{1}{p^{-}}+\frac{1}{\left(p^{\prime}\right)^{-}}\right)\|u\|_{p(\cdot)}\|v\|_{p^{\prime}(\cdot)} . \tag{1}
\end{equation*}
$$

If $v, w \in L^{p(\cdot)}(\Omega)$, then:

$$
\begin{equation*}
\rho_{p(\cdot)}(v+w) \leq 2^{p^{+}}\left(\rho_{p(\cdot)}(v)+\rho_{p(\cdot)}(w)\right) . \tag{2}
\end{equation*}
$$

The following theorem summarizes the relations between the norm $\|\cdot\|_{o, p(\cdot)}$ and the convex modular $\rho_{p(\cdot)}$.
Theorem 1. Let $p(\cdot) \in L^{\infty}(\Omega)$ be such that $p^{-} \geq 1$ and let $u \in L^{p(\cdot)}(\Omega)$. Then:
(a) If $u \neq 0$, then $\|u\|_{p(\cdot)}=a$ if and only if $\rho_{p(\cdot)}\left(a^{-1} u\right)=1$.
(b) $\|u\|_{p(\cdot)}<1($ resp. $=1$ or $>1)$ if and only if $\rho_{p(\cdot)}(u)<1$ (resp. $=1$ or $\left.>1\right)$.
(c) $\|u\|_{p(\cdot)}>1$ implies $\|u\|_{p(\cdot)}^{p^{-}} \leq \rho_{p(\cdot)}(u) \leq\|u\|_{p(\cdot)}^{p^{+}}$.
(d) $\|u\|_{p(\cdot)}<1$ implies $\|u\|_{p(\cdot)}^{p^{+}} \leq \rho_{p(\cdot)}(u) \leq\|u\|_{p(\cdot)}^{p^{-}}$.
(e) Let $u \in L^{p(\cdot)}(\Omega)$ and $u_{n} \in L^{p(\cdot)}(\Omega), n=1,2, \ldots$. The following statements are equivalent:
(i) $\left\|u-u_{n}\right\|_{p(\cdot)} \rightarrow 0$ as $n \rightarrow \infty$.
(ii) $\rho_{p(\cdot)}\left(u_{n}-u\right) \rightarrow 0$ as $n \rightarrow \infty$.
(iii) $\left(u_{n}\right)_{n}$ converges to u in measure and $\rho_{p(\cdot)}\left(u_{n}\right) \rightarrow \rho_{p(\cdot)}(u)$ as $n \rightarrow \infty$.

2. The main result

The main result of this paper states sufficient conditions to ensure the Nemytskij operator that maps $\left[L^{p_{1} \cdot \cdot \cdot}(\Omega)\right]^{M}$ into $L^{p_{2}(\cdot)}(\Omega)$ is continuous and bounded.

On $\left[L^{p_{1} \cdot()}(\Omega)\right]^{u}$ consider the norm

$$
\|u\|:=\|\sqrt{T[u, u]}\|_{p_{1}(\cdot)}
$$

where $u=\left(u_{1}, u_{2}, \ldots, u_{M}\right), T[u, u]:=\sum_{i=1}^{M} u_{i}^{2}$.

Theorem 2. Let $f: \Omega \times \mathbf{R}^{M} \rightarrow \mathbf{R}$ be a Carathéodory function which satisfies the growth condition

$$
\begin{equation*}
|f(x, u)| \leq c_{1}(x)+c(x) \sum_{i=1}^{M}\left|u_{i}\right|^{p_{1}(x) / p_{2}(x)}, x \in \Omega, u \in \mathbf{R}^{M}, \tag{3}
\end{equation*}
$$

where $c_{1} \in L^{p_{2} \cdot(\cdot)}(\Omega)$ and c is a non-negative $L^{\infty}(\Omega)$-function. Then N_{f} is a well-defined, bounded, continuous operator from $\left[L^{p_{1} \cdot(\cdot)}(\Omega)\right]^{M}$ into $L^{p_{2}(\cdot)}(\Omega)$.

Proof. First we prove that N_{f} is a well-defined and bounded operator from $\left[L^{\left.p_{1} \cdot \cdot\right)}(\Omega)\right]^{M}$ into $L^{p_{2} \cdot(\cdot)}(\Omega)$. Let $u=\left(u_{1}, u_{2}, \ldots, u_{M}\right) \in\left[L^{\left.p_{1} \cdot \cdot\right)}(\Omega)\right]^{M}$. From (3), by integrating over Ω and taking into account (2), it follows that

$$
\begin{equation*}
\int_{\Omega}\left|N_{f}(u)(x)\right|^{p_{2}(x)} \mathrm{d} x \leq \tag{4}
\end{equation*}
$$

$$
\begin{aligned}
& \leq 2^{p_{2}^{+}}\left(\int_{\Omega}\left|c_{1}(x)\right|^{p_{2}(x)} \mathrm{d} x+C \int_{\Omega}\left(\sum_{i=1}^{M}\left|u_{i}(x)\right|^{p_{1}(x) p_{2}(x)}\right)^{p_{2}(x)} \mathrm{d} x\right) \leq \\
& \leq 2^{p_{2}^{+}}\left(\int_{\Omega}\left|c_{1}(x)\right|^{p_{2}(x)} \mathrm{d} x+2^{(M-1) p_{2}^{+}} C \sum_{i=1}^{M} \int_{\Omega}\left|u_{i}(x)\right|^{p_{1}(x)} \mathrm{d} x\right)<\infty,
\end{aligned}
$$

where $\left.C:=\max \left(\|c\|_{L^{\infty}(\Omega)}^{p_{\overline{2}}}\right)\|c\|_{L^{\infty}(\Omega)}^{p_{p^{+}}}\right)$. Consequently, $N_{f}\left(\left[L^{p_{1} \cdot(\cdot)}(\Omega)\right]^{M}\right) \subset L^{p_{2}(\cdot)}(\Omega)$.
To prove the operator N_{f} is bounded, let us consider $u=\left(u_{1}, u_{2}, \ldots, u_{M}\right) \in\left[L^{p_{1}(\cdot)}(\Omega)\right]^{M}$ such that $\|u\| \leq C_{2}$. Since

$$
\begin{equation*}
\left|u_{i}\right| \leq \sqrt{T[u, u]}, 1 \leq i \leq M \tag{5}
\end{equation*}
$$

we deduce that $\left\|u_{i}\right\|_{p_{1}(.)} \leq C_{2}$. Therefore (Theorem 1 (c) and (d))

$$
\rho_{p_{1}(\cdot)}\left(u_{i}\right) \leq C_{3}:=\max \left(C_{2}^{p_{1}^{+}}, C_{2}^{p_{1}^{-}}\right) .
$$

According to (4), it follows that N_{f} transforms norm bounded sets in $\left[L^{p_{1} \cdot()}(\Omega)\right]^{M}$ into mean bounded sets in $L^{p_{2}(\cdot)}(\Omega)$, therefore in norm bounded sets in $L^{p_{2} \cdot()}(\Omega)$ (Theorem 1 (c), (d)). Consequently N_{f} is bounded.

We now prove that the operator N_{f} is continuos.
Fix $u=\left(u_{1}, u_{2}, \ldots, u_{M}\right) \in\left[L^{p_{1} \cdot()}(\Omega)\right]^{M}$. To establish the continuity of N_{f}, it is enough to show that every sequence $\left(u^{(n)}\right)_{n} \subset\left[L^{p_{1} \cdot()}(\Omega)\right]^{m}$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u^{(n)}-u\right\|=0 \tag{6}
\end{equation*}
$$

has a subsequence $\left(u^{\left(n_{k}\right)}\right)_{k}$ such that $N_{f}\left(u^{\left(n_{k}\right)}\right) \rightarrow N_{f}(u)$ in $L^{p_{2}(\cdot)}(\Omega)$ as $k \rightarrow \infty$.

Indeed, let $\left(u^{(n)}\right)_{n}$ be a sequence as above, $u^{(n)}=\left(u_{1}^{(n)}, u_{2}^{(n)}, \ldots, u_{M}^{(n)}\right)$.
Taking into account (5), from (6) we infer that

$$
\lim _{n \rightarrow \infty}\left\|u_{i}^{(n)}-u_{i}\right\|_{\left.p_{1} \cdot\right)}=0,1 \leq i \leq M,
$$

therefore

$$
\lim _{n \rightarrow \infty} \rho_{p_{1} \cdot()}\left(u_{i}^{(n)}-u_{i}\right)=0,1 \leq i \leq M,
$$

or

$$
\begin{equation*}
\left(u_{i}^{(n)}-u_{i}\right)^{p_{1}(\cdot)} \rightarrow 0 \text { in } L^{1}(\Omega) \text { as } n \rightarrow \infty, 1 \leq i \leq M \tag{7}
\end{equation*}
$$

By using the Brézis's Lemma ([1]), it follows that there exists a subsequence $\left(u_{1}^{\left(n_{k}\right)}\right)_{k} \subset\left(u_{1}^{(n)}\right)_{n}$ and $h_{1} \in L^{1}(\Omega)$ such that

$$
\lim _{k \rightarrow \infty}\left(u_{1}^{\left(n_{k}\right)}(x)-u_{1}(x)\right)^{p_{1}(x)}=0 \text { for almost all } x \in \Omega
$$

and

$$
\left|\left(u_{1}^{\left(n_{k}\right)}(x)-u_{1}(x)\right)^{p_{1}(x)}\right| \leq\left|h_{1}(x)\right| \text { for almost all } x \in \Omega, k \in \mathbf{N} .
$$

By applying the Brézis's Lemma again, passing to a subsequence, there exists $h_{2} \in L^{1}(\Omega)$ such that

$$
\lim _{k \rightarrow \infty}\left(u_{2}^{\left(n_{k}\right)}(x)-u_{2}(x)\right)^{p_{1}(x)}=0 \text { for almost all } x \in \Omega,
$$

and

$$
\left|\left(u_{2}^{\left(n_{k}\right)}(x)-u_{2}(x)\right)^{p_{1}(x)}\right| \leq\left|h_{2}(x)\right| \text { for almost all } x \in \Omega, k \in \mathbf{N} .
$$

The process continues. There exist a subsequence $\left(u^{\left(n_{k}\right)}\right)_{k}$ and $h_{1}, h_{2}, \ldots, h_{M} \in L^{1}(\Omega)$ such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left(u_{i}^{\left(n_{k}\right)}(x)-u_{i}(x)\right)^{p_{1}(x)}=0 \text { for almost all } x \in \Omega, 1 \leq i \leq M, \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\left(u_{i}^{\left(n_{k}\right)}(x)-u_{i}(x)\right)^{p_{1}(x)}\right| \leq\left|h_{i}(x)\right| \text { for almost all } x \in \Omega, k \in \mathbf{N}, 1 \leq i \leq M . \tag{9}
\end{equation*}
$$

Consequently

$$
\begin{equation*}
\lim _{k \rightarrow \infty} u_{i}^{\left(n_{k}\right)}(x)=u_{i}(x) \text { almost all } x \in \Omega, 1 \leq i \leq M \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|u_{i}^{\left(n_{k}\right)}(x)\right| \leq\left|h_{i}(x)\right|^{1 / p_{1}(x)}+\left|u_{i}(x)\right| \text { almost all } x \in \Omega, k \in \mathbf{N}, 1 \leq i \leq M . \tag{11}
\end{equation*}
$$

Since f is a Carathéodory function, it is clear that (see (10))

$$
\lim _{k \rightarrow \infty} N_{f}\left(u^{\left(n_{k}\right)}\right)(x)=N_{f}(u)(x) \text { for almost all } x \in \Omega,
$$

therefore

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left(N_{f}\left(u^{\left(n_{k}\right)}\right)(x)-N_{f}(u)(x)\right)^{p_{2}(x)}=0 \text { for almost all } x \in \Omega . \tag{12}
\end{equation*}
$$

On the other hand, from (3) it follows that

$$
\begin{gathered}
\left|N_{f}\left(u^{\left(n_{k}\right)}\right)(x)\right|^{p_{2}(x)}=\left|f\left(x, u^{\left(n_{k}\right)}(x)\right)\right|^{p_{2}(x)} \leq 2^{p_{2}(x)-1} \\
\times\left(\left|c_{1}(x)\right|^{p_{2}(x)}+C \cdot 2^{(M-1)\left(p_{2}(x)-1\right)} \sum_{i=1}^{M}\left(\left|u_{i}^{\left(n_{k}\right)}(x)\right|\right)^{p_{1}(x)}\right) \text { for almost all } x \in \Omega, k \in \mathbf{N} .
\end{gathered}
$$

From (11) we deduce that

$$
\left|N_{f}\left(u^{\left(n_{k}\right)}\right)(x)\right|^{p_{2}(x)} \leq 2^{p_{2}^{+}-1}\left(\left|c_{1}(x)\right|^{p_{2}(x)}+C \cdot 2^{(M-1)\left(p_{2}^{+}-1\right)} \sum_{i=1}^{M} 2^{p_{1}(x)-1}\left(\left|h_{i}(x)\right|+\left|u_{i}(x)\right|^{p_{1}(x)}\right)\right),
$$

therefore

$$
\begin{aligned}
& \left|N_{f}\left(u^{\left(n_{k}\right)}\right)(x)-N_{f}(u)(x)\right|^{p_{2}(x)} \leq\left(\left|N_{f}\left(u^{\left(n_{k}\right)}\right)(x)\right|+\left|N_{f}(u)(x)\right|\right)^{p_{2}(x)} \leq \\
& \quad \leq 2^{p_{2}(x)-1}\left(\left|N_{f}\left(u^{\left(n_{k}\right)}\right)(x)\right|^{p_{2}(x)}+\left|N_{f}(u)(x)\right|^{p_{2}(x)}\right) \leq 2^{p_{2}^{+}-1} g(x),
\end{aligned}
$$

where

$$
g(x):=2^{p_{2}^{+}-1}\left(\left|c_{1}(x)\right|^{p_{2}(x)}+C \cdot 2^{(M-1)\left(p_{2}^{+}-1\right)+p_{1}^{+}-1} \sum_{i=1}^{M}\left(\left|h_{i}(x)\right|+\left|u_{i}(x)\right|^{p_{1}(x)}\right)\right)+\left|N_{f}(u)(x)\right|^{p_{2}(x)} .
$$

Since the right term of this equality is in $L^{1}(\Omega)$ and (12) holds, by applying Lebesgue's dominated convergence theorem, it follows that

$$
\lim _{k \rightarrow \infty} \int_{\Omega}\left(N_{f}\left(u^{\left(n_{k}\right)}\right)(x)-N_{f}(u)(x)\right)^{p_{2}(x)} \mathrm{d} x=0,
$$

that is the subsequence $\left(N_{f}\left(u^{\left(n_{k}\right)}\right)\right)_{k}$ converges in mean to $N_{f}(u)$. It follows that the subsequence $\left(N_{f}\left(u_{n_{k}}\right)\right)_{k}$ converges in norm to $N_{f}(u)$ (Theorem 1 (e)), therefore the operator N_{f} is continuous.

For $M=1$ we obtain:
Corollary 3. Let $f: \Omega \times \mathbf{R} \rightarrow \mathbf{R}$ be a Carathéodory function which satisfies the growth condition

$$
|f(x, u)| \leq c_{1}(x)+c(x)|u|^{p(x)-1}, x \in \Omega, u \in \mathbf{R},
$$

where $c_{1} \in L^{p^{\prime} \cdot()}(\Omega)$ and c is a non-negative $L^{\infty}(\Omega)$-function. Then N_{f} is a well-defined, bounded, continuous operator from $L^{p(\cdot)}(\Omega)$ into $L^{p^{(\cdot)}}(\Omega)$.

Note that this corollary is contained in Theorem 1.16, Fan and Zhao [3].

3. Fréchet differentiability of the gradient norm on a Sobolev space with a variable exponent

In this section, the above results are used to prove the Fréchet differentiability of a norm on a Sobolev space with a variable exponent.

Given a function $p(\cdot) \in L^{\infty}(\Omega)$ that satisfies $p^{-} \geq 1$, the Sobolev space $W^{1, p(\cdot)}(\Omega)$ with variable exponent $p(\cdot)$ is defined as

$$
W^{1, p(\cdot)}(\Omega):=\left\{v \in L^{p(\cdot)}(\Omega) ; \partial_{i} v \in L^{p(\cdot)}(\Omega), 1 \leq i \leq N\right\}
$$

where, for each $1 \leq i \leq N, \partial_{i}$ denotes the distributional derivative operator with respect to the i-th variable. $W^{1, p(\cdot)}(\Omega)$ is a Banach space with respect to the norm

$$
\|u\|_{1, p(\cdot), \nabla}:=\|u\|_{0, p(\cdot)}+\sum_{i=1}^{N}\left\|\partial_{i} u\right\|_{0, p(\cdot)} .
$$

Consider the space (see [2] for details)

$$
U_{\Gamma_{0}}:=\left\{u \in W^{1, p(\cdot)}(\Omega) ; \operatorname{tr} u=0 \text { on } \Gamma_{0}\right\}, \Gamma_{0} \subset \Gamma=\partial \Omega, \mathrm{d} \Gamma-\text { meas } \Gamma_{0}>0 .
$$

The map

$$
u \in U_{\Gamma_{0}} \rightarrow\|u\|_{0, p(\cdot), \Gamma}:=\|\nabla u\|_{p(\cdot)}
$$

is a norm on $U_{\Gamma_{0}}$, equivalent to the norm $\|u\|_{1, p(\cdot), \nabla}$ ([2], Theorem 6 (b))
Moreover ([2], Lemma 1), the norm $\|u\|_{0, p(\cdot), V}$ is Gâteaux-differentiable at any nonzero $u \in U_{\Gamma_{0}}$ and the Gâteaux-differential of this norm at any nonzero $u \in U_{\Gamma_{0}}$ is given for any $h \in U_{\Gamma_{0}}$ by

$$
\begin{equation*}
\left\langle\|\cdot\|_{0, p(\cdot), \nabla}^{\prime}(u), h\right\rangle=\frac{\int_{\Omega \backslash \Omega_{0, u}} p(x) \frac{|\nabla u(x)|^{p(x)-2}\langle\nabla u(x), \nabla h(x)\rangle}{\|u\|_{0, p(\cdot), \nabla}^{p(x)}} \mathrm{d} x}{\int_{\Omega} p(x) \frac{|\nabla u(x)|^{p(x)}}{\|u\|_{0, p(\cdot), \nabla}^{p(x)}} \mathrm{d} x}, \tag{13}
\end{equation*}
$$

where $\Omega_{0, u}:=\{x \in \Omega ;|\nabla u(x)|=0\}$.
By using Theorem 2 and Corollary 3, we will prove:
Theorem 4. The map

$$
u \in U_{\Gamma_{0}} \backslash\{0\} \rightarrow\|\cdot\|_{p(\cdot)}
$$

is continuous.
Proof. Another direct proof of this theorem can be found in [2], Lemma 2.
Let $\varphi: U_{\Gamma_{0}} \backslash\{0\} \rightarrow\left(U_{\Gamma_{0}},\|\cdot\|_{p(\cdot)}\right)^{*}$ be defined by
$\langle\varphi(u), h\rangle:=\int_{\Omega \Omega \Omega_{0, u}} p(x) \frac{|\nabla u(x)|^{p(x)-2}\langle\nabla u(x), \nabla h(x)\rangle}{\|u\|_{0, p(\cdot), \nabla}^{p(x)-\nabla}} \mathrm{d} x$ for each $h \in U_{\Gamma_{0}}$
and let $q: U_{\Gamma_{0}} \backslash\{0\} \rightarrow \square$ be defined by

$$
q(u):=\int_{\Omega} p(x) \frac{|\nabla u(x)|^{p(x)}}{\|u\|_{0, p(\cdot), \nabla}^{p(x)}} \mathrm{d} x .
$$

Since

$$
\left\langle\|\cdot\|_{p(\cdot)}^{\prime}(u), \cdot\right\rangle=\frac{\langle\varphi(u), \cdot\rangle}{q(u)} \text { for all } u \in U_{\Gamma_{0}} \backslash\{0\},
$$

it is sufficient to prove that φ and q are continuous.

Fix $u \in U_{\Gamma_{0}} \backslash\{0\}$ and let $\left(u_{n}\right)_{n} \subset U_{\Gamma_{0}} \backslash\{0\}$ be such that $u_{n} \rightarrow u$ as $n \rightarrow \infty$ in the space $\left(U_{\Gamma_{0}},\|\cdot\|_{0, p(\cdot), \nabla}\right)$. Since

$$
\left|\left|\nabla u_{n}(x)\right|-|\nabla u(x)|\right| \leq\left|\nabla\left(u_{n}-u\right)(x)\right|
$$

and

$$
\left\|\nabla\left(u_{n}-u\right)\right\|_{p(\cdot)} \rightarrow 0 \text { as } n \rightarrow \infty
$$

it follows that

$$
\left\|\left|\left\|\nabla u _ { n } \left|-|\nabla u| \|_{p(\cdot)} \rightarrow 0 \text { as } n \rightarrow \infty\right.\right.\right.\right.
$$

Consequently

$$
\begin{equation*}
\| \frac{\left|\nabla u_{n}\right|}{\left\|\nabla u_{n}\right\|_{p(\cdot)}}-\frac{|\nabla u|}{\|\nabla u\|_{p(\cdot)} \|_{p(\cdot)}} \rightarrow 0 \text { as } n \rightarrow \infty \tag{14}
\end{equation*}
$$

For any $i, 1 \leq i \leq N$, consider the function $f_{i}: \Omega \times \mathbf{R}^{N} \rightarrow \mathbf{R}$ given by:

$$
f_{i}\left(x, s_{1}, s_{2}, \ldots, s_{N}\right)=\left\{\begin{array}{cl}
\left(\sqrt{\sum_{j=1}^{N} s_{j}^{2}}\right)^{p(x)-2} \cdot s_{i} & , \text { if } \sum_{j=1}^{N} s_{j}^{2}>0 \\
0 & , \text { if } \sum_{j=1}^{N} s_{j}^{2}=0
\end{array}\right.
$$

We can write

$$
\langle\varphi(u), h\rangle:=\sum_{i=1}^{N} \int_{\Omega} p(x) f_{i}\left(x, \frac{\nabla u(x)}{\|u\|_{0, p(\cdot), \nabla}}\right) \partial_{i} h(x) \mathrm{d} x \text { for each } h \in U_{\Gamma_{0}}
$$

We have

$$
\begin{equation*}
\left\langle\varphi\left(u_{n}\right)-\varphi(u), h\right\rangle=\sum_{i=1}^{N} \int_{\Omega} p(x) w_{n}^{i}(x) \partial_{i} h(x) \mathrm{d} x, \tag{15}
\end{equation*}
$$

where, for any $i, \quad 1 \leq i \leq N$,

$$
w_{n}^{i}(x):=f_{i}\left(x, \frac{\nabla u_{n}(x)}{\left\|u_{n}\right\|_{0, p(\cdot), \nabla}}\right)-f_{i}\left(x, \frac{\nabla u(x)}{\|u\|_{0, p(\cdot), \nabla}}\right), x \in \Omega .
$$

Since

$$
\begin{equation*}
\left|f_{i}\left(x, s_{1}, s_{2}, \ldots, s_{N}\right)\right| \leq\left(\sqrt{\sum_{j=1}^{N} s_{j}^{2}}\right)^{p(x)-1} \text { if } \sum_{j=1}^{N} s_{j}^{2}>0 \tag{16}
\end{equation*}
$$

it follows that the functions f_{i} are continuous on \mathbf{R}^{N}. On the other hand,

$$
\begin{equation*}
\sqrt{\sum_{j=1}^{N} s_{j}^{2}} \leq \sum_{j=1}^{N}\left|s_{j}\right| \tag{17}
\end{equation*}
$$

and

$$
\left|s_{j}\right|=\left(\left|s_{j}\right|^{p(x)-1}\right)^{1 /(p(x)-1)} \leq\left(\sum_{j=1}^{N}\left|s_{j}\right|^{p(x)-1}\right)^{1 /(p(x)-1)},
$$

therefore

$$
\begin{equation*}
\sum_{j=1}^{N}\left|s_{j}\right| \leq N\left(\sum_{j=1}^{N}\left|s_{j}\right|^{p(x)-1}\right)^{1 /(p(x)-1)} . \tag{18}
\end{equation*}
$$

From (16), (17), and (18) it follows that

$$
\left|f_{i}\left(x, s_{1}, s_{2}, \ldots, s_{N}\right)\right| \leq N^{p(x)-1} \sum_{j=1}^{N}\left|s_{j}\right|^{p(x)-1} \leq N^{p^{+}-1} \sum_{j=1}^{N}\left|s_{j}\right|^{p(x) / p^{\prime}(x)}
$$

that is (3) with $p_{1}(x)=p(x)$ and $p_{2}(x)=p^{\prime}(x)$. By applying Theorem 2, it follows that $f_{i}\left(\cdot \frac{\nabla u(\cdot)}{\|u\|_{0, p(\cdot), \nabla}}\right) \in L^{p^{\prime} \cdot()}(\Omega)$, therefore $w_{n}^{i}(x) \in L^{p^{(\cdot)}}(\Omega)$. But $\partial_{i} h \in L^{p(\cdot)}(\Omega)$. Therefore, taking (15) and (1) into account, we obtain

$$
\begin{equation*}
\left|\left\langle\varphi\left(u_{n}\right)-\varphi(u), h\right\rangle\right| \leq p^{+} \sum_{i=1}^{N} \int_{\Omega}\left|w_{n}^{i}(x)\left\|\partial_{i} h(x) \mid \mathrm{d} x \leq \underline{C} \sum_{i=1}^{N}\right\| w_{n}^{i}\left\|_{p^{\prime}(\cdot)}\right\| \partial_{i} h \|_{p(\cdot)},\right. \tag{19}
\end{equation*}
$$

where $\underline{C}=p^{+}\left(\frac{1}{p^{-}}+\frac{1}{\left(p^{\prime}\right)^{-}}\right)$.
Since

$$
\left\|\partial_{i} h\right\|_{p(\cdot)} \leq\|h\|_{0, p(\cdot), \nabla},
$$

we deduce from (19) that

$$
\left|\left\langle\varphi\left(u_{n}\right)-\varphi(u), h\right\rangle\right| \leq \underline{C}\left(\sum_{i=1}^{N}\left\|w_{n}^{i}\right\|_{p^{\prime} \cdot()}\right)\|h\|_{0, p(\cdot), \nabla} .
$$

Consequently,

$$
\left\|\varphi\left(u_{n}\right)-\varphi(u)\right\| \leq \underline{C} \sum_{i=1}^{N}\left\|w_{n}^{i}\right\|_{p^{\prime}(\cdot)} .
$$

It is now clear that in order to prove the continuity of φ, it suffices to show that $\left\|w_{n}^{i}\right\|_{p^{\prime}(\cdot)} \rightarrow 0$ as $n \rightarrow \infty$, for any $i, \quad 1 \leq i \leq N$. Taking into account (14), that is a consequence of the continuity of Nemytskij operator (Theorem 2).

We now show that

$$
q\left(u_{n}\right) \rightarrow q(u) \text { as } n \rightarrow \infty .
$$

Since

$$
\begin{aligned}
& \left|q\left(u_{n}\right)-q(u)\right|=\left|\int_{\Omega} p(x)\left[\frac{\left|\nabla u_{n}(x)\right|^{p(x)}}{\left\|u_{n}\right\|_{0, p(\cdot), \nabla}^{p(x)}}-\frac{|\nabla u(x)|^{p(x)}}{\|u\|_{0, p(\cdot), \nabla}^{p(x)}}\right] \mathrm{d} x\right| \leq \\
& \leq p^{+} \int_{\Omega}\left|\frac{\left|\nabla u_{n}(x)\right|}{\left\|u_{n}\right\|_{0, p(\cdot), \nabla}}\left[\frac{\mid \nabla u_{n}(x)^{p(x)-1}}{\left\|u_{n}\right\|_{0, p(\cdot), \nabla}^{p(x)-1}}-\frac{\mid \nabla u(x)^{p(x)-1}}{\|u\|_{0, p(\cdot), \nabla}^{p(x)-1}}\right]\right| \mathrm{d} x
\end{aligned}
$$

$$
+p^{+} \int_{\Omega}\left|\frac{|\nabla u(x)|^{p(x)-1}}{\|u\|_{0, p(\cdot), \nabla}^{p(x)-1}}\left[\frac{\left|\nabla u_{n}(x)\right|}{\left\|u_{n}\right\|_{0, p(\cdot), \nabla}}-\frac{|\nabla u(x)|}{\|u\|_{0, p(\cdot), \nabla}}\right]\right| \mathrm{d} x .
$$

it suffices to show that:

$$
A_{n}:=\int_{\Omega}\left|\frac{\nabla u_{n}(x) \mid}{\left\|u_{n}\right\|_{0, p(\cdot), \nabla}}\left[\frac{\left|\nabla u_{n}(x)\right|^{p(x)-1}}{\left\|u_{n}\right\|_{0, p(\cdot), \nabla}^{p(x)-1}}-\frac{|\nabla u(x)|^{p(x)-1}}{\|u\|_{0, p(\cdot,)}^{p(x)-1}}\right]\right| \mathrm{d} x \rightarrow 0 \text { as } n \rightarrow \infty
$$

and

$$
B_{n}:=\int_{\Omega}\left|\frac{|\nabla u(x)|^{p(x)-1}}{\|u\|_{0, p(\cdot), \nabla}^{p(x)-1}}\left[\frac{\left|\nabla u_{n}(x)\right|}{\left\|u_{n}\right\|_{0, p(\cdot), \nabla}}-\frac{|\nabla u(x)|}{\|u\|_{0, p(\cdot), \nabla}}\right]\right| \mathrm{d} x \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Since $\frac{\left|\nabla u_{n}\right|}{\left\|u_{n}\right\|_{0, p(\cdot), \nabla}} \in L^{p(\cdot)}(\Omega), \frac{\left|\nabla u_{n}\right|^{p(\cdot)-1}}{\left\|u_{n}\right\|_{0, p(\cdot), V}^{p(\cdot)-1}}-\frac{|\nabla u|^{p(\cdot)-1}}{\|u\|_{0, p(\cdot), \nabla}^{(\cdot)-1}} \in L^{p^{(\cdot)}}(\Omega)$, by using the inequality (1), we obtain that

$$
A_{n} \leq \bar{C}\left\|\frac{\left|\nabla u_{n}\right|^{p(\cdot)-1}}{\left\|u_{n}\right\|_{0, p(\cdot), \nabla}^{(\cdot()-1}}-\frac{|\nabla u|^{p(\cdot)-1}}{\|u\|_{0, p(\cdot), \nabla}^{p(\cdot)-1}}\right\|_{p^{\prime}(\cdot)},
$$

where $\bar{C}:=\frac{1}{p^{-}}+\frac{1}{\left(p^{\prime}\right)^{-}}$. It suffices to show that

$$
\left\|\frac{\|\left.\nabla u_{n}\right|^{p(\cdot)-1}}{\left\|u_{n}\right\|_{0, p(\cdot), \nabla}^{p(\cdot)-1}}-\frac{|\nabla u|^{p(\cdot)-1}}{\|u\|_{0, p(\cdot), \nabla}^{p(\cdot)-1}}\right\|_{p^{(\cdot)}} \rightarrow 0 \text { as } n \rightarrow \infty .
$$

That follows from (14) and Corollary 3 with $f(x, u)=|u|^{p(x)-1}$.
Therefore $A_{n} \rightarrow 0$ as $n \rightarrow \infty$.
Similarly,

$$
B_{n} \leq \bar{C}\left\|\frac{\left|\nabla u_{n}\right|}{\left\|u_{n}\right\|_{0, p(\cdot), \nabla}}-\frac{|\nabla u|}{\|u\|_{0, p(\cdot), \nabla} \|_{p(\cdot)}}\right\| \frac{\left\|\frac{\left.\nabla u\right|^{p(\cdot)-1}}{\|u\|_{0, p(\cdot), \nabla}^{p(\cdot)-1}}\right\|_{p^{\prime}(\cdot)},}{},
$$

Since

$$
\rho_{p^{\prime}(\cdot)}\left(\frac{|\nabla u|^{p(\cdot)-1}}{\|u\|_{0, p(\cdot), \nabla}^{p(\cdot)-1}}\right)=\rho_{p(\cdot)}\left(\frac{|\nabla u|^{(\cdot)}}{\|u\|_{0, p(\cdot), V}}\right)=1,
$$

it follows (Theorem 1 (b)) that

$$
\left\|\frac{\| \overrightarrow{\left.\right|^{p(\cdot)-1}}}{\|u\|_{0, p(\cdot), V}^{p(\cdot)-1}}\right\|_{p^{\prime}(\cdot)}=1
$$

Therefore

$$
B_{n} \leq \bar{C}\left\|\frac{\left|\nabla u_{n}\right|}{\left\|u_{n}\right\|_{0, p(,), V}}-\frac{|\nabla u|}{\|u\|_{0, p(,),}}\right\|_{p()} .
$$

Taking into account (19), $B_{n} \rightarrow 0$ as $n \rightarrow \infty$.
Hence we conclude that

$$
q\left(u_{n}\right) \rightarrow q(u) \text { as } n \rightarrow \infty .
$$

This completes the proof of Theorem 3.

References

[1] Brézis, H., Analyse fonctionelle. Théorie et applications, Masson, Paris, 1983.
[2] Ciarlet, P. G., Dinca, G., and Matei, P., Fréchet differentiability of the norm on a Sobolev space with a variable exponent, Analysis and Applications, Vol. 11, No. 4 (2013), 1350012 (31 pages), DOI: 10.1142/S0219530513500127.
[3] Fan, X. L. and Zhao, D., On the spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424-446.

