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1. Introduction 

 

Suppose that 
NR  is a bounded domain. Let : Mf  R R  be a function 

satisfying the Carathéodory conditions: 

(i) for each 
MsR , the function ( , )x f x s  is Lebesgue measurable in  ; 

(ii) for almost all x , the function ( , )s f x s  is continuous in 
M

R . 

To such a function we associate the Nemytskij operator   

 ( )( ) := ( , ( ))
f

N u x f x u x  for each x , 

defined on classes of vector functions : Mu R ,         1 2
= , , ,

M
u x u x u x u x . 

Let us make the following convention for the Carathéodory function, the assertion 

” x ” is to be understood in the sense ”almost all x ”. 

It is well known that, for any measurable function : Mu R , the function 

  ,x f x u x  R  is also measurable.  

  We now review some definitions and properties related to Lebesgue spaces with 

variable exponents needed throughout the paper. For proofs and references see [3]. 

Given a function    p L    that satisfies 

    1 : ess inf ess sup =: <
x x

p p x p x p 

 

    , 

the Lebesgue space 
 

( )
p

L

  with variable exponent  p   is defined as 

 

     
  ( ) : : ; :=

p xp

p
L v v is measurable and v v x dx



 
   R       . 

Equipped with the norm  
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( ) : inf 0; 1

p x

p

p

u x
u L u 





 

  
      

  
 , 

the space 
 

( )
p

L

  is a separable Banach space. 

Given    p L    such that 1p  , let    'p L    be defined by  

   
1 1

1
'p x p x

   for almost all x . 

For any 
 

( )
p

u L


   and 
 '

( )
p

v L


  , the following inequality holds: 

(1)     
     '

1 1
d

'
p p

u x v x x u v
p p

  

 
   
 

 . 

If 
 

, ( )
p

v w L


  , then: 

(2)  
            2 p

p p p
v w v w  



  
   .  

The following theorem summarizes the relations between the norm 
 0, p 

  and the 

convex modular 
 p




. 

Theorem 1.  Let    p L    be such that 1p   and let 
 

( )
p

u L


  . Then: 

(a) If 0u  , then 
 p

u a

  if and only if 

   1 1
p

a u 


 . 

(b) 
 

1
p

u

  (resp. 1  or 1 ) if and only if 

    1
p

u


  (resp. 1  or 1 ). 

(c) 
 

1
p

u

  implies 

     
 

p p

pp p
u u u

 

 
  . 

(d) 
 

1
p

u

  implies 

     
 

p p

pp p
u u u

 

 
  . 

(e) Let 
 

( )
p

u L


   and 
 

( )
p

n
u L


  , 1,2,n   . The following statements are 

equivalent: 

   (i)    
 

0
n p

u u


   as n. 

   (ii)  
    0

np
u u


   as n. 

   (iii)   n n
u  converges to u  in measure and 

       np p
u u 

 
  as n. 

 

2. The main result 

 

The main result of this paper states sufficient conditions to ensure the Nemytskij 

operator that maps 
  Mp

L )(1 


 into 
 

)(2 
p

L  is continuous and bounded. 

On 
  Mp

L )(1 


 consider the norm 

 
 1

:= ,
p

u T u u


,  

where  1 2
, , ,

M
u u u u  ,   2

1=

:=, i

M

i

uuuT  . 
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Theorem 2. Let : Mf  R R  be a Carathéodory function which satisfies the growth 

condition  

(3)   
   /

1 2

1
=1

( , ) ( )
M

p x p x

i
i

f x u c x c x u   , x , 
MuR ,   

where 
 

)(2
1 

p
Lc  and c  is a non-negative  L -function. Then fN  is a well-defined, 

bounded, continuous operator from 
  Mp

L )(1 


 into 
 

)(2 
p

L .  

 

 Proof. First we prove that 
f

N  is a well-defined and bounded operator from 

  Mp
L )(1 


 into 

 
)(2 

p
L . Let  

 1

1 2
, , , ( )

M
p

M
u u u u L

   
 

 . From (3), by integrating 

over   and taking into account (2), it follows that 

(4)    
 

 xxuN
xp

f d))(( 2  

 

 
 

 
   

 























  



xxuCxxc

xp

xpxp

i

M

i

xpp
dd)(2

2

2
/

1

1=

2
1

2  

 

 
     

 
,<d2d)(2 1

1=

2
12

1
2 








  







xxuCxxc
xp

i

M

i

pMxpp
  

 where 
    2 2

:= max ,
p p

L L
C c c

 

  
. Consequently, 

    
)()( 21 





 

 pMp

f LLN . 

 To prove the operator 
f

N  is bounded, let us consider 

 
 1

1 2
, , , ( )

M
p

M
u u u u L

   
 

  such that 2Cu  . Since   

(5)   ,
i

u T u u , 1 i M  , 

 we deduce that 
  2

1

Cu
pi 


. Therefore (Theorem 1 (c) and (d)) 

   
     1 1

3 2 2
1

:= max ,
p p

ip
u C C C

 


 . 

According to (4), it follows that fN  transforms norm bounded sets in 
  Mp

L )(1 


 into mean 

bounded sets in 
 

)(2 
p

L , therefore in norm bounded sets in 
 

)(2 
p

L  (Theorem 1 (c), (d)). 

Consequently  
f

N  is bounded. 

We now prove that the operator 
f

N  is continuos. 

Fix  
 1

1 2
, , , ( )

M
p

M
u u u u L

   
 

 . To establish the continuity of fN , it is 

enough to show that every sequence     Mp

n

n Lu )(1)( 


 such that  

(6)  0=lim
)( uu n

n




 

 has a subsequence  kk
n

u
)(

 such that   )(
)(

uNuN f
k

n

f   in 
 

)(2 
p

L  as k . 
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Indeed, let  nnu )(  be a sequence as above, 
        1 2

, , ,
n n n n

M
u u u u  . 

Taking into account (5), from (6) we infer that  

 
 

( )

1

= 0lim
n

i i pn

u u


 , 1 i M  , 

therefore 

 
   ( )

1
= 0lim

n

i ip
n

u u




 , 1 i M  , 

or 

(7)   
 ( ) 1 0

p
n

i i
u u



   in  1L   as n, 1 i M  . 

By using the Brézis’s Lemma ([1]), it follows that there exists a subsequence 
     

n

n

k
k

n
uu 11   and   1

1 Lh  such that  

 
  

 1

1 1
( ) ( ) = 0lim

p x
n
k

k

u x u x


  for almost all x  

and  

 
  

 1

1 1 1
( ) ( ) ( )

p x
n
ku x u x h x   for almost all x , kN . 

By applying the Brézis’s Lemma again, passing to a subsequence, there exists  1

2
h L   

such that 

 
  

 1

2 2
( ) ( ) = 0lim

p x
n
k

k

u x u x


  for almost all  x , 

and  

 
  

 1

2 2 2
( ) ( ) ( )

p x
n
ku x u x h x   for almost all x , kN . 

The process continues. There exist a subsequence  kk
n

u
)(

 and   1

2,1 ,, Lhhh M  such that  

(8)  
  

 1

( ) ( ) 0lim
p x

n
k

i i
k

u x u x


   for almost all x , 1 i M  , 

 and 

(9)  
  

 1

( ) ( ) ( )
p x

n
k

i i i
u x u x h x   for almost all x , kN , 1 i M  . 

Consequently 

(10)  
 

lim ( ) ( )
n
k

i i
k

u x u x


  almost all x , 1 i M  , 

and 

(11)  
   1/

1( ) ( ) ( )
p xn

k

i i i
u x h x u x   almost all x , kN , 1 i M  . 

Since f  is a Carathéodory function, it is clear that (see (10)) 

 
  lim ( ) ( )( )
n
k

f f
k

N u x N u x


  for almost all x , 

therefore 

(12)  
   

 2

lim ( ) ( )( ) 0
p x

n
k

f f
k

N u x N u x


   for almost all x . 

On the other hand, from (3) it follows that 
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 2

2 2
1

( ) = ( , ( )) 2
p x p x

n n p xk k

f
N u x f x u x


  

         
 

2

1
1 12

1
=1

( ) 2 ( )
p xM

p x nM p x k

i
i

c x C u x
  

   
 

  for almost all x , kN . 

From (11) we deduce that 

  
 

         
2 1 11 122 12 1

1
=1

( ) 2 ( ) 2 2 ( ) ( )
p x MM pp x p xn p p xk

f i i
i

N u x c x C h x u x
    

    
 

 , 

therefore 

  
  

       


xp

f
k

n

f

xp

f
k

n

f xuNxuNxuNxuN
22

))(()())(()(  

 
    

   











 xp

f

xp
k

n

f

xp
xuNxuN 221

2 ))(()(2  
1

22
p

g x
 

, 

where 

 
       

 11 1 11 222 12

1
=1

:= 2 ( ) 2 ( ) ( ) ( )( )
M p xM p pp x p xp

i i f
i

g x c x C h x u x N u x
      

    
 

 . 

Since the right term of this equality is in  1L  and (12) holds, by applying 

Lebesgue’s dominated convergence theorem, it follows that 

 
     

,0=d))(()(lim
2

xxuNxuN
xp

f
k

n

f
k






 

that is the subsequence 
  

k

k
n

f uN )(  converges in mean to )(uN f . It follows that the 

subsequence  
kk

nf uN )(  converges in norm to )(uN f  (Theorem 1 (e)), therefore the operator 

fN  is continuous.    

For 1M   we obtain: 

 

Corollary 3.  Let :f  R R  be a Carathéodory function which satisfies the growth 

condition  

  
  1

1
( , ) ( )

p x

f x u c x c x u


  , x , uR , 

where 
 '

1
( )

p
c L


   and c  is a non-negative  L -function. Then fN  is a well-defined, 

bounded, continuous operator from 
  )(pL  into 

 '
( )

p
L


 .  

 

 Note that this corollary is contained in Theorem 1.16, Fan and Zhao [3].  

 

3. Fréchet differentiability of the gradient norm on a Sobolev space with a variable 

exponent 

 

In this section, the above results are used to prove the Fréchet differentiability of a 

norm on a Sobolev space with a variable exponent. 

 Given a function    p L    that satisfies 1p  , the Sobolev space 
   1, p

W

  

with variable exponent  p   is defined as 

            1,
: ; , 1  

p p p

i
W v L v L i N

  
         , 
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where, for each 1 i N  , 
i

  denotes the distributional derivative operator with respect to 

the i-th variable. 
   1, p

W

  is a Banach space with respect to the norm 

     1, , 0, 0,
1

:
N

ip p p
i

u u u
   



   . 

Consider the space (see [2] for details)  
    

0

1,

0
: ;  tr 0 on 

p
U u W u




     , 

0
     , 

0
d 0meas    . 

The map  

   0, ,0
:

p p
u U u u

   
     

is a norm on 
0

U


, equivalent to the norm 
 1, ,p

u
 

 ([2], Theorem 6 (b)) 

Moreover ([2], Lemma 1), the norm 
  ,0,p

u  is Gâteaux-differentiable at any nonzero 

0
u U


  and the Gâteaux-differential of this norm at any nonzero 

0
u U


  is given for any 

0
h U


  by  

(13)  

     

 

( ) 2

( ) 1\
0,

0, ( ),

( )0, ( ),

( )

0, ( ),

,
( ) d

( ), =

( ) d

p x

p x
u

' p

p xp

p x

p

u x u x h x
p x x

u
u h

u x
p x x

u



 

 

 



 

  








,  

 where   0,
:= ;  = 0

u
x u x   . 

By using Theorem 2 and Corollary 3, we will prove: 

 

Theorem 4. The map 

  
 

'

0
\ 0

p
u U

 
    

is continuous.  

 

 Proof.  Another direct proof of this theorem can be found in [2], Lemma 2. 

Let    ( )0 0
: \ 0 ,

p
U U



  
   be defined by  

 
     

( ) 2

( ) 1\
0,

0, ( ),

,
( ), := ( ) d

p x

p x
u

p

u x u x h x
u h p x x

u




 

 

  
  for each 

0
h U


  

and let  
0

: \ 0q U


   be defined by 

 
 

( )

( )

0, ( ),

( ) := ( ) d .

p x

p x

p

u x
q u p x x

u

 


  

Since 

 
 
 

' ( ),
, =

( )p

u
u

q u





   for all  

0
\ 0u U


 , 

it is sufficient to prove that   and q  are continuous. 
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Fix  
0

\ 0u U


  and let    
0

\ 0
n n

u U


  be such that 
n

u u  as n in the space 

 0, ( ),0
,

p
U

  
 . Since 

       n n
u x u x u u x       

and 

  
 

0
n

p
u u


    as n, 

it follows that  

 
 

0
n

p
u u


     as n. 

Consequently 

(14)  

     

0n

n p p
p

u u

u u
 



 
 

 
 as n.   

 

For any i,  1 i N  , consider the function : N

i
f  R R  given by: 

  

  2

2 2

1 1

1 2

2

1

, if  > 0

, , , , =

0 , if   = 0

p x
N N

j i j
j j

i N
N

j
j

s s s

f x s s s

s



 



 
  




 



    . 

We can write  

 
 

1
0, ( ),

( ), := ( ) , d
N

i i
i

p

u x
u h p x f x h x x

u





 

 
 

 
 

  for each 
0

h U


  

 

We have 

(15)       
1

( ) ( ), = d
N

i

n n i
i

u u h p x w x h x x 




  , 

where, for any i,  1 i N  ,  

 
   

0, ( ), 0, ( ),

:= , ,i n

n i i

n p p

u x u x
w x f x f x

u u
   

    
   

   
   

 , x . 

Since  

(16)   
  1

2

1 2
1

, , , ,

p x
N

i N j
j

f x s s s s





 
  
 
  if 

2

1

> 0
N

j
j

s


 , 

it follows that the functions 
i

f  are continuous on 
N

R . On the other hand,  

(17)  
2

1 1

N N

j j
j j

s s
 

   

and 
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  1/ 1

1/ 1
1 1

1

=

p x
p x Np x p x

j j j
j

s s s




 



 
  
 
 , 

therefore 

(18)  
 

  1/ 1
1

1 1

.

p x
N N p x

j j
j j

s N s




 

 
  

 
   

From (16), (17), and (18) it follows that 

          1 / '
1 1

1 2
1 1

, , , ,
N Np x p x p xp x p

i N j j
j j

f x s s s N s N s
  

 

    

that is (3) with    1
p x p x  and    2

'p x p x . By applying Theorem 2, it follows that 

     '

0, ( ),

,
p

i

p

u
f L

u



 

  
   
 
 

, therefore      'pi

n
w x L


  . But  ( )p

i
h L    . Therefore, 

taking (15) and (1)  into account, we obtain 

(19)    
   '

1 1

( ) ( ), d
N N

i i

n n i n i pp
i i

u u h p w x h x x C w h  

 
 

      , 

where 
 

1 1
=

'
C p

p p





 
  

 

. 

Since 

 
   0, ,

,
i p p
h h

  
   

we deduce from (19) that 

 
   0, ,'

1

( ) ( ), .
N

i

n n pp
i

u u h C w h 
 



    
 
  

Consequently, 

 
 '

1

( ) ( ) .
N

i

n n p
i

u u C w 




    

It is now clear that in order to prove the continuity of  , it suffices to show that 

 '
0i

n p
w


  as n, for any i,  1 i N  . Taking into account (14), that is a 

consequence of the continuity of Nemytskij operator (Theorem 2). 

We now show that  

 ( ) ( )
n

q u q u  as n . 

Since 

 
   

( ) ( )

( ) ( )

0, ( ), 0, ( ),

( ) ( ) = ( ) d

p x p x

n

p x p xn

n p p

u x u x
q u q u p x x

u u

   

  
   
  

  

 
     

( ) 1 ( ) 1

( ) 1 ( ) 1

0, ( ), 0, ( ), 0, ( ),

d

p x p x

n n

p x p x

n np p p

u x u x u x
p x

u u u
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( ) 1

( ) 1

0, ( ), 0, ( ),0, ( ),

d .

p x

n

p x

n p pp

u x u x u x
p x

u uu







    

   
  

  
   

 

it suffices to show that: 

 
     

( ) 1 ( ) 1

( ) 1 ( ) 1

0, ( ), 0, ( ), 0, ( ),

:= d 0

p x p x

n n

p x p xn

n np p p

u x u x u x
A x

u u u

 

 

     

   
  
  

  as n 

and 

     
( ) 1

( ) 1

0, ( ), 0, ( ),0, ( ),

:= d 0

p x

n

p xn

n p pp

u x u x u x
B x

u uu





    

   
  

  
  as n. 

 

Since 
 

0, ( ),

( )
pn

n p

u
L

u



 


  , 

 

( ) 1 ( ) 1

'

( ) 1 ( ) 1

0, ( ), 0, ( ),

( )

p p

pn

p p

n p p

u u
L

u u

   



   

   

 
   , by using the inequality (1), 

we obtain that  

 

 

( ) 1 ( ) 1

( ) 1 ( ) 1

0, ( ), 0, ( ),
'

p p

n

p pn

n p p
p

u u
A C

u u

   

   

   


 
  , 

where 
 

1 1
:=

'
C

p p


 . It suffices to show that  

 

 

( ) 1 ( ) 1

( ) 1 ( ) 1

0, ( ), 0, ( ),
'

0

p p

n

p p

n p p
p

u u

u u

   

   

   


 
   as n. 

That follows from (14) and Corollary 3 with  
  1

, =
p x

f x u u


. 

Therefore 0
n

A   as n. 

Similarly, 

 

   

( ) 1

( ) 1

0, ( ), 0, ( ), 0, ( ), '

,

p

n

pn

n p p pp p

u u u
B C

u u u

 

 

      

  
   

Since 

 
   

( ) 1

( ) 1'

0, ( ),0, ( ),

= =1

p

pp p

pp

u u

uu
 

 

  

  

    
   

  
  

, 

it follows (Theorem 1 (b)) that 

 

 

( ) 1

( ) 1

0, ( ), '

=1.

p

p

p p

u

u

 

 

  


 

Therefore 
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 0, ( ), 0, ( ),

n

n

n p p p

u u
B C

u u
    

 
  . 

Taking into account (19), 0nB  as n . 

Hence we conclude that 

 ( ) ( )
n

q u q u  as n. 

 This completes the proof of Theorem 3.  
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