A nonlinear eigenvalue problem for the generalized Laplacian on Sobolev spaces with variable exponent

Pavel Matei
Department of Mathematics and Computer Science
Technical University of Civil Engineering of Bucharest
E-mail: pavel.matei@gmail.com

Abstract

Let $\Omega \subset \mathbb{R}^{N}, N \geq 2$, be a smooth bounded domain. Suppose that $p \in \mathcal{C}(\bar{\Omega})$ and $p(x)>1$, for any $x \in \bar{\Omega}$. Using a variational method, we will study the nonlinear eigenvalue problem involving the ($\varphi, p(\cdot)$) Laplacian [6, p. 388] on the generalized Sobolev space with a variable exponent $\left(W_{0}^{1, p(\cdot)}(\Omega),\|\cdot\|_{1, p(\cdot)}\right)(\varphi$ is a gauge function).

Keywords: Nonlinear eigenvalue problem; $(\varphi, p(\cdot))$-Laplacian; duality mapping; Sobolev space with variable exponent.

Mathematics Subject Classification 2010: 35P30, 35J65, 46E35

1 Introduction

Let $\Omega \subset \mathbb{R}^{N}, N \geq 2$, be a bounded domain with a sufficiently smooth boundary $\partial \Omega$ and $p: \bar{\Omega} \rightarrow \mathbb{R}$ be a continuous function with $p(x)>1$ for $x \in \bar{\Omega}$.

In this paper, we will consider the eigenvalues of the generalized - Laplacian Dirichlet problem

$$
\begin{equation*}
-\left\langle\Delta_{(\varphi, p(.))}(u), h\right\rangle+\langle g(\cdot, u), h\rangle=\lambda\left\langle\underline{J}_{\psi}(u), h\right\rangle, \tag{1}
\end{equation*}
$$

where:
(i) $\lambda \in \mathbb{R}$ is a parameter;
(ii) $-\Delta_{(\varphi, p(\cdot))}=J_{\varphi}:\left(W_{0}^{1, p(\cdot)}(\Omega),\|\cdot\|_{1, p(\cdot)}\right) \rightarrow\left(W_{0}^{1, p(\cdot)}(\Omega),\|\cdot\|_{1, p(\cdot)}\right)^{*}$ is the duality mapping corresponding to the gauge function φ (i.e. $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$ is continuous, strictly increasing, $\varphi(0)=0$ and $\varphi(t) \rightarrow \infty$ as $t \rightarrow \infty)$;
(iii) $\underline{J}_{\psi}:\left(L^{q(\cdot)}(\Omega),\|\cdot\|_{q(\cdot)}\right) \rightarrow\left(L^{q(\cdot)}(\Omega),\|\cdot\|_{q(\cdot)}\right)^{*}$ is the duality mapping
corresponding to the gauge functions ψ; here $q \in \mathcal{C}(\bar{\Omega}) \cap L_{+}^{\infty}(\Omega)$ satisfies

$$
q(x)<p^{*}(x)=\left\{\begin{array}{c}
\frac{N p(x)}{N-p(x)} \text { if } p(x)<N \tag{2}\\
+\infty \quad \text { if } p(x) \geq N
\end{array}\right.
$$

(iii) the nonlinear term $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function. Moreover, $u \rightarrow g(\cdot, u)$ is a strictly increasing odd function with $\lim _{t \rightarrow \infty} g(x, t)=\infty$, which satisfies the growth condition:

$$
\begin{equation*}
|g(x, s)| \leq C|s|^{p(x) / p^{\prime}(x)}+a(x) \text { for a.e. } x \in \Omega \text { and for all } s \in \mathbb{R} \tag{3}
\end{equation*}
$$

where $C=$ const. $>0, a \in L^{p^{\prime}(\cdot)}(\Omega), a(x) \geq 0$ a.e. $x \in \Omega$, and

$$
\begin{equation*}
\frac{1}{p(x)}+\frac{1}{p^{\prime}(x)}=1 \text { for a.e. } x \in \Omega \tag{4}
\end{equation*}
$$

Let $\lambda \in \mathbb{R}$ and $u \in W_{0}^{1, p(\cdot)}(\Omega)$ which satisfies (1). The pair (u, λ) is called a solution of the problem (1). If, additionally, $u \neq 0$, then λ is called an eigenvalue of problem (1) and u an eigenfunction corresponding to λ.

The case $g=0$ is studied in [7]. We mention that the $(\varphi, p(\cdot))$ - Laplacian is a natural generalization of the classical p-Laplacian appropriate from the standpoint of duality maps for the case of variable p ([6], [7, p. 208]). Being inhomogeneous, the $(\varphi, p(\cdot))$ - Laplacian possesses more complicated nonlinearity than the p-Laplacian.

2 Duality mappings on Sobolev spaces with variable exponents

In order to deal with the problem (1), we need some theory of the generalized Lebesgue-Sobolev spaces (see Fan and Zhao [8]). For convenience, we give a simple description here.

2.1 Lebesgue and Sobolev spaces with variable exponents

Given a function $p \in L^{\infty}(\Omega)$ that satisfies

$$
1 \leq p^{-}:=\operatorname{ess} \inf _{x \in \Omega} p(x)
$$

the Lebesgue space $L^{p(\cdot)}(\Omega)$ with variable exponent $p(\cdot)$ is defined as

$$
L^{p(\cdot)}(\Omega):=\left\{v: \Omega \rightarrow \mathbb{R} \mid v \text { is } \mathrm{d} x \text {-measurable and } \rho_{p(\cdot)}(v)<\infty\right\}
$$

where

$$
\rho_{p(\cdot)}(v):=\int_{\Omega}|v(x)|^{p(x)} \mathrm{d} x .
$$

Equipped with the norm

$$
v \in L^{p(\cdot)}(\Omega) \rightarrow\|v\|_{p(\cdot)}:=\inf \left\{\lambda>\left.0\left|\int_{\Omega}\right| \frac{v(x)}{\lambda}\right|^{p(x)} \mathrm{d} x \leq 1\right\}
$$

the space $L^{p(\cdot)}(\Omega)$ is a separable Banach space. In addition, if $p^{-}>1$ then $L^{p(\cdot)}(\Omega)$ is uniformly convex, hence reflexive. Also for any $u \in L^{p(\cdot)}(\Omega)$ and $v \in L^{p^{\prime}(\cdot)}(\Omega), \frac{1}{p(x)}+\frac{1}{p^{\prime}(x)}=1$, one has

$$
\begin{equation*}
\int_{\Omega}|u(x) v(x)| d x \leq\left(\frac{1}{p^{-}}+\frac{1}{\left(p^{\prime}\right)^{-}}\right)\|u\|_{p(\cdot)} \cdot\|v\|_{p^{\prime}(\cdot)} . \tag{5}
\end{equation*}
$$

Remark 1 If $u \in L^{p(\cdot)}(\Omega)$, then $\|u\|_{p(\cdot)}=1$ if and only if $\rho_{p(\cdot)}(u)=1$.
It follows from [8, Theorem 1.16]
Proposition 2 Let $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be a Carathéodory function which satisfies the growth condition (3). Then the Nemytskij operator

$$
N_{g}: L^{p(\cdot)}(\Omega) \rightarrow L^{p^{\prime}(\cdot)}(\Omega),\left(N_{g} u\right)(x)=g(x, u(x)), \text { a.e. } x \in \Omega
$$

is well defined, continuous and bounded.
Given a function $p(\cdot) \in L^{\infty}(\Omega)$ that satisfies $p^{-} \geq 1$, the Sobolev space $W^{1, p(\cdot)}(\Omega)$ with variable exponent $p(\cdot)$ is defined as:

$$
W^{1, p(\cdot)}(\Omega):=\left\{u \in L^{p(\cdot)}(\Omega)| | \nabla u \mid \in L^{p(\cdot)}(\Omega)\right\},|\nabla u|^{2}=\sum_{i=1}^{N}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}
$$

and it is endowed with the norm

$$
\|u\|:=\|u\|_{p(\cdot)}+\||\nabla u|\|_{p(\cdot)}, u \in W^{1, p(\cdot)}(\Omega)
$$

The space $\left(W^{1, p(\cdot)}(\Omega),\|\cdot\|\right)$ is a separable Banach space. Also $W^{1, p(\cdot)}(\Omega)$ is uniformly convex and thus reflexive.

Let $p, q \in \mathcal{C}(\bar{\Omega}) \cap L_{+}^{\infty}(\Omega)$. If

$$
q(x)<p^{*}(x):= \begin{cases}\frac{N p(x)}{N-p(x)} & \text { if } p(x)<N \\ +\infty & \text { if } p(x) \geq N\end{cases}
$$

then $W^{1, p(\cdot)}(\Omega)$ is compactly imbedded in $L^{q(\cdot)}(\Omega)$.
If $p \in L_{+}^{\infty}(\Omega)$, we define $W_{0}^{1, p(\cdot)}(\Omega)$ as the closure of $\mathcal{C}_{0}^{\infty}(\Omega)$ in $\left(W^{1, p(\cdot)}(\Omega),\|\cdot\|\right)$.
Theorem 3 (a) If $p \in L_{+}^{\infty}(\Omega)$, then $\left(W_{0}^{1, p(\cdot)}(\Omega),\|\cdot\|\right)$ is a separable Banach space;
(b) If $p \in L_{+}^{\infty}(\Omega)$ and $1<p^{-}$, then $\left(W_{0}^{1, p(\cdot)}(\Omega),\|\cdot\|\right)$ is uniformly convex and thus reflexive;
(c) If $p \in \mathcal{C}(\bar{\Omega}) \cap L_{+}^{\infty}(\Omega)$, then $\left(W_{0}^{1, p(\cdot)}(\Omega),\|\cdot\|\right)$ is compactly imbedded in $L^{q(\cdot)}(\Omega)$, for any $q \in \mathcal{C}(\bar{\Omega}) \cap L_{+}^{\infty}(\Omega)$ satisfying $q(x)<p^{*}(x), x \in \bar{\Omega}$;
(d) (Poincaré inequality) If $p \in \mathcal{C}(\bar{\Omega}) \cap L_{+}^{\infty}(\Omega)$, then there is a constant $c>0$ such that

$$
\|u\|_{p(\cdot)} \leq c\||\nabla u|\|_{p(\cdot)}, \text { for any } u \in W_{0}^{1, p(\cdot)}(\Omega) \text {. }
$$

Using (d) of Theorem 3, it follows that $\|u\|$ and

$$
\|u\|_{1, p(\cdot)}:=\|\mid \nabla u\|_{p(\cdot)}
$$

are equivalent norms on $W_{0}^{1, p(\cdot)}(\Omega)$.
In what follows, $W_{0}^{1, p(\cdot)}(\Omega)$ will be considered as endowed with the norm $\|\cdot\|_{1, p(\cdot)}$ and we will often write $W_{0}^{1, p(\cdot)}(\Omega)$ instead of $\left(W_{0}^{1, p(\cdot)}(\Omega),\|\cdot\|_{1, p(\cdot)}\right)$.

2.2 Duality mappings on $\left(W_{0}^{1, p(\cdot)}(\Omega),\|\cdot\|_{1, p(\cdot)}\right)$

We recall that a real Banach space X is said to be smooth if it has the following property: for any $x \in X, x \neq 0$, there exists a unique $u^{*}(x) \in X^{*}$ such that $\left\langle u^{*}(x), x\right\rangle=\|x\|$ and $\left\|u^{*}(x)\right\|_{X^{*}}=1$. It is well known (see, for instance, Diestel [3], Zeidler [10]) that the smoothness of X is equivalent to the Gâteaux differentiability of the norm. Consequently, if $(X,\|\cdot\|)$ is smooth, then, for any $x \in X$, $x \neq 0$, the only element $u^{*}(x) \in X^{*}$ with the properties $\left\langle u^{*}(x), x\right\rangle=\|x\|$ and $\left\|u^{*}(x)\right\|=1$ is $u^{*}(x)=\|\cdot\|^{\prime}(x)$ (where $\|\cdot\|^{\prime}(x)$ denotes the Gâteaux gradient of the $\|\cdot\|$-norm at $x)$.

We have
Theorem 4 1) If $q \in L_{+}^{\infty}(\Omega)$ and $1<q^{-}$, then $\left(L^{q(\cdot)}(\Omega),\|\cdot\|_{q(\cdot)}\right)$ is smooth. The norm $\|u\|_{q(\cdot)}$ is Fréchet-differentiable at any nonzero $u \in L^{q(\cdot)}(\Omega)$ and the Fréchet-differential of this norm at any nonzero $u \in L^{q(\cdot)}(\Omega)$ is given for any $h \in L^{q(\cdot)}(\Omega)$ by

$$
\begin{equation*}
\left\langle\|\cdot\|_{q(\cdot)}^{\prime}(u), h\right\rangle=\frac{\int_{\Omega} q(x) \frac{|u(x)|^{q(x)-1} \operatorname{sgn} u(x)}{\|u\|_{q(\cdot)}^{q(x)-1}} h(x) d x}{\int_{\Omega} q(x) \frac{|u(x)|^{q(x)}}{\|u\|_{q(\cdot)}^{q(x)}} d x} . \tag{6}
\end{equation*}
$$

2) ([2]) The space $\left(W_{0}^{1, p(\cdot)}(\Omega),\|\cdot\|_{1, p(\cdot)}\right)$ is smooth. The norm $\|u\|_{1, p(\cdot)}$ is Fréchet-differentiable at any nonzero $u \in W_{0}^{1, p(\cdot)}(\Omega)$ and the Fréchet-differential
of this norm at any nonzero $u \in W_{0}^{1, p(\cdot)}(\Omega)$ is given for any $h \in W_{0}^{1, p(\cdot)}(\Omega)$ by

$$
\left\langle\|\cdot\|_{1, p(\cdot)}^{\prime}(u), h\right\rangle=\frac{\int_{\Omega \backslash \Omega_{0, u}} p(x) \frac{|\nabla u(x)|^{p(x)-2}\langle\nabla u(x), \nabla h(x)\rangle}{\|u\|_{1, p(\cdot)}^{p(x)-1}} d x}{\int_{\Omega} p(x) \frac{|\nabla u(x)|^{p(x)}}{\|u\|_{1, p(\cdot)}^{p(x)}} d x},
$$

where $\Omega_{0, u}:=\{x \in \Omega| | \nabla u(x) \mid=0\}$.
Proof. 1) It follows from [5], [6, Lemma 1, p. 378] that the norm $\|u\|_{q(\cdot)}$ is Gâteaux-differentiable at any nonzero $u \in L^{q(\cdot)}(\Omega)$ and the Gâteaux-differential of this norm at any nonzero $u \in L^{q(\cdot)}(\Omega)$ is given for any $h \in L^{q(\cdot)}(\Omega)$ by (6). To prove the Fréchet-differentiability of the map $u \in L^{q(\cdot)}(\Omega) \backslash\{0\} \rightarrow\|u\|_{q(\cdot)}$ it suffices to show that the map $u \in L^{q(\cdot)}(\Omega) \backslash\{0\} \rightarrow\|u\|_{q(\cdot)}^{\prime}$ is continuous.

Let $\phi: L^{q(\cdot)}(\Omega) \backslash\{0\} \rightarrow\left(L^{q(\cdot)}(\Omega),\|\cdot\|_{q(\cdot)}\right)^{*}$ be defined by

$$
\langle\phi(u), h\rangle:=\int_{\Omega} q(x) \frac{|u(x)|^{q(x)-1} \operatorname{sgn} u(x)}{\|u\|_{q(\cdot)}^{q(x)-1}} h(x) \mathrm{d} x \text { for each } h \in L^{q(\cdot)}(\Omega)
$$

and let $\omega: L^{q(\cdot)}(\Omega) \backslash\{0\} \rightarrow \mathbb{R}$ be defined by

$$
\omega(u):=\int_{\Omega} q(x) \frac{|u(x)|^{q(x)}}{\|u\|_{q(\cdot)}^{q(x)}} \mathrm{d} x
$$

Since

$$
\left\langle\|\cdot\|_{q(\cdot)}^{\prime}(u), \cdot\right\rangle=\frac{\langle\phi(u), \cdot\rangle}{\omega(u)}, \text { for all } u \in L^{q(\cdot)}(\Omega) \backslash\{0\}
$$

it is sufficient to prove that ϕ and ω are continuous.
Fix $u \in L^{q(\cdot)}(\Omega) \backslash\{0\}$ and let $\left(u_{n}\right)_{n} \subset L^{q(\cdot)}(\Omega) \backslash\{0\}$ be such that $u_{n} \rightarrow u$ as $n \rightarrow \infty$ in the space $\left(L^{q(\cdot)}(\Omega),\|\cdot\|_{q(\cdot)}\right)$.

We now show that

$$
\omega\left(u_{n}\right) \rightarrow \omega(u) \text { as } n \rightarrow \infty .
$$

We have

$$
\begin{aligned}
& \left|\omega\left(u_{n}\right)-\omega(u)\right| \leq q^{+} \int_{\Omega}\left|\frac{\left|u_{n}(x)\right|^{q(x)}}{\left\|u_{n}\right\|_{q(\cdot)}^{q(x)}}-\frac{|u(x)|^{q(x)}}{\|u\|_{q(\cdot)}^{q(x)}}\right| \mathrm{d} x= \\
& \quad=q^{+} \int_{\Omega} \left\lvert\, \frac{\left|u_{n}(x)\right|^{q(x)}}{\left\|u_{n}\right\|_{q(\cdot)}^{q(x)}}-\frac{|u(x)|^{q(x)-1}}{\|u\|_{q(\cdot)}^{q(x)-1}} \frac{\left|u_{n}(x)\right|}{\left\|u_{n}\right\|_{q(\cdot)}}+\right.
\end{aligned}
$$

$$
\begin{gathered}
\left.+\frac{|u(x)|^{q(x)-1}}{\|u\|_{q(\cdot)}^{q(x)-1}} \frac{\left|u_{n}(x)\right|}{\left\|u_{n}\right\|_{q(\cdot)}}-\frac{|u(x)|^{q(x)}}{\|u\|_{q(\cdot)}^{q(x)}} \right\rvert\, \mathrm{d} x \leq \\
\leq q^{+} \int_{\Omega}\left|\frac{\left|u_{n}(x)\right|}{\left\|u_{n}\right\|_{q(\cdot)}}\left[\frac{\left|u_{n}(x)\right|^{q(x)-1}}{\left\|u_{n}\right\|_{q(\cdot)}^{q(x)-1}}-\frac{|u(x)|^{q(x)-1}}{\|u\|_{q(\cdot)}^{q(x)-1}}\right]\right| \mathrm{d} x+ \\
+q^{+} \int_{\Omega}\left|\frac{|u(x)|^{q(x)-1}}{\|u\|_{q(\cdot)}^{q(x)-1}}\left[\frac{\left|u_{n}(x)\right|}{\left\|u_{n}\right\|_{q(\cdot)}}-\frac{|u(x)|}{\|u\|_{q(\cdot)}}\right]\right| \mathrm{d} x .
\end{gathered}
$$

Denote:

$$
\begin{gathered}
A_{n}:=\int_{\Omega}\left|\frac{\left|u_{n}(x)\right|}{\left\|u_{n}\right\|_{q(\cdot)}}\left[\frac{\left|u_{n}(x)\right|^{q(x)-1}}{\left\|u_{n}\right\|_{q(\cdot)}^{q(x)-1}}-\frac{|u(x)|^{q(x)-1}}{\|u\|_{q(\cdot)}^{q(x)-1}}\right]\right| \mathrm{d} x, \\
B_{n}:=\int_{\Omega}\left|\frac{|u(x)|^{q(x)-1}}{\|u\|_{q(\cdot)}^{q(x)-1}}\left[\frac{\left|u_{n}(x)\right|}{\left\|u_{n}\right\|_{q(\cdot)}}-\frac{|u(x)|}{\|u\|_{q(\cdot)}}\right]\right| \mathrm{d} x .
\end{gathered}
$$

Since $\frac{\left|u_{n}\right|}{\left\|u_{n}\right\|_{q(\cdot)}} \in L^{q(\cdot)}(\Omega)$, and $\frac{\left|u_{n}\right|^{q(\cdot)-1}}{\left\|u_{n}\right\|_{q(\cdot)}^{q(\cdot)-1}}-\frac{|u|^{q(\cdot)-1}}{\|u\|_{q(\cdot)}^{q(\cdot)-1}} \in L^{q^{\prime}(\cdot)}(\Omega)$, by using Hölder's inequality, we obtain

$$
A_{n} \leq M\left\|\frac{\left|u_{n}\right|^{q(\cdot)-1}}{\left\|u_{n}\right\|_{q(\cdot)}^{q(\cdot)-1}}-\frac{|u|^{q(\cdot)-1}}{\|u\|_{q(\cdot)}^{q(\cdot)-1}}\right\|_{q^{\prime}(\cdot)}
$$

where $M:=\frac{1}{q^{-}}+\frac{1}{\left(q^{\prime}\right)^{-}}$.
But

$$
\left\|\frac{\left|u_{n}\right|}{\left\|u_{n}\right\|_{q(\cdot)}}-\frac{|u|}{\|u\|_{q(\cdot)}}\right\|_{q(\cdot)} \rightarrow 0 \text { as } n \rightarrow \infty
$$

By applying Proposition 2 with $g(x, u)=|u|^{q(x)-1}$, it follows that

$$
\left\|\frac{\left|u_{n}\right|^{q(\cdot)-1}}{\left\|u_{n}\right\|_{q(\cdot)}^{q(\cdot)-1}}-\frac{|u|^{q(\cdot)-1}}{\|u\|_{q(\cdot)}^{q(\cdot)-1}}\right\|_{q^{\prime}(\cdot)} \rightarrow 0 \text { as } n \rightarrow \infty
$$

therefore $A_{n} \rightarrow 0$ as $n \rightarrow \infty$.
In a similar manner, since $\frac{\left|u_{n}\right|}{\left\|u_{n}\right\|_{q(\cdot)}}-\frac{|u|}{\|u\|_{q(\cdot)}} \in L^{q(\cdot)}(\Omega), \frac{|u|^{q(\cdot)-1}}{\|u\|_{q(\cdot)}^{q(\cdot)-1}} \in L^{q^{\prime}(\cdot)}(\Omega)$, we derive that

$$
B_{n} \leq M\left\|\frac{\left|u_{n}\right|}{\left\|u_{n}\right\|_{q(\cdot)}}-\frac{|u|}{\|u\|_{q(\cdot)}}\right\|_{q(\cdot)}\left\|\frac{|u|^{q(\cdot)-1}}{\|u\|_{q(\cdot)}^{q(\cdot)-1}}\right\|_{q^{\prime}(\cdot)}=
$$

$$
\begin{equation*}
=M\left\|\frac{\left|u_{n}\right|}{\left\|u_{n}\right\|_{q(\cdot)}}-\frac{|u|}{\|u\|_{q(\cdot)}}\right\|_{q(\cdot)} \tag{7}
\end{equation*}
$$

because

$$
\rho_{q^{\prime}(\cdot)}\left(\frac{|u|^{q(\cdot)-1}}{\|u\|_{q(\cdot)}^{q(\cdot)-1}}\right)=\rho_{q(\cdot)}\left(\frac{|u|}{\|u\|_{q(\cdot)}}\right)=1
$$

$$
\left\|\frac{|u|^{q(\cdot)-1}}{\|u\|_{q(\cdot)}^{q(\cdot)-1}}\right\|_{q^{\prime}(\cdot)}=1
$$

It follows from (7) that $B_{n} \rightarrow 0$ as $n \rightarrow \infty$.
Consequently

$$
\omega\left(u_{n}\right) \rightarrow \omega(u) \text { as } n \rightarrow \infty .
$$

Now, we will prove the continuity of ϕ.
Fix $u \in L^{q(\cdot)}(\Omega) \backslash\{0\}$ and let $\left(u_{n}\right)_{n} \subset L^{q(\cdot)}(\Omega) \backslash\{0\}$ be such that $u_{n} \rightarrow u$ as $n \rightarrow \infty$ in the space $\left(L^{q(\cdot)}(\Omega),\|\cdot\|_{q(\cdot)}\right)$.

We now show that

$$
\begin{equation*}
\phi\left(u_{n}\right) \rightarrow \phi(u) \text { in }\left(L^{q(\cdot)}(\Omega)\right)^{*} \text { as } n \rightarrow \infty \tag{8}
\end{equation*}
$$

We have

$$
\begin{gathered}
\left|\left\langle\phi\left(u_{n}\right)-\phi(u), h\right\rangle\right| \leq \\
\leq q^{+} \int_{\Omega}\left|\frac{\left|u_{n}(x)\right|^{q(x)-1} \operatorname{sgn} u_{n}(x)}{\left\|u_{n}\right\|_{q(\cdot)}^{q(x)-1}}-\frac{|u(x)|^{q(x)-1} \operatorname{sgn} u(x)}{\|u\|_{q(\cdot)}^{q(x)-1}}\right||h(x)| \mathrm{d} x
\end{gathered}
$$

Clearly, $\frac{\left|u_{n}\right|^{q(\cdot)-1} \operatorname{sgn} u_{n}(\cdot)}{\left\|u_{n}\right\|_{q(\cdot)}^{q(\cdot)-1}}-\frac{|u|^{q(\cdot)-1} \operatorname{sgn} u(\cdot)}{\|u\|_{q(\cdot)}^{q(\cdot)-1}} \in L^{q^{\prime}(\cdot)}(\Omega)$. But $h \in L^{q(\cdot)}(\Omega)$.
Therefore, taking (5) into account we obtain

$$
\begin{gathered}
\left|\left\langle\varphi\left(u_{n}\right)-\varphi(u), h\right\rangle\right| \leq \\
\leq q^{+} M\left\|\frac{\left|u_{n}(x)\right|^{q(x)-1} \operatorname{sgn} u_{n}(x)}{\left\|u_{n}\right\|_{q(\cdot)}^{q(x)-1}}-\frac{|u(x)|^{q(x)-1} \operatorname{sgn} u(x)}{\|u\|_{q(\cdot)}^{q(x)-1}}\right\|_{q^{\prime}(\cdot)}\|h\|_{q(\cdot)}
\end{gathered}
$$

Consequently,

$$
\left\|\varphi\left(u_{n}\right)-\varphi(u)\right\| \leq q^{+} M\left\|\frac{\left|u_{n}(x)\right|^{q(x)-1} \operatorname{sgn} u_{n}(x)}{\left\|u_{n}\right\|_{q(\cdot)}^{q(x)-1}}-\frac{|u(x)|^{q(x)-1} \operatorname{sgn} u(x)}{\|u\|_{q(\cdot)}^{q(x)-1}}\right\|_{q^{\prime}(\cdot)}
$$

By applying Proposition 2 with

$$
g(x, u)=\left\{\begin{array}{cl}
|u|^{q(x)-2} u & , \text { if } u \neq 0 \\
0 & , \text { if } u=0
\end{array}\right.
$$

it follows that

$$
\left\|\frac{\left|u_{n}\right|^{q(\cdot)-1}}{\left\|u_{n}\right\|_{q(\cdot)}^{q(\cdot)-1}}-\frac{|u|^{q(\cdot)-1}}{\|u\|_{q(\cdot)}^{q(\cdot)-1}}\right\|_{q^{\prime}(\cdot)} \rightarrow 0 \text { as } n \rightarrow \infty
$$

therefore (8) holds.
Let $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a gauge function, i.e. φ is continuous, strictly increasing, $\varphi(0)=0$ and $\varphi(t) \rightarrow \infty$ as $t \rightarrow \infty$.

By duality mapping corresponding to the gauge function φ we understand the multivalued mapping $J_{\varphi}: X \rightarrow \mathcal{P}\left(X^{*}\right)$, defined as follows:

$$
\begin{gathered}
J_{\varphi} 0:=\{0\}, \\
J_{\varphi} x:=\varphi(\|x\|)\left\{u^{*} \in X^{*} \mid\left\|u^{*}\right\|=1,\left\langle u^{*}, x\right\rangle=\|x\|\right\}, \text { if } x \neq 0 .
\end{gathered}
$$

According to the Hahn-Banach theorem, it is easy to see that the domain of J_{φ} is the whole space:

$$
D\left(J_{\varphi}\right):=\left\{x \in X \mid J_{\varphi} x \neq \varnothing\right\}=X
$$

Due to Asplund's result ([1]),

$$
\begin{equation*}
J_{\varphi}=\partial \Phi, \Phi(x)=\int_{0}^{\|x\|} \varphi(t) d t, \tag{9}
\end{equation*}
$$

for any $x \in X . \partial \Phi$ stands for the subdifferential of Φ in the sense of convex analysis.

By the preceding definition, it follows that J_{φ} is single valued if and only if X is smooth. Since, at any $x \neq 0$, the gradient of the norm satisfies

$$
\begin{gathered}
\left\|\|\cdot\|^{\prime}(x)\right\|=1 \\
\left\langle\|\cdot\|^{\prime}(x), x\right\rangle=\|x\|,
\end{gathered}
$$

and it is the unique element in the dual space having these properties, we immediately derive that: if X is a smooth real Banach space, then the duality mapping corresponding to a gauge function φ is the single valued mapping $J_{\varphi}: X \rightarrow X^{*}$ defined by:

$$
\begin{gather*}
J_{\varphi} 0=0 \\
J_{\varphi} x=\varphi(\|x\|)\|\cdot\|^{\prime}(x), \text { if } x \neq 0 . \tag{10}
\end{gather*}
$$

Remark 5 By coupling (10) with Asplund's result quoted in above, we get: if X is smooth, then

$$
J_{\varphi} x=\Phi^{\prime}(x)=\left\{\begin{array}{c}
0, \text { if } x=0, \tag{11}\\
\varphi(\|x\|)\|\cdot\|^{\prime}(x), \text { if } x \neq 0,
\end{array}\right.
$$

Φ being given by (9).

3 The main result

The following theorem represents the main result of this paper.
Theorem 6 Let $\Omega \subset \mathbb{R}^{N}, N \geq 2$, be a smooth bounded domain. Suppose that $p \in \mathcal{C}(\bar{\Omega})$ and $p(x)>1$, for any $x \in \bar{\Omega}$. Also let $q \in \mathcal{C}(\bar{\Omega}) \cap L_{+}^{\infty}(\Omega)$ be such that $1<q^{-}$, and satisfying $q(x)<p^{*}(x), x \in \bar{\Omega}$, where is given by (2). Let $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be a Carathéodory function such that $u \rightarrow g(\cdot, u)$ is a strictly increasing odd function with $\lim _{t \rightarrow+\infty} g(x, t)=+\infty$, which satisfies the growth condition (3). Then, for any $\alpha>0$ there exist $u=u_{\alpha} \neq 0$ and $\lambda=\lambda_{\alpha}$ such that (1) holds.

The basic result we need for proving Theorem 6 is the following classical Lagrange multiplier rule (see, for example, [11, 292], [4]):

Theorem 7 Let X be a real Banach space. Let \mathcal{F} and Ψ be real \mathcal{C}^{1}-functionals on X. If u minimizes \mathcal{F} under the constraint $\Psi(v)=0$ and if $\Psi^{\prime}(u) \neq 0$, then there exist $\lambda \in \mathbb{R}$ such that

$$
\mathcal{F}^{\prime}(u)=\lambda \Psi^{\prime}(u)
$$

Now we are ready for the
Proof of Theorem 6. The idea is as follows: the hypotheses of Theorem 6 entail the fulfillment of those of Theorem 7 .

We set $X:=W_{0}^{1, p(\cdot)}(\Omega), \mathcal{F}: W_{0}^{1, p(\cdot)}(\Omega) \rightarrow \mathbb{R}$,

$$
\mathcal{F}(u):=\Phi(u)+\mathcal{G}(u),
$$

with

$$
\Phi(u):=\int_{0}^{\|u\|_{1, p(\cdot)}} \varphi(s) \mathrm{d} s
$$

and

$$
\begin{gathered}
\mathcal{G}(u):=\int_{\Omega} G(x, u(x)) \mathrm{d} x \\
G(x, t):=\int_{0}^{t} g(x, s) \mathrm{d} s
\end{gathered}
$$

Remark that the oddness of the function $u \rightarrow g(\cdot, u)$ means

$$
G(x, t)=\int_{0}^{|t|} g(x, s) \mathrm{d} s
$$

and $g(x, 0)=0$. Being a strictly increasing function, it follows that $g(x, s) \geq 0$ for $s>0$, therefore $G(x, t)>0$ for $t>0$. Consequently $\mathcal{G}(u) \geq 0$ for any $u \in W_{0}^{1, p(\cdot)}(\Omega)$.

Also we set $\Psi: W_{0}^{1, p(\cdot)}(\Omega) \rightarrow \mathbb{R}$,

$$
\Psi(u):=\int_{0}^{\|u\|_{q(\cdot)}} \psi(s) \mathrm{d} s
$$

First, according to Remark 5 and to Theorem 4, 2), Φ is \mathcal{C}^{1} on $W_{0}^{1, p(\cdot)}(\Omega)$ and $\Phi^{\prime}(u)=J_{\varphi} u$, where $J_{\varphi} 0=0$ and, at any nonzero $u \in W_{0}^{1, p(\cdot)}(\Omega)$,

$$
\begin{gathered}
\left\langle J_{\varphi} u, h\right\rangle=\varphi\left(\|u\|_{1, p(\cdot)}\right) \cdot\left\langle\|\cdot\|_{1, p(\cdot)}^{\prime}(u), h\right\rangle= \\
=\frac{\varphi\left(\|u\|_{1 . p(\cdot)}\right) \cdot \int_{\Omega \backslash \Omega_{0, u}} p(x) \frac{|\nabla u|^{p(x)-2} \nabla u \cdot \nabla h}{\|u\|_{1, p(\cdot)}^{p(x)-1}} \mathrm{~d} x}{\int_{\Omega} p(x) \frac{|\nabla u|^{p(x)}}{\|u\|_{1, p(\cdot)}^{p(x)}} \mathrm{d} x}, \text { for any } h \in W_{0}^{1, p(\cdot)}(\Omega) .
\end{gathered}
$$

Secondly, we will prove that \mathcal{G} is \mathcal{C}^{1} on $W_{0}^{1, p(\cdot)}(\Omega)$ and

$$
\begin{equation*}
\left\langle\mathcal{G}^{\prime}(u), h\right\rangle=\int_{\Omega} g(x, u(x)) h(x) \mathrm{d} x, u, h \in W_{0}^{1, p(\cdot)}(\Omega) . \tag{12}
\end{equation*}
$$

Indeed, let $u, h \in W_{0}^{1, p(\cdot)}(\Omega)$. One has

$$
\begin{gathered}
\left|\mathcal{G}(u+h)-\mathcal{G}(u)-\left\langle\mathcal{G}^{\prime}(u), h\right\rangle\right|= \\
=\left|\int_{\Omega}[G(x, u(x)+h(x))-G(x, u(x))-g(x, u(x)) h(x)] d x\right|= \\
=\left|\int_{\Omega}\left[g\left(x, u(x)+\theta_{h}(x) \cdot h(x)\right) h(x)-g(x, u(x)) h(x)\right] d x\right| \leq \\
\leq\left(\frac{1}{p^{-}}+\frac{1}{p^{\prime-}}\right)\left\|g\left(x, u(x)+\theta_{h}(x) \cdot h(x)\right)-g(x, u(x))\right\|_{p^{\prime}(\cdot)}\|h\|_{p(\cdot)}
\end{gathered}
$$

where $0 \leq \theta_{h}(x) \leq 1$ ([9, Lemma 18.1]) and Hölder's type inequality (5) was used.

Consequently,

$$
\begin{gathered}
\frac{\left|\mathcal{G}(u+h)-\mathcal{G}(u)-\left\langle\mathcal{G}^{\prime}(u), h\right\rangle\right|}{\|h\|_{p(\cdot)}} \leq \\
\leq\left(\frac{1}{p^{-}}+\frac{1}{p^{\prime-}}\right)\left\|g\left(x, u(x)+\theta_{h}(x) \cdot h(x)\right)-g(x, u(x))\right\|_{p^{\prime}(\cdot)} .
\end{gathered}
$$

Suppose $\|h\|_{1, p(\cdot)} \rightarrow 0$. It follows that $\|h\|_{1, p(\cdot)} \rightarrow 0$. Taking into account the continuity of Nemytskij operators (see Proposition 2), it follows that \mathcal{G} is Fréchet differentiable on $W_{0}^{1, p(\cdot)}(\Omega)$ and \mathcal{G}^{\prime} is given by (12).

Thirdly, taking into account Remark 5 and to Theorem 4, 1), it follows that Ψ is \mathcal{C}^{1} on $L^{q(\cdot)}(\Omega)$ and $\Psi^{\prime}(u)=\underline{J}_{\psi} u$, where $\underline{J}_{\psi} 0=0$ and, at any nonzero $u \in W_{0}^{1, p(\cdot)}(\Omega)$,

$$
\left\langle\underline{J}_{\psi} u, h\right\rangle=\psi\left(\|u\|_{q(\cdot)}\right)\left\langle\|\cdot\|_{q(\cdot)}^{\prime}(u), h\right\rangle=
$$

$$
\begin{equation*}
=\frac{\psi\left(\|u\|_{q(\cdot)}\right) \int_{\Omega} q(x) \frac{|u(x)|^{q(x)-1} \operatorname{sgn} u(x)}{\|u\|_{q}^{q(x)-1}} h(x) \mathrm{d} x}{\int_{\Omega} q(x) \frac{|u(x)|^{q(x)}}{\|u\|_{q(\cdot)}^{q(x)}} \mathrm{d} x}, \text { for any } h \in L^{q(\cdot)}(\Omega) \text {. } \tag{13}
\end{equation*}
$$

Theorem 3, c) ensures that Ψ is \mathcal{C}^{1} on $W_{0}^{1, p(\cdot)}(\Omega)$ and Ψ^{\prime} is given by (13).
So \mathcal{F} and Ψ are \mathcal{C}^{1} on $W_{0}^{1, p(\cdot)}(\Omega)$.
Now, for $\alpha>0$ denote

$$
M_{\alpha}=\left\{u \in W_{0}^{1, p(\cdot)}(\Omega) \mid \Psi\left(\|u\|_{q(\cdot)}\right)=\alpha\right\}
$$

Put

$$
C_{\alpha}:=\inf _{u \in M_{\alpha}} \mathcal{F}(u)
$$

We will show the existence of a minimizer for \mathcal{F} from M_{α}. Remark that $\mathcal{F}(u) \geq 0$ for all $u \in W_{0}^{1, p(\cdot)}(\Omega)$.

Let $\left(u_{n}\right)_{n} \subset M_{\alpha}$ be a minimizing sequence:

$$
\begin{aligned}
& \Psi\left(\left\|u_{n}\right\|_{q(\cdot)}\right)=\alpha \\
& \lim _{n \rightarrow \infty} \mathcal{F}\left(u_{n}\right)=C_{\alpha}
\end{aligned}
$$

Then $\left(\mathcal{F}\left(u_{n}\right)\right)_{n}$ is bounded. Since $\mathcal{F}(u) \geq 0$ and $\mathcal{G}(u) \geq 0$ for all $u \in$ $W_{0}^{1, p(\cdot)}(\Omega)$, it follows that the sequence $\left(\Phi\left(u_{n}\right)\right)_{n}$ is bounded, therefore the sequence $\left(u_{n}\right)_{n}$ is bounded in the reflexive Banach space $W_{0}^{1, p(\cdot)}(\Omega)$. So there exists a subsequence, again denoted by $\left(u_{n}\right)_{n}$ for convenience, that converges weakly in $W_{0}^{1, p(\cdot)}(\Omega)$, to, say, u. Since $W_{0}^{1, p(\cdot)}(\Omega)$ is compactly embedded in $L^{q(\cdot)}(\Omega)$, it follows that $\left(u_{n}\right)_{n}$ strongly converges to u in $L^{q(\cdot)}(\Omega)$, therefore $\Psi(u)=\alpha>0$ (that is $u \in M_{\alpha}$) and so $u \neq 0$.

Because $u \in M_{\alpha}$, we infer that

$$
\begin{equation*}
C_{\alpha} \leq \mathcal{F}(u) \tag{14}
\end{equation*}
$$

On the other hand, the functional Φ is convex and continuous, therefore is weakly lower semicontinuous. Consequently

$$
\Phi(u) \leq \liminf _{n \rightarrow \infty} \Phi\left(u_{n}\right)
$$

But $u_{n} \rightarrow u$ as $n \rightarrow \infty$ in $L^{q(\cdot)}(\Omega)$, therefore, passing to a subsequence also denoted $\left(u_{n}\right)_{n}$, one has

$$
u_{n}(x) \rightarrow u(x) \text { as } n \rightarrow \infty \text { for a.e. } x \in \Omega
$$

Consequently

$$
G\left(x, u_{n}(x)\right) \rightarrow G(x, u(x)) \text { as } n \rightarrow \infty \text { for a.e. } x \in \Omega
$$

From Fatou's Lemma we derive that

$$
\mathcal{G}(u)=\int_{\Omega} G(x, u(x)) \mathrm{d} x \leq \liminf _{n \rightarrow \infty} \int_{\Omega} G\left(x, u_{n}(x)\right) \mathrm{d} x=\liminf _{n \rightarrow \infty} \mathcal{G}\left(u_{n}\right),
$$

therefore

$$
\begin{gather*}
\mathcal{F}(u)=\Phi(u)+\mathcal{G}(u) \leq \liminf _{n \rightarrow \infty} \Phi\left(u_{n}\right)+\liminf _{n \rightarrow \infty} \mathcal{G}\left(u_{n}\right) \\
=\liminf _{n \rightarrow \infty}\left(\Phi\left(u_{n}\right)+\mathcal{G}\left(u_{n}\right)\right)=\lim _{n \rightarrow \infty} \mathcal{F}\left(u_{n}\right)=C_{\alpha} \tag{15}
\end{gather*}
$$

We then conclude from (14) and (15) that $C_{\alpha}=\mathcal{F}(u)$. Since $\left\langle\Psi^{\prime}(u), u\right\rangle=$ $\psi\left(\|u\|_{q(\cdot)}\right)\|u\|_{q(\cdot)} \neq 0$, Theorem 7 applies.

It follows that there exists $u \in M_{\alpha}$ and $\lambda=\lambda(\alpha)$ such that (1) holds and the proof is complete.

References

[1] Asplund, E., Positivity of duality mappings, Bull. Amer. Math. Soc., 73, 1967, 200-203.
[2] Ciarlet, P. G., Dinca, G., and Matei, P., Fréchet differentiability of the norm on a Sobolev space with a variable exponent, Analysis and Applications (to appear).
[3] Diestel, J., Geometry of Banach Spaces-Selected Topics, Lect. Notes Math., 485, Springer-Verlag, 1975.
[4] Dinca, G. and Matei, P., An eigenvalue problem for a class of nonlinear elliptic operators, Analysis and Applications, 3, 1, 2005, 27-44.
[5] Dinca, G. and Matei, P., Geometry of Sobolev spaces with variable exponent: smoothness and uniform convexity, C. R. Math. Acad. Sci. Paris, 347, 15-16, 2009, 885-889.
[6] Dinca, G. and Matei, P., Geometry of Sobolev spaces with variable exponent and a generalization of the p-Laplacian, Analysis and Applications, 7, 4, 2009, 373-390.
[7] Lang, J. and Edmunds, D., Eigenvalues, Embeddings and Generalised Trigonometric Functions, Lect. Notes Math., 2016, Springer-Verlag, Berlin, Heidelberg, 2011.
[8] Fan, X. L. and Zhao, D., On the spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl., 263, 2001, 424-446.
[9] Krasnosel'skij, M. A., and Rutitskij, Ja. B., Convex functions and Orlicz spaces, Groningen, Noordhoff, 1961.
[10] Zeidler, E., Nonlinear Functional Analysis and its Applications II/B: Nonlinear Monotone Operators, Springer, New York, 1990.
[11] Zeidler, E., Nonlinear Functional Analysis and its Applications III: Variational Methods and Optimization, Springer-Verlag, New York, 1985.

