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Abstract

Let @ ¢ RN, N > 2, be a smooth bounded domain. Suppose that
p € C(Q) and p(z) > 1, for any = € Q. Using a variational method,
we will study the nonlinear eigenvalue problem involving the (¢, p(-)) -
Laplacian [6, p. 388] on the generalized Sobolev space with a variable

exponent (WOI’P(') (Q), ||'H1,p(.))(‘ﬂ is a gauge function).
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1 Introduction

Let Q ¢ RY,N > 2, be a bounded domain with a sufficiently smooth boundary
9Q and p : Q — R be a continuous function with p (z) > 1 for z € €.

In this paper, we will consider the eigenvalues of the generalized - Laplacian
Dirichlet problem

—(Aepy (W), 1) +{g (u) By = AT (), h) (1)

where:
(i) A € Ris a parameter;

.. 1,p(- 1,p(- * .

) ~Dienn = T+ (We" @) 1) = (W87 @), 1 ,0) s
the duality mapping corresponding to the gauge function ¢ (i.e. ¢ : Ry — Ry
is continuous, strictly increasing, ¢(0) = 0 and ¢(t) — o0 as t — 00 );

(i) J,, : (Lq<-> (Q),||-|\q(,)) = (Lq<~> (Q),||-||qm) is the duality mapping
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corresponding to the gauge functions 1; here ¢ € C (ﬁ) N LY () satisfies

Np(z) .
a@) <p'(@) =4 N—plo) PO <N 2)
+oo  ifp(z) > N

(i) the nonlinear term ¢ : 2 xR — R is a Carathéodory function. Moreover,
u — g (-, u) is a strictly increasing odd function with tlim g(z,t) = oo, which
—00

satisfies the growth condition:

g (z,5)] < C|s[PP@ L4 (2) forae. € Qandforall s€ R,  (3)

where C = const.> 0, a € L' ) (Q), a (z) > 0 a.e. z € Q, and

1 1
—— 4+ ——=1forae z €. (4)

p(z)  p'(x)

Let A€ Rand u € Wol’p(') (©) which satisfies (1). The pair (u, A) is called a
solution of the problem (1). If, additionally, u # 0, then X is called an eigenvalue
of problem (1) and u an eigenfunction corresponding to A.

The case g = 0 is studied in [7]. We mention that the (¢,p(:)) - Lapla-
cian is a natural generalization of the classical p-Laplacian appropriate from the
standpoint of duality maps for the case of variable p ([6], [7, p. 208]). Being in-
homogeneous, the (¢, p (-)) - Laplacian possesses more complicated nonlinearity
than the p-Laplacian.

2 Duality mappings on Sobolev spaces with vari-
able exponents

In order to deal with the problem (1), we need some theory of the generalized
Lebesgue-Sobolev spaces (see Fan and Zhao [8]). For convenience, we give a
simple description here.

2.1 Lebesgue and Sobolev spaces with variable exponents

Given a function p € L™ () that satisfies
<p = 1
1<p™ :=essinf p(z),
the Lebesgue space LP() (Q) with variable exponent p(-) is defined as
L0 (Q) :== {v: Q@ = R | v is dz-measurable and Pp(-)(v) < 00},

where

Pp( (V) = /Q |v(z)|p(z) dz.
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Equipped with the norm

0 ) U(:L') p(x)
v € L (Q) = [l ) ==inf{A > 0| - dr <1},
Q

the space LP() (Q) is a separable Banach space. In addition, if p~ > 1 then
LP) (Q) is uniformly convex, hence reflexive. Also for any u € LP() (Q) and

, 1 1
ve LV (Q), — + —— =1, one has
@@ T @

1 1
/Q Ju(z)o(x)| dz < (p_ + (]))) el - ol (5)

Remark 1 If u € LP) (Q), then [ull,y =1 if and only if pp()(u) =1.
It follows from [8, Theorem 1.16]

Proposition 2 Let g : 2 x R — R be a Carathéodory function which satisfies
the growth condition (3). Then the Nemytskij operator

N, : LPO(Q) = LY O (Q), (Nyu) (2) = g(z, u(z)), a.e. = €Q,
1s well defined, continuous and bounded.

Given a function p(-) € L () that satisfies p~ > 1, the Sobolev space
WG (Q) with variable exponent p(-) is defined as:

N 2
WO (Q) = {u e LV (Q) | [Vul € LPO (Q)}, [Vul* =D (gg_) :

i=1
and it is endowed with the norm

lall := Nullyy + 1Vl w € WHPO ().

The space (WP (Q), ||]|) is a separable Banach space. Also W10 (Q)
is uniformly convex and thus reflexive.

Let p, g € C(Q) N LS (Q). If

Np(z) .
q(z) < p*(z) :={ N-p@ if p(z) <N
oo if p(z) > N

7

then W1P() (Q) is compactly imbedded in L) (Q).
If p € L (), we define Wol’p(') (€2) as the closure of Cg° (Q) in (W12 (), [|]).

Theorem 3 (a) If p € LY (), then (Wol’p(') Q), H||) is a separable Banach

space;
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(b) If p e L () and 1 < p~, then (Wol’p(') (Q), H||) is uniformly convex
and thus reflexive;

(c) Ifp € C () NLL (Q), then (Wol’p(‘) (Q), ||||> is compactly imbedded in
L) (Q), for any q € C (ﬁ) N LY () satisfying q(z) < p*(z), x € Q;

(d) (Poincaré inequality) If p € C (Q) N LY (Q), then there is a constant
¢ > 0 such that

lall, ) < el Vulll,q . for any u e Wo*? ().
Using (d) of Theorem 3, it follows that ||u|| and
lully o = 1%l

are equivalent norms on VVO1 P0) Q).
In what follows, VVO1 P0) (©) will be considered as endowed with the norm

[[l1 (., and we will often write Wol’p(') (Q) instead of (Wol’p(.) @), ||'||1,p(~)).

2.2 Duality mappings on (Wol’p('> (), ||~||17p(.)>

We recall that a real Banach space X is said to be smooth if it has the following
property: for any x € X, x # 0, there exists a unique u*(z) € X* such that
(u*(z),z) = ||lz|| and ||u*(z)| v~ = 1. It is well known (see, for instance, Diestel
[3], Zeidler [10] ) that the smoothness of X is equivalent to the Gateaux differen-
tiability of the norm. Consequently, if (X, ||-||) is smooth, then, for any z € X,
x # 0, the only element u*(x) € X* with the properties (u*(x),x) = ||z|| and
|u*(x)|| = 1is u*(x) = ||-|' (x) (where ||-||’ (x) denotes the Gateaux gradient of
the [|-||-norm at z).
We have

Theorem 4 1) If g € LY () and 1 < q—, then (Lq(') (Q), ||~||q(,)) is smooth.
The norm |[ull,.., is Fréchet-differentiable at any nonzero u € L) (Q) and the

Fréchet-differential of this norm at any nonzero u € L) (Q) is given for any
h e L) (Q) by

w(@) |7 sgn u(z
o) A o e

(Il 1) = e ©
Joa(@) =

265

2) ([2]) The space (Wol’p(') (), H~||1’p(_)) is smooth. The norm ||ull, . is
Fréchet-differentiable at any nonzero u € Wol’p(‘) (Q) and the Fréchetl-differential
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of this norm at any nonzero u € Wol’p(') (Q) is given for any h € Wol’p(') () by

Vu ()P (Vu(z), Vh(2))

fQ\QO p(z)
u p(z)—1
. el

(Il o (). ) = o) :
foplay L@

dr

lul?),

where Qo ,, = {z € Q| |Vu(z)| = 0}.

Proof. 1) It follows from [5], [6, Lemma 1, p. 378] that the norm [[ul|,., is

Gateaux-differentiable at any nonzero u € L) (Q) and the Gateaux-differential
of this norm at any nonzero u € L9() (Q) is given for any h € L) (Q) by (6).
To prove the Fréchet-differentiability of the map u € LI0) (Q)\ {0} — l[ully it

suffices to show that the map u € L90) (Q)\ {0} — ||u||;(.) is continuous.
Let ¢ : L¢O) (Q)\ {0} — (Lq<-> (), ||~Hq(.>) be defined by

Ju(z) 7 sgn u(x)

x)—1
Juf 255)

(p(u), h) == /Q q(x) h(x)dz for each h € L) ()

and let w : L90) (Q)\ {0} — R be defined by

wl(z)]1@®
w(u) ::/Qq(x)u)'dx

lu465)

Since

<maqm»>—<ﬂ2;ﬁmmmueL“Mm\mh

it is sufficient to prove that ¢ and w are continuous.
Fix u € L1O (Q)\ {0} and let (u,), € L) (2)\ {0} be such that u,, — u
as n — oo in the space (L‘I(') (Q), ||-||q(_)).

‘We now show that
w(uy) = w(u) as n — co.

‘We have
a(z) q(z)
w(n) — w(u)| < q+/ |“n($)|( — - \u(gc)|( ) de —
2| Jlunllf [Jall? 5
q(+) q(+)

a(@) a(@)-1
:q+/ |un (@) Ju(@)] lun ()]
Q

x x)—1
lunllZS 257 nllgq
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u(@)[ "7 Jun (@) Ju(a)] "

-1
lafl 25 Tunllgey 26

Sf/|%@|mmﬁilhmwildﬁ
e lallg
wlz q(z)—1 Uy, (2 ulx
-m*/'(ﬂ@ﬂ huﬁﬂ_hﬁ>ldm
9 Hqu(_) nllg() qa(-)

Denote:

x)—1 x)—1
A;Z/ fun (@)] | fen(@)|" 7" Ju(@)
o | Tunllycy | a2 )@

b= | fu(a)] [|un<x>|__|u<x>|] o,

uafl 2570 [ Menllgy  Tullge,
a()-1 a()-1
Since [un] Li)(Q), and [un| TO-T [u 0=t € L70)(9), by using
Hu"”q(') ||“n||q(.) ||qu()

Holder’s inequality, we obtain

B N 7
B T TS
a() a() ()
1 1
where M := — + —
a  (q)
But
[n] — [u] — 0 asn — oo.
||uan(.) ||qu(~) o)

By applying Proposition 2 with g (z,u) = \u|q($)_1, it follows that

|un|q(')—1 |u|<1(')—1 ‘
laalZ]T lZ| 7T
q(+) q(+) ()
therefore A,, — 0 as n — oo.
q()—1
In a similar manner, since unl ol at)(Q), % LT0O)(Q)
lunllgey  Iullye ||u||q(.)

we derive that

q()—1
BnSM| [l _Iul ™
lenlaey Meslacsy flge [l ™)
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, (7)

Y A
funllay Tl |,
because
a0 ( ju ) |
Pq' () 31 | = Pa) =1
o297 g
therefore
|u|<1(')—1
q()—1
el )

q'()
It follows from (7) that B, — 0 as n — oc.
Consequently

w(un) = w(u) as n — oco.

Now, we will prove the continuity of ¢.

Fix u € L1O(Q)\ {0} and let (u,), € L) (2)\ {0} be such that u,, — u

as m — oo in the space (Lq(') (Q), ||-||q(_)>.
We now show that

d(un) = ¢(u) in (L‘I(‘) (Q))* as n — oo. (8)

We have
[(p(un) = B(u), h)| <

q(z)—1 q(z)—1
e [ k) 0 s,

z)—1 z)—1
un |2 o265
q(-)—1 ) q(-)—1 ] ,
Clearly, 12! jf;ff”( ) _lul qf’_)gzu( ) € 140 Q). But h € 190 ().
”un”q(.) ||u||q(_)

Therefore, taking (5) into account we obtain

[(p(un) — p(u), h)| <

< g |1 @I sgn wn(@) @I sgnu@) |
= ot 1) 7)1 10
q(-) 11(‘) q/(,)
Consequently,

()" sgn u, (z)

Ju(2) 7 sgn u(x)

lo(un) — ()| < 21 || 12 _

)—1
o [1267)

By applying Proposition 2 with

|<1(3¢)—2

q(z)—1
el 0

) |u u ,ifu#0
g(x’“)_{ 0 Jifu=0"
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it follows that
Jun[ "7 "

N—1 -1
[ Y

— 0 asn — oo,
a()
therefore (8) holds. m

Let ¢ : Ry — R be a gauge function, i.e. ¢ is continuous, strictly increas-
ing, ©(0) =0 and p(t) = co as t — oo.

By duality mapping corresponding to the gauge function ¢ we understand
the multivalued mapping J, : X — P(X*), defined as follows:

J,0 := {0},

Jo =@ (lz]) {v* € X* [ |[u*]] =1, (u", ) = |||}, if © # 0.
According to the Hahn-Banach theorem, it is easy to see that the domain of
J, is the whole space:
D(J,) ={ze X |Jox# 2} =X.
Due to Asplund’s result ([1]),
J, = 00, ®(z) = [1"lo(t)dt, (9)

for any x € X. 0® stands for the subdifferential of ® in the sense of convex
analysis.

By the preceding definition, it follows that .J,, is single valued if and only if
X is smooth. Since, at any x # 0, the gradient of the norm satisfies

I @) =1
(L (), ) = ]

and it is the unique element in the dual space having these properties, we
immediately derive that: if X is a smooth real Banach space, then the duality
mapping corresponding to a gauge function ¢ is the single valued mapping
Jo 1 X = X* defined by:

J,0=0

Jor =@ (2l |- (@), if « # 0. (10)

Remark 5 By coupling (10) with Asplund’s result quoted in above, we get: if
X is smooth, then

0, ifx =0,

(D 1" (), if & # 0, (11)

Jox =@ (z) = {(P

O being given by (9).
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3 The main result
The following theorem represents the main result of this paper.

Theorem 6 Let Q C RY, N > 2, be a smooth bounded domain. Suppose that
pecC (ﬁ) and p(x) > 1, for any x € Q. Also let g € C (ﬁ) N L () be such
that 1 < q=, and satisfying q(z) < p*(z), v € Q, where is given by (2). Let
g: QxR — R be a Carathéodory function such that u — g (-,u) is a strictly
increasing odd function with tiigloo g(z,t) = —+oo, which satisfies the growth

condition (3). Then, for any o > 0 there exist u = uy # 0 and A = A\, such
that (1) holds.

The basic result we need for proving Theorem 6 is the following classical
Lagrange multiplier rule (see, for example, [11, 292], [4]):

Theorem 7 Let X be a real Banach space. Let F and ¥ be real C-functionals
on X. If uw minimizes F under the constraint ¥(v) = 0 and if U'(u) # 0, then
there exist A € R such that

F'(u) = AV (u).

Now we are ready for the
Proof of Theorem 6. The idea is as follows: the hypotheses of Theorem 6
entail the fulfillment of those of Theorem 7.

We set X := Wy * (), F: WPV (Q) - R,

F(u) =2 (u)+G(u),
with
@ (u) = [, (s) ds,
and
G (u) := [,G (z,u(x))dz,

G (z,t) :== zg (z,s)ds.

Remark that the oddness of the function v — g (-, u) means
It]
G (x,t) = [g(z,s)ds
0

and g (z,0) = 0. Being a strictly increasing function, it follows that g (x,s) > 0
for s > 0, therefore G (z,t) > 0 for t > 0. Consequently G (u) > 0 for any
we Wyt (Q).

Also we set U : Wol’p(') (Q) =R,

U (u) := fo‘lu”“')w (s)ds.
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First, according to Remark 5 and to Theorem 4, 2), ® is C! on Wo*") ()
and @’ (u) = J,u, where J,0 = 0 and, at any nonzero u € W, 1.2() (Q),

i) = 0 () - (I )oY =

V"™ ™2 - Vh

¥ (”u”lp()) ’ fQ\Qoyu p(.’t) || H;D (z)—1
- 1,p(+) 1,p(")
B |Vu\p(x> for any b € Wo ™ ().
JoP @) e
1,p(+)

Secondly, we will prove that G is C! on Wol’p(') (Q) and
(G'(w),h) = [1,9 (z,u(2)) h(z)da, u, h € WP (Q). (12)
Indeed, let u, h € Wol’p(') (€2). One has
IG(u+h) —G(u) — (G'(u), h)| =

=|fpla )+ h(z)) = G (,u(x)) — g(x, u(z))h(z)] dz| =
\fQ )+ On(@) - h(x)) h(z) = g(z, u(z))h(x)] dz| <

1 1
< (5 o= ) o o) + 8u(e) - i) = e uo) Il
where 0 < 0p(x) < 1 ([9, Lemma 18.1]) and Hélder’s type inequality (5) was
used.
Consequently,
G(u+h) —G(u) = (G'(u), h)|
12l

<

p P’
Suppose ||Al|; ,.) = 0. It follows that [|h[, ,, — 0. Taking into account

< (1 + 1) lg (z, u(z) + On(2) - h(x)) = gz, u(@))l], (-

the continuity of Nemytskij operators (see Proposition 2), it follows that G is

Fréchet differentiable on Wol’p(') (Q) and G’ is given by (12).
Thirdly, taking into account Remark 5 and to Theorem 4, 1), it follows that
T is C' on L90) (Q) and ¥ (u) = Jyu, where J,,0 = 0 and, at any nonzero

we Wit (),

(Lo hy = (Nl ) (Il (), ) =
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u(2) 77 sgn u(x)

¥ () Jo ) T @)
= o for any h € L10) (Q). (13)
o oy
Q x
265

Theorem 3, c) ensures that ¥ is C! on Wol’p(') (Q) and ¥’ is given by (13).

So F and W are C' on Wy ") ().
Now, for a > 0 denote

M, = {u € Wol’p(') Qv (Hqu(_)) - a}.

Put
Cy = inf F(u).

u€ M,

We will show the existence of a minimizer for F from M,. Remark that
F(u) >0 for all u € Wy (Q).
Let (uy), C M, be a minimizing sequence:

¥ (lunly) = o
lim F (up) = Cy.

n—roo

Then (F (uy)),, is bounded. Since F (u) > 0 and G (u) > 0 for all u €
VVO1 () (92), it follows that the sequence (® (uy)),, is bounded, therefore the

sequence (uy),, is bounded in the reflexive Banach space VVO1 »0) (©). So there
exists a subsequence, again denoted by (uy), for convenience, that converges
weakly in Wol’p(') (), to, say, u. Since Wol’p(') (Q) is compactly embedded in
L10) (Q), it follows that (u,), strongly converges to u in L) (Q), therefore
U (u) = a >0 (that is u € M,,) and so u # 0.

Because u € M,, we infer that

Co < F(u). (14)

On the other hand, the functional ® is convex and continuous, therefore is
weakly lower semicontinuous. Consequently

® (u) < liminf @ (u,).

n—oo

But w,, — u as n — oo in L9() (Q), therefore, passing to a subsequence also
denoted (uy),,, one has

Up () = u(x) as n — oo for a.e. x € Q.
Consequently

G (z,u, () = G(x,u(x)) asn — oo for a.e. x € Q.
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From Fatou’s Lemma we derive that

G (u) = [,G (z,u(z))dx < liminf [,G (z,uy, (z)) dz = liminf G (u,),

n—oo n— oo

therefore

F(u) = (u)+ G (u) <liminf ® (u,) + liminf G (uy,)

n—oo n— oo
= linrr_1>ioréf (@ (up) + G (up)) = nh_)rrgof(un) = C,. (15)

We then conclude from (14) and (15) that C,, = F (u). Since (¥ (u),u) =

P (||qu(.)) [[ull4.y # 0, Theorem 7 applies.

It follows that there exists u € M, and A = A («) such that (1) holds and

the proof is complete. m
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