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Abstract. In this paper we obtain some Schur factorizations for
some special classes of infinite matrices.

1. Introduction

First let us recall the definition of Schur product. If A = (ajk)j,k≥1
and B = (bjk)j,k≥1 are matrices of the same size (finite or infinite) their
Schur product (or Hadamard product) is defined to be the matrix of
elementwise products

A ∗B = (ajkbjk)j,k≥1.

There is, however, much justification for the term “Schur product” and
we refer the reader to [3] and [7] for an historical discussion.

If X and Y are two spaces of infinite matrices and A is an infinite
matrix such that

A ∗B ∈ Y for all B ∈ X,
then A is called Schur multiplier from X into Y .

For an infinite matrix A = (aij)i,j≥1 and an integer k we denote by
Ak = (a′ij)i,j≥1, the kth-diagonal matrix associated to A (see e.g. [2]),
where

a′ij =

{
aij if j − i = k

0 otherwise,

i.e. we have that

Ak =


0 0 . . . a1k 0 . . . 0 . . .
0 0 . . . 0 a2 k+1 . . . 0 . . .
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 0 . . . ak 2k−1 . . .
. . . . . . . . . . . . . . . . . . . . . . . .

 .

2000 Mathematics Subject Classification. 15A48, 15A60, 26D15.
Key words and phrases. Bounded linear operators, Hadamard product, Infinite

matrices, Matriceal harmonic analysis, Schur product, Schur multipliers.
1

Galaxy
Text Box
55



2 A.N. MARCOCI AND L.G. MARCOCI

In this paper we deal with infinite matrices A, whose entries alk, for
k ∈ Z and l ≥ 1, are indexed with respect to the kth diagonal and with
the lth place on this diagonal i.e.

alk =

{
al,l+k, for k ≥ 0 and l = 1, 2, . . .

al−k,l, for k < 0 and l = 1, 2, . . .
,

A =



a10 a11 a12 a13
. . .

a1−1 a20 a21 a22
. . .

a1−2 a2−1 a30 a31
. . .

a1−3 a2−2 a3−1 a40
. . .

. . . . . . . . . . . . . . .


.

This notation was introduced in [1] and has since then arisen in several
other papers e.g. [5], [6].

Using the terminology of [1], we say that a scalar matrix is an infinite
matrix of the following form

[α] =


α1 α1 α1 . . .
α1 α2 α2 . . .
α1 α2 α3 . . .
. . . . . . . . . . . .

 .

Roughly speaking, Schur factorization for a space of infinite matrices
X means that there exist Y and Z two spaces of infinite matrices such
that

X = Y ∗ Z.

More precisely, for every A ∈ X, there exist B ∈ Y and C ∈ Z such
that

A = B ∗ C.

In this paper we obtain some Schur factorizations for some quasi-
Banach spaces of matrices, namely dqM(a, p), gqM(a, p), cesqM(p) and
lqM(p).

For 0 < p ≤ ∞ the space yqM(a, p) consists of those upper triangular
infinite matrices A =

∑∞
k=0Ak with all the sequences on the diagonals

belonging to y(a, p) and such that

‖A‖yqM (a,p) =

(
∞∑
k=0

‖Ak‖qy(a,p)

) 1
q

<∞,
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where yqM(a, p) is one of the spaces of matrices dqM(a, p), gqM(a, p),
cesqM(p) or lqM(p) and where y(a, p) is the corresponding space of se-
quences i.e. d(a, p), g(a, p), ces(p) or l(p).

Recently, in [6], N. Popa has introduced and studied these spaces
in connection with the general description of upper triangular Schur
multipliers of scalar type for different quasi-Banach spaces of matrices.
In what follows we will recall some definitions from [4], which we will
use in this paper.

l(p) = {x = {xk}∞k=1 :

(
∞∑
k=1

|xk|p
) 1

p

<∞},

d(a, p) = {x = {xk}∞k=1 :

(
∞∑
k=1

ak sup
n≥k
|xn|p

) 1
p

<∞},

g(a, p) = {x = {xk}∞k=1 : sup
n≥1

(
1

An

n∑
k=1

|xk|

) 1
p

<∞}

and

ces(p) = {x = {xk}∞k=1 :
∞∑
n=1

(
1

n

n∑
k=1

|xk|

)p

<∞},

where a = (a1, a2, . . . ) is a fixed sequence of non-negative terms and
suppose that a1 > 0 so that the partial sums,

An = a1 + a2 + · · ·+ an

never vanish. We refer to [4] for further details about these spaces.
The spaces d(a, p), g(a, p) and ces(p) were introduced in G. Bennett’s

paper [4], where it also was described how they are connected to Hardy
type inequalities. The main results in this paper are presented, proved
and discussed in Section 2 below. One of the main results in Section 2
is a Schur factorization result (see Theorem 2.3).

2. Main results

Our first main result in this section is the following Schur factoriza-
tion theorem:

Theorem 2.1. Let 0 < p, q ≤ ∞ and 1
s

= 1
p

+ 1
q
. Then

(2.1) l∞M(p) ∗ l∞M(q) = l∞M(s).

More precisely, given any matrix A, we have that

(2.2) ‖A‖l∞M (s) = inf{‖B‖l∞M (p) · ‖C‖l∞M (q) : B ∗ C = A}.
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4 A.N. MARCOCI AND L.G. MARCOCI

Proof. Suppose that A admits a Schur factorization

A = B ∗ C,
with B ∈ l∞M(p) and C ∈ l∞M(q). Then using Hölder’s inequality, we
obtain

sup
k
‖Ak‖l(s) = sup

k
‖Bk ∗ Ck‖l(s) ≤ sup

k
‖Bk‖l(p) · sup

k
‖Ck‖l(q).

We have thus shown that

l∞M(p) ∗ l∞M(q) ⊆ l∞M(s),

and that
‖A‖l∞M (s) ≤ inf{‖B‖l∞M (p) · ‖C‖l∞M (q)}.

To establish the converse, we assume that A ∈ l∞M(s). It follows that

there exist B = ((alk)
s
p )l≥1,k≥0 and C = ((alk)

s
q )l≥1,k≥0 such that

‖Ak‖l(s) = ‖Bk‖l(p) · ‖Ck‖l(q), for every k

and
A = B ∗ C.

It implies that

sup
k
‖Ak‖l(s) = sup

k
‖Bk‖l(p) · sup

k
‖Ck‖l(q).

Therefore
l∞M(s) ⊆ l∞M(p) ∗ l∞M(q)

and
inf{‖B‖l∞M (p) · ‖C‖l∞M (q)} ≤ ‖A‖l∞M (s).

The proof is complete. �

Remark 2.2. Our proof shows that the infimum in Theorem 2.1 is ac-
tually attained, so that we may replace the “inf” in (2.2) by “min”.

The second main result is the following product formulae which is
very important when we come to study Schur multipliers for infinite
matrices.

Theorem 2.3. If 0 < p, q ≤ ∞ and 1
s

= 1
p

+ 1
q
. Then

(2.3) d∞M(a, p) ∗ d∞M(a, q) = d∞M(a, s)

and

(2.4) g∞M(a, p) ∗ g∞M(a, q) = g∞M(a, s).

The proofs are similar to that of the previous theorem and are omit-
ted.
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Theorem 2.4. If 0 < p ≤ ∞ and 1
q1

+ 1
q2

= 1
q3

, 0 < q1, q2 <∞ then

(2.5) lq1M(p) ∗ lq2M(p∗) ⊆ lq3M(1).

More precisely, given any matrix A, we have that

(2.6) ‖A‖lq3M (1) ≤ inf{‖B‖lq1M (p) · ‖C‖lq2M (p∗) : B ∗ C = A}.

Proof. If A = B ∗ C with B ∈ lq1M(p) and C ∈ lq2M(p∗) then applying
Hölder’s inequality we obtain

(∑
k

‖Ak‖q3l(1)

) 1
q3

≤

(∑
k

‖Bk‖q3l(p) · ‖Ck‖q3l(p∗)

) 1
q3

≤

(∑
k

‖Bk‖q1l(p)

) 1
q1

·

(∑
k

‖Ck‖q2l(p∗)

) 1
q2

= ‖B‖lq1M (p) · ‖C‖lq2M (p∗).

It follows that

‖A‖lq3M (1) ≤ inf{‖B‖lq1M (p) · ‖C‖lq2M (p∗) : B ∗ C = A}.

The proof is complete. �

Our next result shows in particular that matrices from gq2M(a, p) are
Schur multipliers from dq1M(a, p) into lq3M(p), or equivalently that matri-
ces from dq1M(a, p) are Schur multipliers from gq2M(a, p) into lq3M(p).

Theorem 2.5. If 0 < p ≤ ∞ and 1
q1

+ 1
q2

= 1
q3

, 0 < q1, q2, q3 <∞ then

(2.7) dq1M(a, p) ∗ gq2M(a, p) ⊆ lq3M(p).

More precisely, given any matrix A, we have that

(2.8) ‖A‖lq3M (p) ≤ inf{‖B‖dq1M (a,p) · ‖C‖gq2M (a,p) : B ∗ C = A}.

Proof. (The case p =∞ is trivial and we do not consider it here).
Suppose, then, that A admits a Schur factorization

A = B ∗ C,

with B ∈ dq1M(a, p) and C ∈ gq2M(a, p). Then A is an upper triangular
matrix and applying G. Bennett’s factorization technique (see e.g. [4])
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and Hölder’s inequality we obtain

‖A‖`q3M (p) =

(
∞∑
k=0

‖Ak‖q3`(p)

) 1
q3

=

(
∞∑
k=0

‖Bk ∗ Ck‖q3`(p)

) 1
q3

≤

(
∞∑
k=0

‖Bk‖q3d(a,p) · ‖Ck‖q3g(a,p)

) 1
q3

≤

(
∞∑
k=0

‖Bk‖q1d(a,p)

) 1
q1

·

(
∞∑
k=0

‖Ck‖q2g(a,p)

) 1
q2

= ‖B‖dq1M (a,p) · ‖C‖gq2M (a,p).

This implies that

‖A‖lq3M (p) ≤ inf{‖B‖dq1M (a,p) · ‖C‖gq2M (a,p) : B ∗ C = A}.

The proof is complete. �

Another main result is the following:

Theorem 2.6. Let p > 1 be fixed and 1
q1

+ 1
q2

= 1
q3

. If a matrix A

admits a Schur factorization

(2.9) A = B ∗ C,

with

(2.10) B ∈ lq1M(p) and C ∈ gq2M(p∗)

then A belongs to cesq3M(p). Moreover, we have that

(2.11) ‖A‖cesq3M (p) ≤ p∗!A!p,

where !A!p = inf{‖B‖lq1M (p) · ‖C‖gq2M (p∗) : B ∗ C = A} and 1
p

+ 1
p∗

= 1.

Proof. Suppose that A admits a factorization as described in (2.9),
B ∈ lq1M(p) and C ∈ gq2M(p∗) with B = (blk)k≥0

l≥1

, C = (clk)k≥0
l≥1

. We

observe that A is an upper triangular matrix and applying G. Bennett’s
factorization technique (see e.g. [4] )(

∞∑
k=0

‖Bk ∗ Ck‖q3ces(p)

) 1
q3

=

(
∞∑
k=0

‖(blk · clk)l≥1‖q3ces(p)

) 1
q3

≤ p∗

(
∞∑
k=0

‖(blk)l‖q3l(p) · ‖(c
l
k)l‖q3g(p∗)

) 1
q3

.
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SCHUR FACTORIZATIONS FOR SOME CLASSES OF INFINITE MATRICES 7

Hölder’s inequality implies

‖A‖cesq3M (p) =

(
∞∑
k=0

‖Bk ∗ Ck‖q3ces(p)

) 1
q3

≤ p∗‖B‖lq1M · ‖C‖gq2M .

Consequently
‖A‖cesq3M (p) ≤ p∗!A!p.

The proof is complete. �

Remark 2.7. We observe that in particular matrices from lq1M(p) are
Schur multipliers from gq2M(p∗) into cesq3M(p) or equivalently that matri-
ces from gq2M(p∗) are Schur multipliers from lq1M(p) into cesq3M(p).
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