DOUBLE WEIGHTED LACUNARY ALMOST STATISTICAL CONVERGENCE OF ORDER α

ŞÜKRAN KONCA¹, EKREM SAVAŞ² AND SELMAN EKIN³

ABSTRACT. In this paper, we define and study the concept of double weighted lacunary almost statistical convergence of order α . Further, some inclusion relations have been examined.

Mathematics Subject Classification (2010): 40B05; 40C05; 40A35; 40G15; 46A45 Key words: Weighted lacunary statistical convergence; double statistical convergence of order α ; double almost statistical convergence

Article history: Received 10 April 2016 Received in revised form 1 June 2016 Accepted 3 June 2016

1. INTRODUCTION

The concept of statistical convergence was introduced by Fast [16], Steinhaus [39] and later reintroduced by Schoenberg [38] independently. It turned out to be one of the most active areas of research in summability theory after the works of Fridy [17] and Salat [35]. For further results related with this topic we may refer [3], [18], [28], [31].

A different direction was given to the study of statistical convergence, where the notion of statistical convergence of order α , was introduced by replacing n by n^{α} in the denominator in the definition of statistical convergence by Çolak [12] and indepently by Bhunia et al. [9]. Later, λ -statistical convergence of order α was introduced by Çolak and Bektaş [13]; λ -statistical convergence of order α of sequences of function by Et, Çınar and Karakaş [15]; lacunary statistical convergence of order α by Şengül and Et [40]; pointwise and uniform statistical convergence of order α by Çınar, Karakaş and Et [11], statistical convergence of order α in probability theory by Das et al. [14], weighted statistical convergence of order α and its applications by Ghosal [19] and many other, different fields of mathematics.

By the convergence of a double sequence we mean the convergence in the Pringsheim's sense. A double sequence $x = (x_{kl})$ is said to converge to the limit L in Pringsheim's sense (shortly, P-convergent to L) if for every $\varepsilon > 0$ there exists an integer N such that $|x_{kl} - L| < \varepsilon$ whenever k, l > N [33]. We shall write this as $\lim_{k,l\to\infty} x_{kl} = L$, where k and l tending to infinity independent of each other and L is called the P-limit of x. A double sequence $x = (x_{kl})$ of real or complex numbers is said to be bounded if $||x|| = \sup_{k,l\geq 0} |x_{kl}| < \infty$. Note that, in contrast to the case for single sequences, a convergent double sequence need not be bounded. We may refer to [1], [7], [10], [21], [22], [30]-[34], for further results related with the concept of double sequence.

The notion of almost convergence and strong almost convergence for single sequences was introduced by Lorentz [23] and by Maddox [24], respectively, and the notion of almost convergence and strong almost convergence for double sequences by Moricz and Rhoades [25] and by Başarır [2], respectively. Some further studies can be seen in ([7], [26]-[27]) and the references therein. Recently, almost statistical convergence of order α and almost lacunary statistical convergence of order α for double sequences have been introduced by Savaş ([36]-[37]). Başarır and Konca [8] defined a new concept of statistical convergence for single sequences which is called weighted lacunary statistical convergence. In [20] they defined weighted almost lacunary statistical convergence in a real *n*-normed space. Recently, the notion of weighted lacunary statistical convergence in a locally solid Riesz space for single sequences is studied by Başarır and Konca [5], for double sequences by Konca [22], and in a locally convex topological vector space by Başarır and Konca [6] (see also [4], [21]).

In this paper, we define and study double weighted lacunary almost statistical convergence of order α . Also some inclusion relations have been examined.

2. Definitions and Preliminaries

Before beginning of the presentation of the main results, we recall the following basic facts and notations.

Let w_2 be the set of all real or complex double sequences. We denote by c_2 the space of *P*-convergent sequences. A double sequence $x = (x_{ij})$ is bounded if $||x|| = \sup_{i,j\geq 0} |x_{ij}| < \infty$. Let l_2^{∞} and c_2^{∞} be the set of all real or complex bounded double sequences and the set of all bounded and convergent double sequences, respectively. Moricz and Rhoades [25] defined the almost convergence of the double sequence as follows:

The double sequence $x = (x_{ij})$ is said to be almost convergent to a number L if

$$P - \lim_{p,q \to \infty} \sup_{m,n} \left| \frac{1}{(p+1)(q+1)} \sum_{i=m}^{m+p} \sum_{j=n}^{n+q} x_{ij} - L \right| = 0,$$

that is, the average value of (x_{ij}) taken over any rectangle

$$D = \{(i, j) : m \le i \le m + p, \ n \le j \le n + q\}$$

tends to L as both p and q tend to ∞ and this convergence is uniform in m and n. We denote the space of almost convergent double sequences by \hat{c}_2 as

$$\hat{c}_2 = \left\{ x = (x_{ij}) : \lim_{k, l \to \infty} |t_{klpq}(x) - L = 0| \text{ uniformly in } p, q \right\},\$$

where

$$t_{klpq}(x) = \frac{1}{(k+1)(l+1)} \sum_{i=p}^{k+p} \sum_{j=q}^{l+q} x_{ij}$$

A double sequence x is called strongly double almost convergent to a number L if

$$P - \lim_{k,l \to \infty} \frac{1}{(k+1)(l+1)} \sum_{i=p}^{k+p} \sum_{j=q}^{l+q} |x_{ij} - L| = 0,$$

uniformly in p, q. By $[\hat{c}_2]$ we denote the space of strongly almost convergent double sequences. It is easy to see that the inclusions $c_2^{\infty} \subset [\hat{c}_2] \subset \hat{c}_2 \subset l_2^{\infty}$ strictly hold.

The double statistical convergence of order α is defined as follows:

Definition 2.1. Let $0 < \alpha \leq 1$ be given. The sequence $x = (x_{ij})$ is said to be statistically convergent of order α if there is a real number L such that

$$P - \lim_{m, n \to \infty} \frac{1}{(mn)^{\alpha}} \left| \{ i \le m \text{ and } j \le n : |x_{ij} - L| \ge \varepsilon \} \right| = 0$$

for every $\varepsilon > 0$. In this case, we say that x is double statistically convergent of order α to L and we write S_2^{α} -lim_{i,j} $x_{ij} = L$. The set of all double statistically convergent sequences of order α will be denoted by

 S_2^{α} . If $\alpha = 1$ is taken in this definition, the definition of statistically convergence of a double sequence is obtained (see, [36]).

The double sequence $\theta_{rs} = \{(k_r, l_s)\}$ is called double lacunary if there exist two increasing sequences of integers such that $k_0 = 0$, $h_r = k_r - k_{r-1} \to \infty$ as $r \to \infty$ and $l_0 = 0$, $\bar{h}_s = l_s - l_{s-1} \to \infty$ as $s \to \infty$. Let $k_{rs} = k_r l_s$, $h_{r,s} = h_r \bar{h}_s$ and θ_{rs} is determined by $I_{rs} = \{(kl) : k_{r-1} < k \le k_r \text{ and } l_{s-1} < l \le l_s\}$, $q_r = \frac{k_r}{k_{r-1}}$, $\bar{q}_s = \frac{l_s}{l_{s-1}}$ and $q_{rs} = q_r \bar{q}_s$ [37].

The double lacunary statistical convergence of order α is defined as follows:

Definition 2.2. Let $0 < \alpha \leq 1$ be given. The double sequence $x = (x_{ij})$ is said to be lacunary statistically convergent of order α if there is a real number L such that

$$P - \lim_{r,s\to\infty} \frac{1}{h_{rs}} \left| \{ (i,j) \in I_{r,s} : |x_{ij} - L| \ge \varepsilon \} \right| = 0$$

for every $\varepsilon > 0$, in this case we say that x is double lacunary statistically convergent of order α to L. In this case, we write $S^{\alpha}_{\theta_{rs}}$ -lim_{i,j} $x_{ij} = L$. The set of all double statistically convergent sequences of order α will be denoted by $S^{\alpha}_{\theta_{rs}}$. If $\alpha = 1$ is taken in this definition, the definition of lacunary statistically convergence of a double sequence is obtained (see, [37]).

Definition 2.3. [1] Let (p_n) , (\bar{p}_m) be sequences of positive numbers and $P_n = p_1 + p_2 + ... + p_n$, $\bar{P}_m = \bar{p}_1 + \bar{p}_2 + ... + \bar{p}_m$. Then the transformation given by

$$T_{n,m}(x) = \frac{1}{P_n \bar{P}_m} \sum_{k=1}^n \sum_{l=1}^m p_k \bar{p}_l x_{kl}$$

is called the Riesz mean of double sequence $x = (x_{kl})$. If $P - \lim_{n,m\to\infty} T_{nm}(x) = L$, $L \in \mathbb{R}$, then the sequence $x = (x_{kl})$ is said to be Riesz convergent to L. If $x = (x_{kl})$ is Riesz convergent to L, then we write P_R - $\lim x = L$.

The definition of weighted statistical convergence of order α for double sequences can be defined as follows:

Definition 2.4. Let $0 < \alpha \leq 1$ be given. The sequence (x_{ij}) is said to be weighted statistically convergent of order α if there is a real number L such that

$$P - \lim_{m,n\to\infty} \frac{1}{\left(P_m \bar{P}_n\right)^{\alpha}} \left| \left\{ i \le P_m \text{ and } j \le \bar{P}_n : p_i \bar{p}_j \left| x_{ij} - L \right| \ge \varepsilon \right\} \right| = 0$$

for every $\varepsilon > 0$. In this case, we say that x is double weighted statistically convergent of order α to L and we write $S_{R^2}^{\alpha}-\lim_{i,j}x_{ij} = L$. The set of all double weighted statistically convergent sequences of order α will be denoted by $S_{R^2}^{\alpha}$. If $\alpha = 1$ is taken in this definition, the definition of weighted statistical convergence of a double sequence is obtained.

Using the notations of lacunary sequence and Riesz mean for double sequences, Konca and Başarır [21] have given a new definition:

Let $\theta_{r,s} = \{(k_r, l_s)\}$ be a double lacunary sequence and let (p_k) , (\bar{p}_l) be sequences of positive real numbers such that $P_{k_r} := \sum_{k \in (0,k_r]} p_k$ and $\bar{P}_{l_s} := \sum_{l \in (0,l_s]} \bar{p}_l$. If the Riesz transformation of double sequences is RH-regular (it maps every bounded *P*-convergent sequence into a *P*-convergent sequence with the same *P*-limit), then $\theta'_{r,s} = \{(P_{k_r}, \bar{P}_{l_s})\}$ is a double lacunary sequence, that is; $P_0 = 0, 0 < P_{k_{r-1}} < P_{k_r}$ and $H_r = P_{k_r} - P_{k_{r-1}} \to \infty$ as $r \to \infty$ and $\bar{P}_0 = 0, 0 < \bar{P}_{l_{s-1}} < \bar{P}_{l_s}$ and $\bar{H}_s = \bar{P}_{l_s} - \bar{P}_{l_{s-1}} \to \infty$ as $s \to \infty$.

Throughout the paper, we assume that $P_n = p_1 + \ldots + p_n \to \infty$ $(n \to \infty)$, $\bar{P}_m = \bar{p}_1 + \ldots + \bar{p}_m \to \infty$ $(m \to \infty)$, such that $H_r = P_{k_r} - P_{k_{r-1}} \to \infty$ as $r \to \infty$ and $\bar{H}_s = \bar{P}_{l_s} - \bar{P}_{l_{s-1}} \to \infty$ as $s \to \infty$.

Let $P_{k_{rs}} = P_{k_r} \bar{P}_{l_s}$, $H_{rs} = H_r \bar{H}_s$ and $I'_{rs} = \{(kl) : P_{k_{r-1}} < k \le P_{k_r} \text{ and } \bar{P}_{l_{s-1}} < l \le \bar{P}_{l_s}\}$, $Q_r = \frac{P_{k_r}}{P_{k_{r-1}}}$, $\bar{Q}_s = \frac{\bar{P}_{l_s}}{\bar{P}_{l_{s-1}}}$ and $Q_{rs} = Q_r \bar{Q}_s$. If we take $p_k = 1$, $\bar{p}_l = 1$ for all k and l, then H_{rs} , $P_{k_{rs}}$, Q_{rs} and I'_{rs} reduce to h_{rs} , k_{rs} , q_{rs} and I_{rs} .

3. Main Results

In this section we define double weighted lacunary almost statistically convergent sequences of order α . Also we shall prove some inclusion theorems.

Definition 3.1. Let $0 < \alpha \leq 1$ be given. The double sequence $x = (x_{ij}) \in w_2$ is said to be $\tilde{S}^{\alpha}_{(R^2,\theta)}$ -statistical convergent of order α if there is a real number L such that

$$P - \lim_{rs} \frac{1}{H_{rs}^{\alpha}} \left| \{ (kl) \in I_{rs}' : p_k \bar{p}_l \left| t_{klpq}(x) - L \right| \ge \varepsilon \} \right| = 0,$$

uniformly in p, q where H_{rs}^{α} denote the α^{th} power of H_{rs} . Incase $x = (x_{ij})$ is $\tilde{S}_{(R^2,\theta)}^{\alpha}$ - statistically convergent of order α to L, we write $\tilde{S}_{(R^2,\theta)}^{\alpha} - \lim_{i,j} x_{ij} = L$. We denote the set of all $\tilde{S}_{(R^2,\theta)}^{\alpha}$ -statistically convergent sequences of order α by $\tilde{S}_{(R^2,\theta)}^{\alpha}$.

We know that $\tilde{S}^{\alpha}_{(R^2,\theta)}$ -statistical convergence of order α is well defined for $0 < \alpha \leq 1$, but it is not well defined for $\alpha > 1$ in general. It is easy to see by taking $x = (x_{ij}) \in w_2$ as fixed.

Definition 3.2. Let $0 < \alpha \leq 1$ be any real number and let t be a positive real number. A sequence x is said to be strongly $\tilde{R}^{\alpha}_{(\theta_{rs})}(t)$ -summable of order α , if there is a real number L such that

$$P - \lim_{r,s\to\infty} \frac{1}{H_{rs}^{\alpha}} \sum_{(k,l)\in I_{rs}} p_k p_l |t_{klpq}(x) - L|^t = 0,$$

uniformly in p, q. We denote the set of all strongly $\tilde{R}^{\alpha}_{(\theta_{rs})}(t)$ -summable sequence of order α by $\tilde{R}^{\alpha}_{(\theta_{rs})}(t)$. If we take $p_k = \bar{p}_l = 1$ for all $k, l \in \mathbb{N}$ then $\tilde{R}^{\alpha}_{(\theta_{rs})}(t)$ reduces to the space $\tilde{W}^{\alpha}_{\theta_{rs}}(t)$ (see in [37]).

Theorem 3.3. If $0 < \alpha \leq \beta \leq 1$ then $\tilde{S}^{\alpha}_{(R^2,\theta_{rs})} \subset \tilde{S}^{\beta}_{(R^2,\theta_{rs})}$.

Proof. Let $0 < \alpha \leq \beta \leq 1$. Then

$$\frac{1}{H_{r_s}^{\beta}} \sup_{p,q} \left| \{(k,l) \in I'_{r_s} : p_k \bar{p}_l \left| t_{klpq}(x) - L \right| \ge \varepsilon \} \right|$$

$$\leq \frac{1}{H_{r_s}^{\alpha}} \sup_{p,q} \left| \{(k,l) \in I'_{r_s} : p_k \bar{p}_l \left| t_{klpq}(x) - L \right| \ge \varepsilon \} \right|$$

for every $\varepsilon > 0$, and finally, we have that $\tilde{S}^{\alpha}_{(R^2,\theta_{rs})} \subset \tilde{S}^{\beta}_{(R^2,\theta_{rs})}$. This proves the result.

Theorem 3.4. Let $0 < \alpha \leq 1$ and $\theta_{rs} = \{(k_r, l_s)\}$ be a double lacunary sequence. If $\liminf_r Q_r > 1$ and $\liminf_s \bar{Q}_s > 1$ then $\tilde{S}^{\alpha}_{R^2} \subseteq \tilde{S}^{\alpha}_{(R^2, \theta_{rs})}$.

Proof. Suppose that $\liminf_r Q_r > 1$ and $\liminf_s \overline{Q}_s > 1$, then there exists a $\delta > 0$ such that $Q_r \ge 1 + \delta$ and $\overline{Q}_s \ge 1 + \delta$ for sufficiently large values of r and s, which implies that $\frac{H_r}{P_{kr}} \ge \frac{\delta}{1+\delta}$ and $\frac{\overline{H}_s}{\overline{P}_{l_s}} \ge \frac{\delta}{1+\delta}$. Let $\tilde{S}^{\alpha}_{R^2} - \lim_{(k,l) \to \infty} x_{kl} = L$. Then for sufficiently large values of r and s, we have

$$\begin{split} &\frac{1}{(P_{k_r}\bar{P}_{l_s})^{\alpha}}\sup_{p,q}\left|\left\{k\leq P_{k_r} \text{ and } l\leq \bar{P}_{l_s}:p_k\bar{p}_l \left|t_{klpq}(x)-L\right|\geq\varepsilon\right\}\right|\\ &\geq \frac{1}{(P_{k_r}\bar{P}_{l_s})^{\alpha}}\sup_{p,q}\left|\left\{(k,l)\in I'_{rs}:p_k\bar{p}_l \left|t_{klpq}(x)-L\right|\geq\varepsilon\right\}\right|\\ &= \frac{H^{\alpha}_{rs}}{(P_{k_r}\bar{P}_{l_s})^{\alpha}}\frac{1}{H^{\alpha}_{rs}}\sup_{p,q}\left|\left\{(k,l)\in I'_{rs}:p_k\bar{p}_l \left|t_{klpq}(x)-L\right|\geq\varepsilon\right\}\right|\\ &= \left(\frac{H_{rs}}{P_{k_r}\bar{P}_{l_s}}\right)^{\alpha}\frac{1}{H^{\alpha}_{rs}}\sup_{p,q}\left|\left\{(k,l)\in I'_{rs}:p_k\bar{p}_l \left|t_{klpq}(x)-L\right|\geq\varepsilon\right\}\right|\\ &\geq \left(\frac{\delta}{1+\delta}\right)^{2\alpha}\frac{1}{H^{\alpha}_{rs}}\sup_{p,q}\left|\left\{(k,l)\in I'_{rs}:p_k\bar{p}_l \left|t_{klpq}(x)-L\right|\geq\varepsilon\right\}\right|. \end{split}$$

Therefore $\tilde{S}^{\alpha}_{(R^2,\theta_{rs})} - \lim_{(k,l)\to\infty} x_{kl} = L.$

Theorem 3.5. Let $0 < \alpha \leq 1$ and $\theta_{rs} = \{(k_r, l_s)\}$ be a double lacunary sequence. If $\limsup_r Q_r^{\alpha} < \infty$ and $\limsup_s \bar{Q}_s^{\alpha} < \infty$, then $\tilde{S}_{(R^2, \theta)}^{\alpha} \subseteq \tilde{S}_{R^2}^{\alpha}$.

Proof. Suppose that $\limsup_r Q_r^{\alpha} < \infty$ and $\limsup_s \bar{Q}_s^{\alpha} < \infty$, then there exists a K > 0 such that $Q_r^{\alpha} < K$ and $\bar{Q}_s^{\alpha} < K$ for all $r, s \in \mathbb{N}$. Let $x \in \tilde{S}_{(R^2, \theta_{rs})}^{\alpha}$ with $\tilde{S}_{(R^2, \theta_{rs})}^{\alpha} - \lim_{(k,l) \to \infty} x_{kl} = L$ and

(3.1)
$$N_{rs} := |\{(k,l) \in I'_{rs} : p_k \bar{p}_l | t_{klpq}(x) - L| \ge \varepsilon \}|$$

By (3.1) and the definition of $\tilde{S}^{\alpha}_{(R^2,\theta)}$, given $\varepsilon > 0$, there exists $r_0, s_0 \in \mathbb{N}$ such that $\frac{N_{rs}}{H^{\alpha}_{rs}} < \varepsilon$ for all $r > r_0$ and $s > s_0$. Let $M := \max \{N_{rs} : 1 \le r \le r_0 \text{ and } 1 \le s \le s_0\}$ and let n and m be any integers satisfying $k_{r-1} < n \le k_r$ and $l_{s-1} < m \le l_s$. Hence, for each p and q, we have the following

$$\begin{split} \frac{1}{\left(P_{n}\bar{P}_{m}\right)^{\alpha}} \left| \left\{ k \leq P_{n} \text{ and } l \leq \bar{P}_{m} : p_{k}\bar{p}_{l} \left| t_{klpq}(x) - L \right| \geq \varepsilon \right\} \right| \\ \leq \frac{1}{\left(P_{k_{r-1}}\bar{P}_{l_{s-1}}\right)^{\alpha}} \left| \left\{ k \leq P_{k_{r}} \text{ and } l \leq \bar{P}_{l_{s}} : p_{k}\bar{p}_{l} \left| t_{klpq}(x) - L \right| \geq \varepsilon \right\} \right| \\ = \frac{1}{\left(P_{k_{r-1}}\bar{P}_{l_{s-1}}\right)^{\alpha}} \sum_{i,j=1,1}^{r_{0},s_{0}} N_{ij} + \frac{1}{\left(P_{k_{r-1}}\bar{P}_{l_{s-1}}\right)^{\alpha}} \sum_{(r_{0} < i \leq r) \cup (s_{0} < j \leq s)} N_{ij} \\ \leq \frac{Mr_{0}s_{0}}{\left(P_{k_{r-1}}\bar{P}_{l_{s-1}}\right)^{\alpha}} + \frac{1}{\left(P_{k_{r-1}}\bar{P}_{l_{s-1}}\right)^{\alpha}} \sum_{(r_{0} < i \leq r) \cup (s_{0} < j \leq s)} \frac{N_{ij}H_{rs}^{\alpha}}{H_{rs}^{\alpha}} \\ \leq \frac{M_{r_{0}s_{0}}}{\left(P_{k_{r-1}}\bar{P}_{l_{s-1}}\right)^{\alpha}} + \varepsilon \left(\frac{P_{k_{r}}\bar{P}_{l_{s}-P}\bar{P}_{k_{0}}\bar{P}_{l_{s}}}{\left(P_{k_{r-1}}\bar{P}_{l_{s-1}}\right)^{\alpha}} \right) \\ \leq \frac{M_{r_{0}s_{0}}}{\left(P_{k_{r-1}}\bar{P}_{l_{s-1}}\right)^{\alpha}} + \varepsilon \left(\frac{P_{k_{r}}\bar{P}_{l_{s}}}{P_{k_{r-1}}\bar{P}_{l_{s-1}}}\right)^{\alpha} \\ = \frac{M_{r_{0}s_{0}}}{\left(P_{k_{r-1}}\bar{P}_{l_{s-1}}\right)^{\alpha}} + \varepsilon Q_{r}^{\alpha}\bar{Q}_{s}^{\alpha} \leq \frac{M_{r_{0}s_{0}}}{\left(P_{k_{r-1}}\bar{P}_{l_{s-1}}\right)^{\alpha}} + \varepsilon K^{2}. \end{split}$$

Since $P_{k_{r-1}} \to \infty$ and $P_{l_{s-1}} \to \infty$ as $r, s \to \infty$, in the sense of Pringsheim limit, it follows that $\frac{1}{P_n P_m} \left| \left\{ k \le P_n \text{ and } l \le \bar{P}_m : p_k \bar{p}_l \left| t_{klpq}(x) - L \right| \ge \varepsilon \right\} \right| \to 0 \text{ as } m, n \to \infty.$

Theorem 3.6. Let $0 < \alpha \leq \beta \leq 1$ and t be a positive real number, then $\tilde{R}^{\alpha}_{\theta_{rs}}(t) \subseteq \tilde{R}^{\beta}_{\theta_{rs}}(t)$.

Proof. Let $x = (x_{ij}) \in \tilde{R}^{\alpha}_{\theta_{rs}}(t)$. Then given $\alpha > 0$ and $\beta > 0$ such that $0 < \alpha \leq \beta \leq 1$ and a positive real number t we write

$$\frac{1}{H_{rs}^{\beta}} \sum_{(k,l)\in I_{rs}} p_k \bar{p}_l |t_{klpq}(x) - L|^t \le \frac{1}{H_{rs}^{\alpha}} \sum_{(k,l)\in I_{rs}} p_k \bar{p}_l |t_{klpq}(x) - L|^t$$

and hence we obtain the result.

We have the following corollary as a consequence of previous theorem.

Corollary 3.7. Let $0 < \alpha \leq \beta \leq 1$ and t be a positive real number. Then

- (1) If $\alpha = \beta$, then $\tilde{R}^{\alpha}_{\theta_{rs}}(t) = \tilde{R}^{\beta}_{\theta_{rs}}(t)$.
- (2) $\tilde{R}^{\alpha}_{\theta_{rs}}(t) \subseteq \tilde{R}_{\theta_{rs}}(t)$ for each $\alpha \in (0,1]$ and $0 < t < \infty$.

Theorem 3.8. Let α and β be fixed real numbers such that $0 < \alpha \leq \beta \leq 1$ and $0 < t < \infty$. If $I'_{rs} \subseteq I_{rs}$, then $\tilde{R}^{\alpha}_{\theta_{rs}} \subset \tilde{S}^{\beta}_{(R^2,\theta_{rs})}$.

Proof. Let $K_{P_{rs}}(\varepsilon) = |\{(k,l) \in I'_{rs} : p_k \bar{p}_l | t_{klpq}(x) - L| \ge \varepsilon\}|$. Suppose that $x \in \tilde{R}^{\alpha}_{\theta_{rs}}$. Then for each p and q

$$P - \lim_{rs} \frac{1}{H_{rs}} \sum_{(k,l) \in I_{rs}} p_k \bar{p}_l |t_{klpq}(x) - L| = 0.$$

Since

$$\begin{split} &\frac{1}{H_{rs}^{\alpha}} \sum_{(k,l) \in I_{rs}} p_{k} \bar{p}_{l} \left| t_{klpq}(x) - L \right| \geq \frac{1}{H_{rs}^{\alpha}} \sum_{(k,l) \in I_{rs}'} p_{k} \bar{p}_{l} \left| t_{klpq}(x) - L \right| \\ &= \frac{1}{H_{rs}^{\beta}} \sum_{(k,l) \in I_{rs}'} p_{k} \bar{p}_{l} \left| t_{klpq}(x) - L \right| + \frac{1}{H_{rs}^{\alpha}} \sum_{(k,l) \in I_{rs}'} p_{k} \bar{p}_{l} \left| t_{klpq}(x) - L \right| \\ &\geq \frac{1}{H_{rs}^{\alpha}} \sum_{(k,l) \in I_{rs}'} p_{k} \bar{p}_{l} \left| t_{klpq}(x) - L \right| = \frac{1}{H_{rs}^{\alpha}} \left| K_{P_{rs}}(\varepsilon) \right| \varepsilon \\ &\geq \frac{1}{H_{rs}^{\beta}} \left| K_{P_{rs}}(\varepsilon) \right| \varepsilon \end{split}$$

for all p and q. This implies that $x \in \tilde{S}^{\alpha}_{(R^2,\theta_{rs})}$.

Corollary 3.9. Let α be fixed real numbers such $0 < \alpha \leq 1$

- (1) If a sequence is strongly $\tilde{R}^{\alpha}_{\theta_{rs}}$ -summable sequence of order α to L, then it is $\tilde{S}^{\alpha}_{(R^2,\theta_{rs})}$ -statistically convergent of order α to L, i.e., $\tilde{R}^{\alpha}_{\theta_{rs}} \subset \tilde{S}^{\alpha}_{(R^2,\theta_{rs})}$.
- (2) $\tilde{R}^{\alpha}_{\theta_{rs}} \subset \tilde{S}_{(R^2,\theta_{rs})}$ for $0 < \alpha \le 1$.

Theorem 3.10. The following statements are true:

- (1) If $p_k < 1$ and $\bar{p}_l < 1$ for all $k, l \in \mathbb{N}$, then $\tilde{W}^{\alpha}_{\theta_{rs}} \subset \tilde{R}^{\alpha}_{\theta_{rs}}$ with $\tilde{W}^{\alpha}_{\theta_{rs}} P \lim x = \tilde{R}^{\alpha}_{\theta_{rs}} P \lim x = L$.
- (2) If $p_k > 1$, $\bar{p}_l > 1$ for all $k, l \in \mathbb{N}$, and $\frac{H_r}{h_r}$ and $\frac{\bar{H}_s}{\bar{h}_s}$ are upper bounded, then $\tilde{R}^{\alpha}_{\theta_{rs}} \subset \tilde{W}^{\alpha}_{\theta_{rs}}$ with $\tilde{R}^{\alpha}_{\theta_{rs}} P$ -lim $x = \tilde{W}^{\alpha}_{\theta_{rs}} P$ -lim x = L.

Proof. The proof can be done in a similar manner as in [21], Theorem 3.4. \Box

Theorem 3.11. The following statements are true:

- (1) If $p_k \leq 1$ and $\bar{p}_l \leq 1$ for all $k, l \in \mathbb{N}$, then $\tilde{S}_{\theta_{rs}} \subseteq \tilde{S}_{(R^2,\theta_{rs})}$ with $\tilde{S}_{\theta_{rs}}$ -P-lim $x = \tilde{S}_{(R^2,\theta_{rs})}$ -P-lim x = L.
- (2) If $p_k \ge 1$, $\bar{p}_l \ge 1$ for all $k, l \in \mathbb{N}$, and $\frac{H_r}{h_r}$ and $\frac{\bar{H}_s}{\bar{h}_s}$ are upper bounded, then $\tilde{S}_{(R^2,\theta_{rs})} \subseteq \tilde{S}_{\theta_{rs}}$ with $\tilde{S}_{(R^2,\theta_{rs})}$ -P-lim $x = \tilde{S}_{\theta_{rs}}$ -P-lim x = L.

Proof. The proof can be done in a similar manner as in the proof of Theorem 3.7 in [21].

Theorem 3.12. If $\liminf_{rs} \frac{H_{rs}^{\alpha}}{P_{k_r}P_{l_s}} > 0$ then $\tilde{S}_{R^2} \subseteq \tilde{S}_{(R^2,\theta)}^{\alpha}$.

Proof. For a given $\varepsilon > 0$, we have

$$\left\{ (kl) \in I'_{rs} : p_k \bar{p}_l \left| x_{kl} - L \right| \ge \varepsilon \right\} \subset \left\{ k \le P_{k_r} \text{ and } l \le \bar{P}_{l_s} : p_k \bar{p}_l \left| x_{kl} - L \right| \ge \varepsilon \right\}.$$

Therefore,

$$\begin{aligned} &\frac{1}{P_{k_r}\bar{P}_{l_s}}\left|\left\{k \leq P_{k_r} \text{ and } l \leq \bar{P}_{l_s} : p_k\bar{p}_l \left|x_{kl} - L\right| \geq \varepsilon\right\}\right| \\ &\geq \frac{1}{P_{k_r}\bar{P}_{l_s}}\left|\left\{(kl) \in I'_{rs} : p_k\bar{p}_l \left|x_{kl} - L\right| \geq \varepsilon\right\}\right| \\ &= \frac{H_{rs}^{\alpha}}{P_{k_r}\bar{P}_{l_s}}\frac{1}{H_{rs}^{\alpha}}\left|\left\{(kl) \in I'_{rs} : p_k\bar{p}_l \left|x_{kl} - L\right| \geq \varepsilon\right\}\right|.\end{aligned}$$

Since $\liminf_{rs} \frac{H_{rs}^{\alpha}}{P_{k_r} \bar{P}_{l_s}} > 0$, then we have the result by taking the Pringsheim limit as $r \to \infty$.

Theorem 3.13. Let $\theta_{rs} = \{(k_r, l_s)\}$ and $\theta'_{rs} = \{(u_r, v_s)\}$ be two double lacunary sequences and let α, β be such that $0 < \alpha \leq \beta \leq 1$ and $I'_{rs} \subset J'_{rs}$ for all $r, s \in N$. If

(3.2)
$$\lim_{rs} \inf \frac{H_{rs}^{\alpha}}{L_{rs}^{\beta}} > 0$$

then $\tilde{S}^{\beta}_{(R^2,\theta')} \subset \tilde{S}^{\alpha}_{(R^2,\theta)}$.

Proof. Suppose that $I'_{rs} \subset J'_{rs}$ for all $r, s \in N$ and let (2) be satisfied. For given $\varepsilon > 0$ we have

$$(kl) \in I'_{rs} : p_k \bar{p}_l | x_{kl} - L | \ge \varepsilon \} \subseteq \{ (kl) \in J'_{rs} : p_k \bar{p}_l | x_{kl} - L | \ge \varepsilon \}$$

and so

$$\frac{1}{L_{rs}^{\beta}} |\{(kl) \in J'_{rs} : p_k \bar{p}_l | x_{kl} - L| \ge \varepsilon\}|$$

$$\geq \frac{H_{rs}^{\alpha}}{L_{rs}^{\beta}} \frac{1}{H_{rs}^{\alpha}} |\{(kl) \in I'_{rs} : p_k \bar{p}_l | x_{kl} - L| \ge \varepsilon\}|$$

for all $r, s \in N$. Now taking the Pringsheim limit as $r, s \to \infty$ in the last inequality and using (2) we get $\tilde{S}^{\beta}_{(R^2,\theta')} \subset \tilde{S}^{\alpha}_{(R^2,\theta)}$.

References

- A. M. Alotaibi and C. Çakan, The Riesz convergence and Riesz core of double sequences, J. Ineq. Appl. 2012 (56) (2012).
- M. Başarır, On the strong almost convergence of double sequences, *Period. Math. Hungar.* 30 (3) (1995), 177-181.
- [3] M. Başarır and Ş. Konca, Some sequence spaces derived by Riesz mean in a real 2-normed space, Iranian J. Sci. Techn. IJST 38A1 (2014), 25-33. http://jsts.shirazu.ac.ir
- [4] M. Başarır and Ş. Konca, Some spaces of weighted lacunary B^m_n-convergent sequences defined by an Orlicz function and B^m_n-weighted lacunary statistical convergence, Contemporary Anal. Appl. Math. 2 (2) (2014), 254-269. http://dx.doi.org/10.18532/caam.24260
- [5] M. Başarır and Ş. Konca, Weighted lacunary statistical convergence in locally solid Riesz spaces, Filomat. 28 10 (2014), 2059-2067. doi: 10.2298/FIL 1410059B
- [6] M. Başarır and Ş. Konca, Weighted Lacunary Statistical Convergence in a Locally Convex Topological Vector Space, *Iranian J. Sci. Tech.* (2016), in press.
- [7] M. Başarır and Ş. Konca, On some lacunary almost convergent double sequence spaces and Banach limits, Hindawi Publishing Corporation, Abst. Appl. Anal. (2012) Article ID 426357, 17 pages. doi:10.1155/2012/426357.
- [8] M. Başarır and Ş. Konca, On some spaces of lacunary convergent sequences derived by Norlund-type mean and weighted lacunary statistical convergence, Arab J. Math. Sci. 20 (2) (2014) 250-263. doi: 10.1016/j.ajmsc.2013.09.002.
- [9] S. Bhunia, P., Das and S. Pal, Restricting statistical convergence, Acta Math. Hungar. 134 (1-2) (2012), 153-161.
- [10] C. Çakan, B. Altay and H. Coşkun, Double lacunary density and lacunary statistical convergence of double sequences, *Studia Sci. Math. Hungar.* 47 (1) (2010) 35-45.
- [11] M. Çınar, M. Karakaş and M. Et, On pointwise and uniform statistical convergence of order α for sequences of functions, *Fixed point Theory Appl.* **33** (2013) 11 pages.
- [12] R. Çolak, Statistical convergence of order α , In. Modern Methods in Analysis and Its Applications, 121-129 Anamaya Pub., New Delhi 2010.
- [13] R. Çolak and C. A. Bektaş, λ -statistical convergence of order α , Acta Math. Sci. Ser. B. **31** (3) (2011), 953-959.
- [14] P. Das, S. Ghosal and S. Som, Statistical convergence of order α in probability, Arab J. Math. Sci. doi:10.1016/j.ajmsc.2014.06.002.
- [15] M. Et, M. Çınar and M. Karakaş, On λ -statistical convergence of order α of sequences of function, J. Ineq. Appl. **204** (2013), 8 pages.

- [16] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (3-4) (1951), 241-244.
- [17] J. A. Fridy, On statistical convergence, Analysis. 5 (1985), 301-313.
- [18] J. A. Fridy and C. Orhan, Lacunary statistical convergence, *Pacific J. Math.* 160 (1993), 43–51.
- [19] S. Ghosal, Weighted statistical convergence of order α and its applications, J. Egyptian Math. Soc. **24** (2016), 60–67.
- [20] Ş. Konca and M. Başarır, On some spaces of almost lacunary convergent sequences derived by Riesz mean and weighted almost lacunary statistical convergence in a real n-normed space, J. Ineq. Appl. 2014 81 (2014), 11 pages. doi: 10.1186/1029-242X-2014-81.
- [21] Ş. Konca and M. Başarır, Riesz Lacunary Almost Convergent Double Sequence Spaces Defined by Orlicz Functions, *Facta Universitatis Ser. Math. Inform.* **31** (1) (2016), 169-186.
- [22] Ş. Konca, Weighted Lacunary Statistical Convergence of Double Sequences in Locally Solid Riesz Spaces, Filomat. 30 (3) (2016), 621–629. DOI 10.2298/FIL1603621K
- [23] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Mathematica. 80 (1948), 167-190.
- [24] I. J. Maddox, On strong almost convergence, Math. Proc. Camb. Philos. Soc. 85 (2) (1979), 345-350.
- [25] F. Moricz and B. E. Rhoades, Almost convergence of double sequences and strong regularity of summability matrices, *Math. Proc. Cambridge Philos. Soc.* **104** (2) (1988), 283-294.
- [26] M. Mursaleen and S. A. Mohiuddine, Banach limit and some new spaces of double sequences, Turkish J. Math. 36, 1 (2012), 121-130.
- [27] M. Mursaleen and E. Savaş, Almost regular matrices for double sequences, *Studia Sci. Math. Hungar.* A Quarterly of the Hungarian Academy of Sciences, **40** 1-2 (2003), 205-212.
- [28] M. Mursaleen, λ -statistical convergence, Math. Slovaca. 50 (1) (2000), 111-115.
- [29] M. Mursaleen and C. Belen, On statistical lacunary summability of double sequences, *Filomat.* 28 2 (2014) 231-239.
- [30] M. Mursaleen and O. H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl. 288 (1), 223-231 (2003).
- [31] M. Mursaleen, V. Karakaya, M. Ertürk and F. Gürsoy, Weighted statistical convergence and its application to Korovkin type approximation theorem, *Appl. Math. Comput.* 218 (2012), 9132-9137.
- [32] R. F. Patterson and E. Savaş, Lacunary statistical convergence of double sequences, Math. Commun. 10 (2005) 55-61.
- [33] A. Pringsheim, Zur Theorie der zweifach unendlichen Zahlenfolgen, Math. Ann. 53 (3) (1900), 289-321.
- [34] G. M. Robison, Divergent double sequences and series, Trans. Am. Math. Soc. 28 (1926), 50-73.
- [35] T. Salat, On statistical convergence of real numbers, Math. Slovaca. **30** (1980), 139-150.
- [36] E. Savaş, Double almost statistical convergence of order α , Adv. Difference Equ. **2013** 62 (2013).
- [37] E. Savaş, Double almost lacunary statistical convergence of order α , Adv. Difference Equ. **2013** 254 (2013).
- [38] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly. 66 (1959), 361-375.
- [39] H. Steinhaus, Sur la convergence ordinate et la convergence asymptotique, Colloq. Math. 2 (1951), 73-84.
- [40] H. Şengül and M. Et, On lacunary statistical convergence of order α , Acta Math. Sci. **34B** (2) (2014), 473-482.

^{1,3}DEPARTMENT OF MATHEMATICS, BITLIS EREN UNIVERSITY, 13000, BITLIS, TURKEY *E-mail address:* skonca@beu.edu.tr, selmanekin@hotmail.com

²Department of Mathematics, Istanbul Commerce University, 34445, Beyoglu, Istanbul, Turkey

E-mail address: esavas@ticaret.edu.tr