Generalization of Titchmarsh's Theorem for the Bessel transform

M. El Hamma, R. Daher
Department of Mathematics, Faculty of sciences Aïn Chock, University of Hassan II, Casablanca, Morocco
m_elhamma@yahoo.fr

Abstract

Using a generalized translation operator, we obtain a generalization of Titchmarsh's Theorem for the Bessel transform for functions satisfying the ψ-Bessel Lipschitz condition in $\mathrm{L}_{2, p}(\mathbb{R})$. Keywords: Bessel operator, Bessel transform, generalized translation operator,

 Bessel function.Mathematics Subject Classification: 42A38, 42B10.

1 Introduction and preliminaries

Titchmarsh [6, Theorem 85] characterized the set of functions in $L^{2}(\mathbb{R})$ satisfying the Cauchy Lipschitz condition by means of an asymptotic estimate growth of the norm of their Fourier transforms. We have

Theorem 1.1 [6] Let $\alpha \in(0,1)$ and assume that $f \in \mathrm{~L}^{2}(\mathbb{R})$. Then the following are equivalent:
$(1)\|f(t+h)-f(t)\|_{\mathrm{L}^{2}(\mathbb{R})}=O\left(h^{\alpha}\right)$ as $h \longrightarrow 0$
(2) $\int_{|\lambda| \geq r}|g(\lambda)|^{2} d \lambda=O\left(r^{-2 \alpha}\right)$ as $r \longrightarrow \infty$
where g stands for the Fourier transform of f.
In this paper, we obtain a generalization of Theorem 1.1 for the Bessel operator.

Bessel transform and its inverse are widely used to solve various in calculs, mechanics, mathemtical, physics, and computational mathematics (see, e.g.,[6, 7]).

Let

$$
\mathrm{B}=\frac{d^{2}}{d x^{2}}+\frac{(2 p+1)}{x} \frac{d}{d x} .
$$

be the Bessel differential operator.
For $p \geq-\frac{1}{2}$, we introduce the Bessel normalized function of the first kind j_{p} defined by

$$
\begin{equation*}
j_{p}(x)=\Gamma(p+1) \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma(n+p+1)}\left(\frac{x}{2}\right)^{2 n}, \tag{1}
\end{equation*}
$$

where $\Gamma(x)$ is the gamma-function(see[4]).
Moreover, from (1) we see that

$$
\lim _{x \longrightarrow 0} \frac{j_{p}(x)-1}{x^{2}} \neq 0
$$

by consequence, there exist $c>0$ and $\eta>0$ satisfying

$$
\begin{equation*}
|x| \leq \eta \Longrightarrow\left|j_{p}(x)-1\right| \geq c|x|^{2} \tag{2}
\end{equation*}
$$

The function $y=j_{p}(x)$ satisfies the differential equation

$$
\mathrm{B} y+y=0
$$

with the initial conditions $y(0)=1$ and $y^{\prime}(0)=0 . j_{p}(x)$ is function infinitely differentiable, even, and, moreover entire analytic.

Lemma 1.2 The following inequalities are valid for Bessel fonction j_{p}

1. $\left|j_{p}(x)\right| \leq C, \quad \forall x \in \mathbb{R}^{+}$, where C is a positive constant
2. $1-j_{p}(x)=O\left(x^{2}\right), \quad 0 \leq x \leq 1$

Proof. (See [1]).
$\mathrm{L}_{2, p}\left(\mathbb{R}^{+}\right), \quad p \geq-\frac{1}{2}$ is the Hilbert space of measurable functions $f(x)$ on \mathbb{R}^{+}with the finite norm

$$
\|f\|_{2, p}=\left(\int_{0}^{\infty}|f(x)|^{2} x^{2 p+1} d x\right)^{1 / 2}
$$

The generalized Bessel translation T_{h} defined by

$$
\mathrm{T}_{h} f(t)=c_{p} \int_{0}^{\pi} f\left(\sqrt{t^{2}+h^{2}-2 t h \cos \varphi}\right) \sin ^{2 p} \varphi d \varphi
$$

where

$$
c_{p}=\left(\int_{0}^{\pi} \sin ^{2 p} \varphi d \varphi\right)^{-1}=\frac{\Gamma(p+1)}{\Gamma\left(\frac{1}{2}\right) \Gamma\left(p+\frac{1}{2}\right)} .
$$

The Bessel transform we call the integral transform from $[4,3,5]$

$$
\widehat{f}(\lambda)=\int_{0}^{\infty} f(t) j_{p}(\lambda t) t^{2 p+1} d t, \quad \lambda \in \mathbb{R}^{+}
$$

The inverse Bessel transform is given by the formula

$$
f(t)=\left(2^{p} \Gamma(p+1)\right)^{-2} \int_{0}^{\infty} \widehat{f}(\lambda) j_{p}(\lambda t) \lambda^{2 p+1} d \lambda
$$

i.e the direct and inverse Bessel transforms differ by the factor $\left(2^{p} \Gamma(p+1)\right)^{-2}$.

The following relations connect the Bessel generalized translation and the Bessel transform, in [2] we have

$$
\begin{equation*}
\left(\widehat{\mathrm{T}_{h} f}\right)(\lambda)=j_{p}(\lambda h) \widehat{f}(\lambda) \tag{3}
\end{equation*}
$$

2 Main Result

In this section we give the main result of this paper, We need first to define ψ-Bessel Lipschitz class.

Definition 2.1 A function $f \in \mathrm{~L}_{2, p}\left(\mathbb{R}^{+}\right)$is said to be in the ψ-Bessel Lipschitz class, denote by $\operatorname{Lip}(\psi, p, 2)$, if

$$
\left\|\mathrm{T}_{h} f(t)-f(t)\right\|_{2, p}=O(\psi(h)), \quad \text { as } h \longrightarrow 0,
$$

where $\psi(t)$ is a continuous increasing function on $[0, \infty), \quad \psi(0)=0$ and $\psi(t s)=$ $\psi(t) \psi(s)$ for all $t, s \in[0, \infty)$ and this function verify $\int_{0}^{1 / h} s \psi\left(s^{-2}\right) d s=O\left(\frac{1}{h^{2}} \psi\left(h^{2}\right)\right)$ as $h \longrightarrow 0$

Theorem 2.2 Let $f \in \mathrm{~L}_{2, p}\left(\mathbb{R}^{+}\right)$. Then the following are equivalents

1. $f \in \operatorname{Lip}(\psi, p, 2)$.
2. $\int_{r}^{\infty}|\widehat{f}(\lambda)|^{2} \lambda^{2 p+1} d \lambda=O\left(\psi\left(r^{-2}\right)\right)$ as $r \longrightarrow+\infty$.

Proof. $1 \Longrightarrow 2$: Suppose that $f \in \operatorname{Lip}(\psi, p, 2)$. Then we obtain

$$
\left\|\mathrm{T}_{h} f(t)-f(t)\right\|_{2, p}=O(\psi(h)), \text { as } h \longrightarrow 0
$$

Parseval's identity and formula (3) give

$$
\left\|\mathrm{T}_{h} f(t)-f(t)\right\|_{2, p}^{2}=\frac{1}{\left(2^{p} \Gamma(p+1)\right)^{2}} \int_{0}^{\infty}\left|1-j_{p}(\lambda h)\right|^{2}|\widehat{f}(\lambda)|^{2} \lambda^{2 p+1} d \lambda .
$$

From (2), we have

$$
\int_{\frac{\eta}{2 h}}^{\frac{\eta}{h}}\left|1-j_{p}(\lambda h)\right|^{2}|\widehat{f}(\lambda)|^{2} \lambda^{2 p+1} d \lambda \geq \frac{c^{2} \eta^{4}}{16} \int_{\frac{\eta}{2 h}}^{\frac{\eta}{h}}|\widehat{f}(\lambda)|^{2} \lambda^{2 p+1} d \lambda
$$

We see that

$$
\int_{\frac{\eta}{2 h}}^{\frac{\eta}{h}}\left|1-j_{p}(\lambda h)\right|^{2}|\widehat{f}(\lambda)|^{2} \lambda^{2 p+1} d \lambda \leq \int_{0}^{\infty}\left|1-j_{p}(\lambda h)\right|^{2}|\widehat{f}(\lambda)|^{2} \lambda^{2 p+1} d \lambda
$$

There exists then a positive constant C_{2} such that

$$
\int_{\frac{\eta}{2 h}}^{\frac{\eta}{h}}|\widehat{f}(\lambda)|^{2} \lambda^{2 p+1} d \lambda \leq C_{2} \psi\left(h^{2}\right) .
$$

We obtain

$$
\int_{r}^{2 r}|\widehat{f}(\lambda)|^{2} \lambda^{2 p+1} d \lambda \leq C_{2} \psi\left(2^{-2} \eta^{2} r^{-2}\right)
$$

Thus there exists then a positive constant K such that

$$
\int_{r}^{2 r}|\widehat{f}(\lambda)|^{2} \lambda^{2 p+1} d \lambda \leq K \psi\left(r^{-2}\right), \quad \text { for all } r>0
$$

So that

$$
\begin{aligned}
\int_{r}^{\infty}|\widehat{f}(\lambda)|^{2} \lambda^{2 p+1} d \lambda & =\left[\int_{r}^{2 r}+\int_{2 r}^{4 r}+\int_{4 r}^{8 r} \ldots .\right]|\widehat{f}(\lambda)|^{2} \lambda^{2 p+1} d \lambda \\
& =O\left(\psi\left(r^{-2}\right)+\psi\left(2^{-2} r^{-2}\right) \ldots \ldots\right) \\
& =O\left(\psi\left(r^{-2}\right)+\psi\left(r^{-2}\right)+\ldots \ldots .\right) \\
& =O\left(\psi\left(r^{-2}\right)\right) .
\end{aligned}
$$

This prove that

$$
\int_{r}^{\infty}|\widehat{f}(\lambda)|^{2} \lambda^{2 p+1} d \lambda=O\left(\psi\left(r^{-2}\right)\right) \text { as } r \longrightarrow+\infty
$$

$2 \Longrightarrow 1$: Suppose now that

$$
\int_{r}^{\infty}|\widehat{f}(\lambda)|^{2} \lambda^{2 p+1} d \lambda=O\left(\psi\left(r^{-2}\right)\right) \text { as } r \longrightarrow+\infty
$$

We write

$$
\int_{0}^{\infty}\left|1-j_{p}(\lambda h)\right|^{2}|\widehat{f}(\lambda)|^{2} \lambda^{2 p+1} d \lambda=\mathrm{I}_{1}+\mathrm{I}_{2}
$$

where

$$
\mathrm{I}_{1}=\int_{0}^{\frac{1}{h}}\left|1-j_{p}(\lambda h)\right|^{2}|\widehat{f}(\lambda)|^{2} \lambda^{2 p+1} d \lambda
$$

and

$$
\mathrm{I}_{2}=\int_{\frac{1}{h}}^{\infty}\left|1-j_{p}(\lambda h)\right|^{2}|\widehat{f}(\lambda)|^{2} \lambda^{2 p+1} d \lambda
$$

Estimate the summands I_{1} and I_{2}.
Firstly, we have from (1) in Lemma 1.2

$$
\mathrm{I}_{2} \leq(1+C)^{2} \int_{\frac{1}{h}}^{\infty}|\widehat{f}(\lambda)|^{2} \lambda^{2 p+1} d \lambda=O\left(\psi\left(h^{2}\right)\right.
$$

Set

$$
\phi(x)=\int_{x}^{\infty}|\widehat{f}(\lambda)|^{2} \lambda^{2 p+1} d \lambda
$$

We know from Lemma 1.2 that $\left|1-j_{p}(\lambda h)\right| \leq C_{1} \lambda^{2} h^{2}$ for $\lambda h \leq 1$. Then $\mathrm{I}_{1} \leq$ $-C_{1} h^{2} \int_{0}^{\frac{1}{h}} x^{2} \phi^{\prime}(x) d x$.

We use integration by parts, we obtain

$$
\begin{aligned}
\mathrm{I}_{1} & \leq-C_{1} h^{2} \int_{0}^{\frac{1}{h}} x^{2} \phi^{\prime}(x) d x \\
& \leq-C_{1} \phi\left(\frac{1}{h}\right)+2 C_{1} h^{2} \int_{0}^{\frac{1}{h}} x \phi(x) d x
\end{aligned}
$$

$$
\begin{aligned}
& \leq C_{3} h^{2} \int_{0}^{\frac{1}{h}} x \psi\left(x^{-2}\right) d x \\
& \leq C_{3} h^{2} \frac{1}{h^{2}} \psi\left(h^{2}\right) \\
& \leq C_{3} \psi\left(h^{2}\right)
\end{aligned}
$$

where C_{3} is a positive constant and this ends the proof.

Acknowledgements

The authors would like to thank the referee for his valuable comments and suggestions.

References

[1] V. A. Abilov and F. V. Abilova, Approximation of Functions by Fourier-Bessel Sums, Izv. Vyssh. Uchebn. Zaved., Mat., No. 8, 3-9 (2001).
[2] V. A. Abilov, F. V. Abilova and M.K.Kerimov., On Estimates for the FourierBessel Integral Transform in the $\mathrm{L}_{2}\left(\mathbb{R}_{+}\right)$, Vol 49. No7 (2009).
[3] I.A. Kipriyanov, Singular Elliptic Boundary Value Problems, [in Russian], Nauka, Moscow(1997).
[4] B.M. Levitan, Expansion in Fourier series and integrals over Bessel, Uspekhi Mat. Nauk, 6, No.2, 102-143(1951).
[5] K. Triméche, Transmutation operators and mean-periodic functions associated with differential operators, Math.Rep., 4 No. 1, 1-282 (1988).
[6] E.C. Titchmarsh, Introduction to the theory of Fourier Integrals, Claredon, Oxford. 1948, Komkniga, Moscow. 2005.
[7] A.L.Zayed, Handbook of Function and Generalized Function Tranformations, (CRC. Boca Raton, 1996).

