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Abstract. In this paper, we study the existence of positive solutions of a three-point
integral boundary value problem (BVP) for the following second-order differential equa-
tion

u′′(t) + λa(t)f(u(t)) = 0, 0 < t < 1,

u′(0) = 0, u(1) = α

∫ η

0

u(s)ds,

where λ > 0 is a parameter, 0 < η < 1, 0 < α < 1
η . By using the properties of the Green’s

function and Krasnoselskii’s fixed point theorem on cones, the eigenvalue intervals of
the nonlinear boundary value problem are considered, some sufficient conditions for the
existence of at least one positive solutions are established.
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1. Introduction

In this work, we study the existence of positive solutions of a three-point integral boundary value
problem (BVP) for the following second-order differential equation:

(1.1) u′′(t) + λa(t)f(u(t)) = 0, t ∈ (0, 1),

(1.2) u′(0) = 0, u(1) = α

∫ η

0

u(s)ds,

where 0 < η < 1 and 0 < α < 1
η , λ is a positive parameter, and

(H1) f ∈ C([0,∞), [0,∞));
(H2) a ∈ C([0, 1], [0,∞)) and there exists t0 ∈ [0, η] such that a(t0) > 0.

The study of the existence of solutions of multi-point boundary value problems for linear second-order
ordinary differential equations was initiated by II’in and Moiseev [12]. Then Gupta [8] studied three-
point boundary value problems for nonlinear second-order ordinary differential equations. Since then, the
existence of positive solutions for nonlinear second order three-point boundary-value problems has been
studied by many authors by using the fixed point theorem, nonlinear alternative of the Leray-Schauder
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approach, or coincidence degree theory. We refer the reader to [1], [2], [4], [6], [7], [10], [11], [17]-[27], [29],
[30], [32]-[36] and the references therein.

Liu [20] proved the existence of single and multiple positive solutions for the three-point boundary
value problem (BVP)

(1.3) u′′(t) + a(t)f(u(t)) = 0, t ∈ (0, 1),

(1.4) u′(0) = 0, u(1) = βu(η),

where 0 < η < 1 and 0 < β < 1.
Recently, Ma [28] studied the second-order three-point boundary value problem (BVP)

(1.5) u′′(t) + λa(t)f(u(t)) = 0, t ∈ (0, 1),

(1.6) u(0) = βu(η), u(1) = αu(η),

where λ > 0 is a parameter, α > 0, β > 0, 0 < η < 1, a ∈ C([0, 1], [0,∞)), f ∈ C([0,∞), [0,∞)) and
there exists x0 ∈ (0, 1) such that a(x0) > 0. She obtained the existence of single and multiple positive
solutions by using Krasnoselskii’s fixed point theorem in cones [16].

Boundary value problems with integral boundary conditions for ordinary differential equations rep-
resent a very interesting and important class of problems, and arise in the study of various physical,
biological and chemical processes, such as heat conduction, chemical engineering, underground water
flow, thermo-elasticity, and plasma physics. They include two, three, multi-point and nonlocal BVPs as
special cases. The existence of positive solutions for such class of problems has attracted much attention
(see [3], [5], [13]-[15], [31], [34], [37] and the references therein).

In [34], Tariboon and Sitthiwirattham investigated the existence of positive solutions of the following
three-point integral boundary value problem (BVP)

(1.7) u′′(t) + a(t)f(u(t)) = 0, t ∈ (0, 1),

(1.8) u(0) = 0, u(1) = α

∫ η

0

u(s)ds,

where 0 < η < 1 and 0 < α < 2
η2 , f ∈ C([0,∞), [0,∞)), a ∈ C([0, 1], [0,∞)) and there exists t0 ∈ [η, 1]

such that a(t0) > 0. They showed the existence of at least one positive solution if f is either superlinear
or sublinear by applying Krasnoselskii’s fixed point theorem in cones [16].

In [9], by using Leggett-Williams fixed-point theorem, the authors considered the multiplicity of posi-
tive solutions of the following three-point integral boundary value problem (BVP)

(1.9) u′′(t) + f(t, u(t)) = 0, t ∈ (0, T ),

(1.10) u(0) = βu(η), u(T ) = α

∫ η

0

u(s)ds,

where 0 < η < T , 0 < α < 2T
η2 , 0 ≤ β < 2T−αη2

αη2−2η+2T , and f ∈ C([0, T ]× [0,∞), [0,∞)).

Motivated greatly by the above-mentioned excellent works, the aim of this paper is to establish some
sufficient conditions for the existence of at least one positive solutions of the BVP (1.1) and (1.2). Our
ideas are similar those used in [28], but a little different.

We firstly give the corresponding Green’s function for the associated linear BVP and some of its
properties. Moreover, by applying Krasnoselskii’s fixed point theorem, we derive an interval of λ on
which there exists a positive solution for the three-point integral boundary value problem (1.1) and (1.2).

As applications, some interesting examples are presented to illustrate the main results. The key tool
in our approach is the following Krasnoselskii’s fixed point theorem in a cone [16].
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Theorem 1.1. [16]. Let E be a Banach space, and let K ⊂ E be a cone. Assume that Ω1, Ω2 are open
bounded subsets of E with 0 ∈ Ω1, Ω1 ⊂ Ω2, and let

A : K ∩ (Ω2\Ω1) −→ K

be a completely continuous operator such that either
(i) ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2; or
(ii) ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2

hold. Then A has a fixed point in K ∩ (Ω2\ Ω1).

2. Preliminaries

Lemma 2.1. Let αη 6= 1. Then for y ∈ C([0, 1],R), the problem

(2.1) u′′(t) + y(t) = 0, t ∈ (0, 1),

(2.2) u′(0) = 0, u(1) = α

∫ η

0

u(s)ds,

has a unique solution

(2.3) u(t) =

∫ 1

0

G(t, s)y(s)ds,

where G(t, s) : [0, 1]× [0, 1]→ R is the Green’s function defined by

(2.4) G(t, s) =
1

2(1− αη)


2(1− s)− α(η − s)2 − 2(1− αη)(t− s), s ≤ min{η, t};
2(1− s)− α(η − s)2, t ≤ s ≤ η;

2(1− s)− 2(1− αη)(t− s), η ≤ s ≤ t;
2(1− s), max{η, t} ≤ s.

Proof. From (2.1), we have

(2.5) u(t) = u(0)−
∫ t

0

(t− s)y(s)ds.

Integrating (2.5) from 0 to η, where η ∈ (0, 1), we have∫ η

0

u(s)ds = u(0)η − 1

2

∫ η

0

(η − s)2y(s)ds.

Since

u(1) = u(0)−
∫ 1

0

(1− s)y(s)ds,

from u(1) = α
∫ η

0
u(s)ds, we have

(1− αη)u(0) =

∫ 1

0

(1− s)y(s)ds− α

2

∫ η

0

(η − s)2y(s)ds.

Therefore,

u(0) =
1

1− αη

∫ 1

0

(1− s)y(s)ds− α

2(1− αη)

∫ η

0

(η − s)2y(s)ds,

from which it follows that

u(t) =
1

1− αη

∫ 1

0

(1− s)y(s)ds− α

2(1− αη)

∫ η

0

(η − s)2y(s)ds

−
∫ t

0

(t− s)y(s)ds.
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If t ≤ η, then

u(t) =

∫ η

0

1− s
1− αη

y(s)ds−
∫ η

0

α(η − s)2

2(1− αη)
y(s)ds+

∫ 1

η

1− s
1− αη

y(s)ds

−
∫ t

0

(t− s)y(s)ds

=

∫ t

0

2(1− s)− α(η − s)2 − 2(1− αη)(t− s)
2(1− αη)

y(s)ds+

∫ 1

η

1− s
1− αη

y(s)ds

+

∫ η

t

2(1− s)− α(η − s)2

2(1− αη)
y(s)ds

=

∫ 1

0

G(t, s)y(s)ds.

If t ≥ η, then

u(t) =

∫ t

0

1− s
1− αη

y(s)ds−
∫ η

0

α(η − s)2

2(1− αη)
y(s)ds+

∫ 1

t

1− s
1− αη

y(s)ds

−
∫ t

0

(t− s)y(s)ds

=

∫ η

0

2(1− s)− α(η − s)2 − 2(1− αη)(t− s)
2(1− αη)

y(s)ds+

∫ 1

t

1− s
1− αη

y(s)ds

+

∫ t

η

(1− s)− (1− αη)(t− s)
1− αη

y(s)ds

=

∫ 1

0

G(t, s)y(s)ds.

This completes the proof. �

For convenience, we define

g(s) =
1

1− αη
(1− s), s ∈ [0, 1].

For the Green’s function G(t, s), we have the following two lemmas.

Lemma 2.2. Let 0 < η < 1 and 0 < α < 1
η . Then the Green’s function in (2.4) satisfies

(2.6) 0 ≤ G(t, s) ≤ g(s),

for each s, t ∈ [0, 1].

Proof. First of all, note that by (2.4) it follows that G(t, s) ≤ g(s) for any (t, s) ∈ [0, 1]× [0, 1].
Next, we will prove that G(t, s) ≥ 0 for any (t, s) ∈ [0, 1]× [0, 1].
If η ≤ s ≤ t, then

G(t, s) =
1

1− αη

(
(1− s)− (1− αη)(t− s)

)
=

1

1− αη

(
(1− t) + αη(t− s)

)
≥ 0.
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If t ≤ s ≤ η, then

G(t, s) =
1

2(1− αη)

(
2(1− s)− α(η − s)2

)
≥ 1

2(1− αη)

(
2(1− s)− (η − s)2

η

)
=

2η − η2 − s2

2η(1− αη)

≥ 2η − 2η2

2η(1− αη)

=
1− η

1− αη
≥ 0.

If s ≤ min{η, t}, then

G(t, s) =
1

2(1− αη)

(
2(1− s)− α(η − s)2 − 2(1− αη)(t− s)

)
=

1

2(1− αη)

(
2(1− t)− αη2 − αs2 + 2αηt

)
≥ 1

2(1− αη)

(
2(1− t) + αη(t− η) + αs(η − s)

)
.

We distinguish the following two cases:
If s ≤ η ≤ t, then G(t, s) ≥ 0.
If s ≤ t ≤ η, then

G(t, s) =
1

2(1− αη)

(
2(1− t)− αη2 − αs2 + 2αηt

)
≥ 1

2(1− αη)

(
2(1− t)− α(η − t)2

)
≥ 1

2(1− αη)

(
2(1− t)− (η − t)2

η

)
=

2η − η2 − t2

2η(1− αη)

≥ 2η − 2η2

2η(1− αη)

=
1− η

1− αη
≥ 0.

The proof is completed. �

Lemma 2.3. Let 0 < η < 1 and 0 < α < 1
η . Then for any (t, s) ∈ [0, η]× [0, 1], G(t, s) ≥ γg(s), where

(2.7) 0 < γ = 1− η < 1.

Proof. If s = 1, then by Lemma 2.2, the result follows. Now we suppose that (t, s) ∈ [0, η]× [0, 1).
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If t ≤ s ≤ η, then

G(t, s)

g(s)
=

2(1− s)− α(η − s)2

2(1− s)

≥
2(1− s)− (η−s)2

η

2(1− s)

=
2η − η2 − s2

2η(1− s)

≥ 1− η
1− s

≥ γ.

If s ≤ t ≤ η, then

G(t, s)

g(s)
=

2(1− s)− α(η − s)2 − 2(1− αη)(t− s)
2(1− s)

=
2(1− t)− αη2 − αs2 + 2αηt

2(1− s)

≥ 2(1− t)− α(η − t)2

2η(1− s)

≥ 1− η
1− s

≥ γ.

If t ≤ η ≤ s, then

G(t, s)

g(s)
= 1 ≥ γ.

Therefore,

G(t, s) ≥ γg(s), (t, s) ∈ [0, η]× [0, 1].

The proof is completed. �

Let E = C([0, 1],R), and only the sup norm is used. It is easy to see that the BVP (1.1) and (1.2) has
a solution u = u(t) if and only if u is a fixed point of operator Aλ, where Aλ is defined by

Aλu(t) =
λ

1− αη

∫ 1

0

(1− s)a(s)f(u(s))ds− λα

2(1− αη)

∫ η

0

(η − s)2a(s)f(u(s))ds

−λ
∫ t

0

(t− s)a(s)f(u(s))ds

= λ

∫ 1

0

G(t, s)a(s)f(u(s))ds.

Denote

(2.8) K =

{
u ∈ E : u ≥ 0, min

t∈[0,η]
u(t) ≥ γ‖u‖

}
,

where γ is defined in (2.7). It is obvious that K is a cone in E.

Lemma 2.4. Assume that (H1) and (H2) hold, 0 < η < 1 and 0 < α < 1
η . Then the operator Aλ : K → K

is completely continuous.
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Proof. For u ∈ K, according to the definition of Aλ, Lemma 2.2 and Lemma 2.3, it is easy to prove
that AλK ⊂ K. By the Ascoli-Arzela theorem, it is easy to show that Aλ : K → K is completely
continuous. �

In what follows, for the sake of convenience, set

Λ1 =
1

1− αη

∫ 1

0

(1− s)a(s)ds, Λ2 =
γ

2(1− αη)

∫ η

0

(
2(1− η) + α(η2 − s2)

)
a(s)ds,

f0 = lim
u→0+

f(u)

u
, f∞ = lim

u→∞

f(u)

u
.

3. Main results

In this section, we will state and prove our main results.

Theorem 3.1. Suppose that (H1) and (H2) hold, 0 < η < 1 and 0 < α < 1
η . If Λ1f0 < Λ2f∞, then for

each λ ∈ ( 1
Λ2f∞

, 1
Λ1f0

), the BVP (1.1) and (1.2) has at least one positive solution.

Proof. Let λ ∈ ( 1
Λ2f∞

, 1
Λ1f0

), and choose ε > 0 such that

(3.1)
1

Λ2(f∞ − ε)
≤ λ ≤ 1

Λ1(f0 + ε)
.

By the definition of f0, there exists ρ1 > 0 such that

(3.2) f(u) ≤ (f0 + ε)u, for u ∈ (0, ρ1].

Let Ωρ1 = {u ∈ E : ‖u‖ < ρ1}, then from (3.1), (3.2) and Lemma 2.2, for any u ∈ K ∩ ∂Ωρ1 , we have

Aλu(t) = λ

∫ 1

0

G(t, s)a(s)f(u(s))ds

≤ λ

∫ 1

0

g(s)a(s)f(u(s))ds

=
λ

1− αη

∫ 1

0

(1− s)a(s)f(u(s))ds

≤ λ

1− αη

∫ 1

0

(1− s)a(s)(f0 + ε)u(s)ds

≤ λΛ1(f0 + ε)‖u‖ ≤ ‖u‖,

which yields

(3.3) ‖Aλu‖ ≤ ‖u‖, for u ∈ K ∩ ∂Ωρ1 .

Further, by the definition of f∞, there exists ρ̂2 > 0 such that

(3.4) f(u) ≥ (f∞ − ε)u, for u ∈ [ρ̂2,∞).

Now, set ρ2 = max
{

2ρ1,
ρ̂2
γ

}
and Ωρ2 = {u ∈ E : ‖u‖ < ρ2}. Then u ∈ K ∩ ∂Ωρ2 implies that

u(t) ≥ γ‖u‖ ≥ ρ̂2, t ∈ [0, η],

and so,
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Aλu(η) = λ

∫ 1

0

G(η, s)a(s)f(u(s))ds

≥ λ

∫ η

0

G(η, s)a(s)f(u(s))ds

≥ λ

∫ η

0

G(η, s)a(s)(f∞ − ε)u(s)ds

≥ λγ(f∞ − ε)‖u‖
∫ η

0

G(η, s)a(s)ds

= λγ(f∞ − ε)‖u‖
∫ η

0

2(1− s)− α(η − s)2 − 2(1− αη)(η − s)
2(1− αη)

a(s)ds

= λ(f∞ − ε)‖u‖
γ

2(1− αη)

∫ η

0

(
2(1− η) + α(η2 − s2)

)
a(s)ds

= λΛ2(f∞ − ε)‖u‖ ≥ ‖u‖.

This implies that

(3.5) ‖Aλu‖ ≥ ‖u‖, for u ∈ K ∩ ∂Ωρ2 .

Therefore, from (3.3), (3.5) and Theorem 1.1, it follows that Aλ has a fixed point u with ρ1 ≤ ‖u‖ ≤ ρ2

in K ∩ (Ωρ2\Ωρ1), which is a desired positive solution of the BVP (1.1) and (1.2). �

By Theorem 3.1 we can easily obtain the following corollary.

Corollary 3.2. Assume that (H1) and (H2) hold, 0 < η < 1 and 0 < α < 1
η . Then we have

(1) If f0 = 0, f∞ =∞, then for each λ ∈ (0,∞), the BVP (1.1) and (1.2) has at least one positive
solution.

(2) If f∞ =∞, 0 < f0 <∞, then for each λ ∈ (0, 1
Λ1f0

), the BVP (1.1) and (1.2) has at least one

positive solution.
(3) If f0 = 0, 0 < f∞ <∞, then for each λ ∈ ( 1

Λ2f∞
,∞), the BVP (1.1) and (1.2) has at least one

positive solution.

Theorem 3.3. Suppose that (H1) and (H2) hold, 0 < η < 1 and 0 < α < 1
η . If Λ1f∞ < Λ2f0, then for

each λ ∈ ( 1
Λ2f0

, 1
Λ1f∞

), the BVP (1.1) and (1.2) has at least one positive solution.

Proof. Let λ ∈ ( 1
Λ2f0

, 1
Λ1f∞

), and choose ε > 0 such that

(3.6)
1

Λ2(f0 − ε)
≤ λ ≤ 1

Λ1(f∞ + ε)
.

By the definition of f0, there exists ρ1 > 0 such that

(3.7) f(u) ≥ (f0 − ε)u, for u ∈ (0, ρ1].

Let Ωρ1 = {u ∈ E : ‖u‖ < ρ1}. Hence, for any u ∈ K ∩ ∂Ωρ1 , from (3.6), (3.7), we get

Aλu(η) ≥ λ

∫ η

0

G(η, s)a(s)f(u(s))ds

≥ λ

∫ η

0

G(η, s)a(s)(f0 − ε)u(s)ds

≥ λΛ2(f0 − ε)‖u‖ ≥ ‖u‖.
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Therefore

(3.8) ‖Aλu‖ ≥ ‖u‖, for u ∈ K ∩ ∂Ωρ1 .

By the definition of f∞, there exists ρ0 > 0 such that

(3.9) f(u) ≤ (f∞ + ε)u, for u ∈ [ρ0,∞).

Next, we consider two cases:
If f is bounded. Let f(u) ≤ L for all u ∈ [0,∞). Set ρ2 = max {2ρ1, λΛ1L} and Ωρ2 =

{u ∈ E : ‖u‖ < ρ2}, then for u ∈ K ∩ ∂Ωρ2 , we have

Aλu(t) ≤ λ

1− αη

∫ 1

0

(1− s)a(s)f(u(s))ds

≤ λLΛ1 ≤ ρ2 ≤ ‖u‖.

Therefore

(3.10) ‖Aλu‖ ≤ ‖u‖, for u ∈ K ∩ ∂Ωρ2 .

If f is unbounded, then from f ∈ C([0,∞), [0,∞)), we know that there is ρ2: ρ2 ≥ max
{

2ρ1, γ
−1ρ0

}
such that

(3.11) f(u) ≤ f(ρ2), for u ∈ [0, ρ2] .

Let Ωρ2 = {u ∈ E : ‖u‖ < ρ2}, then for u ∈ K ∩ ∂Ωρ2 , we have

Aλu(t) ≤ λ

1− αη

∫ 1

0

(1− s)a(s)f(u(s))ds

≤ λ

1− αη

∫ 1

0

(1− s)a(s)f(ρ2)ds

≤ λΛ1ρ2(f∞ + ε) ≤ ρ2 = ‖u‖.

Thus

(3.12) ‖Aλu‖ ≤ ‖u‖, for u ∈ K ∩ ∂Ωρ2 .

It follows from Theorem 1.1, that Aλ has a fixed point in K ∩ (Ωρ2\Ωρ1), such that ρ1 ≤ ‖u‖ ≤ ρ2. �

From Theorem 3.3, we have

Corollary 3.4. Assume that (H1) and (H2) hold, 0 < η < 1 and 0 < α < 1
η . Then we have

(1) If f0 =∞, f∞ = 0, then for each λ ∈ (0,∞), the BVP (1.1) and (1.2) has at least one positive
solution.

(2) If f∞ = 0, 0 < f0 <∞, then for each λ ∈ ( 1
Λ2f0

,∞), the BVP (1.1) and (1.2) has at least one

positive solution.
(3) If f0 =∞, 0 < f∞ <∞, then for each λ ∈ (0, 1

Λ1f∞
), the BVP (1.1) and (1.2) has at least one

positive solution.

4. Examples

In this section we present some examples to illustrate our main results.
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Example 4.1. Consider the boundary value problem

(4.1) u′′(t) + tup = 0, 0 < t < 1,

(4.2) u′(0) = 0, u(1) = 2

∫ 1
4

0

u(s)ds.

Set α = 2, η = 1/4, a(t) = t, f(u) = up (p ∈ (0, 1) ∪ (1,∞). We can show that 0 < α = 2 < 4 = 1/η.
Now we consider the existence of positive solutions of the problem (4.1) and (4.2) in two cases.
Case 1: p > 1. In this case, f0 = 0, f∞ = ∞. Then, by Corollary 3.2, the BVP (4.1) and (4.2) has at
least one positive solution.
Case 2: p ∈ (0, 1). In this case, f0 = ∞, f∞ = 0. Then, by Corollary 3.4, the BVP (4.1) and (4.2) has
at least one positive solution.

Example 4.2. Consider the boundary value problem

(4.3) u′′(t) +
aue2u

b+ eu + e2u
= 0, 0 < t < 1,

(4.4) u′(0) = 0, u(1) = 2

∫ 1
3

0

u(s)ds.

Set α = 2, η = 1/3, a(t) ≡ 1, f(u) = (aue2u)/(b+eu+e2u). we consider the existence of positive solutions
of the problem (4.3) and (4.4) into the following two cases.

Case 1: If a = 5, b = 8, then f0 = 1
2 , f∞ = 5. By calculating, it is easy to obtain that 0 < α = 2 <

3 = 1/η, γ = 2
3 . Again

Λ1 =
1

1− αη

∫ 1

0

(1− s)a(s)ds =
3

2
,

Λ2 =
γ

2(1− αη)

∫ η

0

(
2(1− η) + α(η2 − s2)

)
a(s)ds =

40

81
,

Λ1f0 =
3

4
, Λ2f∞ =

200

81
.

By Theorem 3.1, we know that for any λ ∈ ( 81
200 ,

4
3 ), the BVP (4.3) and (4.4) has at least one positive

solution u ∈ C[0, 1].
Case 2: If a = 5, b = −2, then f0 =∞, f∞ = 5 and Λ1f∞ = 15

2 .

Therefore, by Corollary 3.4, we know that for any λ ∈ (0, 2
15 ), the BVP (4.3) and (4.4) has at least

one positive solution u ∈ C[0, 1].

Example 4.3. Consider the boundary value problem

(4.5) u′′(t) +
1

5
u(1− 1

1 + u2
) = 0, 0 < t < 1,

(4.6) u′(0) = 0, u(1) =

∫ 1
2

0

u(s)ds,

where α = 1, η = 1/2, a(t) ≡ 1
5 , f(u) = u(1 − 1

1+u2 ). By calculating, we have 0 < α = 1 < 2 = 1/η,

γ = 1
2 , f0 = 0, f∞ = 1. Again

Λ2 =
γ

2(1− αη)

∫ η

0

(
2(1− η) + α(η2 − s2)

)
a(s)ds =

7

120
.

Hence, by Corollary 3.2, for any λ ∈ ( 120
7 ,∞), the BVP (4.5) and (4.6) has at least one positive solution

u ∈ C[0, 1].
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