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Abstract

In this paper we investigate the existence and stability of quadratic-mean almost pe-
riodic mild solutions to stochastic delay functional differential equations driven by frac-
tional Brownian motion with Hurst parameter H > 1

2 , under some suitable assumptions,
by means of semigroup of operators and fixed point method.
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1 Introduction

The fractional Brownian motion (fBm) with Hurst parameter H ∈ (0, 1) is a zero mean
Gaussian process BH = {BH

t , t ≥ 0} with covariance function

RH(s, t) =
1

2
(t2H + s2H − |t− s|2H). (1)

This process was introduced by Kolmogorov and later studied by Mandelbrot and Van Ness,
where a stochastic integral representation in terms of a standard Brownian motion was ob-
tained.

From (1) we deduce that IE(|BH
t −BH

s |2) = |t−s|2H and, as a consequence, the trajectories
of BH are almost surely locally α-Hölder continuous for all α ∈ (0, H). Since BH is not a
semimartingale if H 6= 1/2 (see [8]), we cannot use the classical Itô theory to construct a
stochastic calculus with respect to the fBm. Over the past years some new techniques have
been developed in order to define stochastic integrals with respect to the fBm. In the case
H > 1

2 one can use a pathwise approach to define integrals with respect to the fractional
Brownian motion, taking advantage of the results by Young. An alternative approach to de-
fine pathwise integrals with respect to an fBm with parameter H > 1

2 is based on fractional
calculus. This approach was introduced by Feyel and De la Pradelle in [5] and it was also
developed by Zähle in [10].

We would like to mention that the theory for the stochastic delay functional differential
equations driven by a Wiener process have recently been studied intensively (see e.g. [6], [7]).

As, for the same equations driven by a fractional Brownian motion (fBm), even much less
has been done, as far as we know, only the works by Boufoussi and Hajji in [2] and Caraballo
et al. in [4].
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In the present paper, motived by [1], [3], [9] based on the semigroups of operators method
and fixed points method, we investigate the existence and stability of quadratic-mean almost
periodic mild solutions for stochastic delay functional differential equations{

dx(t) = (Ax(t) + b(t, x(t), xt))dt+ σH(t)dBH
Q (t), t ∈ [0, T ],

x(t) = ϕ(t), −r ≤ t ≤ 0, r ≥ 0,
(2)

where BH
Q = {BH

Q (t), t ∈ [0, T ]} is a fBm with Hurst index H ∈ (1
2 , 1). Some sufficient

conditions on the operator A and the coefficient functions b, σH ensuring the existence and
stability of quadratic-mean almost periodic mild solutions are presented.

The contents of the paper are as follow. In Section 2 some necessary preliminaries, the
relating notations and useful lemmas are introduced. Section 3 contains the main results
including some criteria ensuring the existence of quadratic mean almost periodic mild so-
lutions. In Section 4, the stability of the quadratic mean almost periodic mild solution is
further discussed. Finally, an example is given to illustrate our results in Section 5.

2 Preliminaries

In this section we introduce some notations, definitions, a technical lemmas and preliminary
fact which are used in what follows.

Let T > 0 and denote by Υ the linear space of IR-valued step functions on [0, T ], that is,
φ ∈ Υ if

φ(t) =
n−1∑
i=1

ziχ[ti,ti+1)(t),

where t ∈ [0, t], xi ∈ IR and 0 = t1 < t2 < · < tn = T . For φ ∈ Υ its Wiener integral with
respect to BH as ∫ T

0
φ(s)dBH(s) =

n−1∑
i=1

zi
(
BH(ti+1)−BH(ti)

)
.

Let H be the Hilbert space defined as the closure of Υ with respect to the scalar product
〈χ[0,t], χ[0,s]〉H = RH(t, s). Then the mapping

φ =
n−1∑
i=1

ziχ[ti,ti+1) 7→
∫ T

0
φ(s)dBH(s)

is an isometry between Υ and the linear space span{BH(t), t ∈ [0, T ]}, which can be extended
to an isometry between H and the first Wiener chaos of the fBm spanL

2(Ω){BH(t), t ∈ [0, T ]}
(see [8]). The image of an element φ ∈ H by this isometry is called the Wiener integral of φ
with respect to BH .

Let us now consider the Kernel

KH(t, s) = cHs
1
2
−H

∫ t

s
(u− s)H−

3
2uH−

1
2du
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where cH =

(
H(2H−1)

β(2−2H,H− 1
2

)

) 1
2

, where β denoting the Beta function, and t > s. It is not

difficult to see that

∂KH

∂t
(t, s) = cH

(
t

s

)H− 1
2

(t− s)H−
3
2 .

Let KH : Υ 7→ L2([0, T ]) be the linear operator given by

KHφ(s)(s) =

∫ t

s
φ(t)

∂KH

∂t
(t, s)dt.

Then (KHχ[0,t])(s) = KH(t, s)χ[0,t](s) and KH is an isometry between Υ and L2([0, T ]) that
can be extended to H.
Denoting L2

H([0, T ]) = {φ ∈ H,KHφ ∈ L2([0, T ])}, since H > 1/2, we have

L1/H([0, T ]) ⊂ L2
H([0, T ]). (3)

Moreover the following result hold:

Lemma 2.1 ([8]) For φ ∈ L1/H([0, T ]),

H(2H − 1)

∫ T

0

∫ T

0
|φ(r)||φ(u)||r − u|2H−2drdu ≤ cH‖φ‖2L1/H([0,T ]).

Let us now consider two separable Hilbert spaces (U, | · |U , 〈·, ·〉U ) and (V, | · |V , 〈·, ·〉V ). Let
L(V,U) denote the space of all bounded linear operator from V to U and Q ∈ L(V, V ) de
a non-negative self adjoint operator. Denote by L0

Q(V,U) the space of all ξ ∈ L(V,U) such

that ξQ
1
2 is a Hilbert-Schmidt operator. the norm is given by

|ξ|2L0
Q(V,U) =

∣∣∣ξQ 1
2

∣∣∣2
HS

= tr(ξQξ∗).

Then ξ is called a Q-Hilbert-Schmidt operator from V to U .
Let {BH

n (t)}n∈IN be a sequence of two-side one-dimensional fBm mutually independent on
the complete probability space (Ω,F , IP), {en}n∈IN be a complete orthonormal basis in V .

Define the V -valued stochastic process BH
Q (t) by BH

Q (t) =
∞∑
n=1

BH
n (t)Q

1
2
en , t ≥ 0.

If Q is a non-negative self-adjoint trace class operator, then this series converges in the space
V , that is, it holds that BH

Q (t) ∈ L2(Ω, V ). Then, we say that BH
Q (t) is a V -valued Q-

cylindrical fBm with covariance operator Q.
Let ψ : [0, T ]→ L0

Q(V,U) such that

∞∑
n=1

‖KH(ψQ
1
2 )en‖L2([0,T ],U) <∞. (4)

Definition 2.2 Let ψ : [0, T ] → L0
Q(V,U) satisfy (4). Then, its stochastic integral with

respect to the fBm BH
Q is defined for t ≥ 0 as∫ t

0
ψ(s)dBH

Q (s) :=
∞∑
n=1

∫ t

0
ψ(s)Q

1
2 endB

H
n (s) =

∞∑
n=1

∫ t

0

(
KH(ψQ

1
2 en)

)
(s)dW (s),
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where W is a Wiener process.

Notice that if ∞∑
n=1

‖ψQ
1
2 en‖L1/H([0,T ],U) <∞, (5)

then in particular (4) holds, which follows immediately from (3).
The following lemma is proved in [8] and obtained as a simple application of Lemma 2.1.

Lemma 2.3 ([8]) For any ψ : [0, T ] → L0
Q(V,U) such that (5) holds, and for any α, β ∈

[0, T ] with α > β,

IE
∣∣∣ ∫ α

β
ψ(s)dBH

Q (s)
∣∣∣2
U
≤ cH(2H − 1)(α− β)2H−1

∞∑
n=1

∫ α

β
|ψQ

1
2 en|2Uds,

where c = c(H). If in addition

∞∑
n=1

|ψQ
1
2 en|U is uniformly convergent for t ∈ [0, T ], (6)

then

IE
∣∣∣ ∫ α

β
ψ(s)dBH

Q (s)
∣∣∣2
U
≤ cH(2H − 1)(α− β)2H−1

∫ α

β
|ψ(s)|2L0

Q(V,U)ds. (7)

Let (Ω,F , IP) be a complete probability space introduced above, Ft = F0, for t ≥ 0. The
following useful definitions come from [1].

Definition 2.4 1. A stochastic process X : [0, T ] → L2(Ω, U) is said to be continuous,
provided that, for any s ∈ [0, T ], lim

t→s
IE|X(t)−X(s)|2U = 0.

2. A stochastic process X : [0, T ]→ L2(Ω, U) is said to be stochastically bounded, whenever
lim
N→∞

sup
t∈[0,T ]

IP[|X(t)|U > N ] = 0.

Let us consider the Banach space C([0, T ];L2(Ω, U)) = C([0, T ];L2(Ω,F , IP, U)) of all
continuous and uniformly bounded processes from [0, T ] into L2(Ω, U) equipped with the sup
norm.

Definition 2.5 A continuous stochastic process X : [0, T ]→ L2(Ω, U) is said to be quadratic-
mean almost periodic, provided that, for each ε > 0, the set

J(X, ε) :=
{
κ : sup

t∈[0,T ]
IE|X(t+ κ)−X(t)|2U < ε

}
is relatively dense in IR, i.e., there exists a constant c = c(ε) > 0 such that J(X, ε)∩ [t, t+c] 6=
∅, for any t ∈ [0, T ].

Denote the set of all quadratic-mean almost periodic stochastic processes by Ĉ([0, T ], L2(Ω, U)).
Notice that this set is a closed subspace of C([0, T ];L2(Ω, U)). therefore, Ĉ([0, T ], L2(Ω, U))
equipped with the sup norm is a Banach space.
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Definition 2.6 A function b(t, Y ) : [0, T ] × L2(Ω, U) → L2(Ω, V ), which is jointly continu-
ous, is said to be quadratic-mean almost periodic in t ∈ [0, T ], uniformly for Y ∈ IK, where
IK ⊂ L2(Ω, U) is compact; if for any ε > 0, there exists a constant c(ε, IK) > 0 such that any
interval of length c(ε, IK) contains at least a number κ satisfying

sup
t∈[0,T ]

(
IE|b(t+ κ, Y )− b(t, Y )|2V

)
< ε,

for each stochastic process Y : [0, T ]→ IK.

The collection of such functions will be denoted by Ĉ([0, T ]× L2(Ω, U), L2(Ω, V )).
The following lemma is also proved in [1].

Lemma 2.7 Let C̃([−r, 0];L2(Ω, U)) be the space of all continuous functions from [−r, 0]
into L2(Ω, U) with the sup norm

‖Z‖
C̃([−r,0];L2(Ω,U))

= sup{|Z(s)|U ;Z ∈ C̃,−r ≤ s ≤ 0},

IK ⊂ L2(Ω, U)× C̃([−r, 0];L2(Ω, U)) be a compact set. Assume that the function
b(t, x, y) : [0, T ] × L2(Ω, U) × C̃([−r, 0];L2(Ω, U)) → L2(Ω, V ) be quadratic-mean almost
periodic in t ∈ [0, T ], uniformly for (x, y) ∈ IK; furthermore, there exists a constant c1 > 0
such that

|b(t, x, y)− b(t, x̃, ỹ)|2V ≤ c1

(
|x− x̃|2U + ‖y − ỹ‖2

C̃([−r,0];L2(Ω,U))

)
,

for t ∈ [0, T ] and (x, y), (x̃, ỹ) ∈ L2(Ω, U) × C̃([−r, 0];L2(Ω, U)); then for any quadratic-
mean almost periodic stochastic process ψ : [0, T ] → L2(Ω, U), the stochastic process t →
b(t, ψ(t), ψt) is quadratic-mean almost periodic.

3 Almost periodic mild solutions

In this section we study the existence of quadratic-mean almost periodic mild solutions for
stochastic delay functional differential equations

dx(t) = (Ax(t) + b(t, x(t), xt))dt+ σH(t)dBH
Q (t), t ∈ [0, T ],

x(t) = ϕ(t), −r ≤ t ≤ 0, r ≥ 0,
(8)

where BH
Q (t) is the fractional Brownian motion which was introduced in the previous section,

the initial data ϕ ∈ C̃([−r, 0];L2(Ω, U)) is a function defined by ϕt(s) = ϕ(t+ s), s ∈ [−r, 0],
and A : Dom(A) ⊂ U → U is the infinitesimal generator of a strongly continuous semigroup
S(.) on U , that is, for t ≥ 0, it holds |S(t)|U ≤ Meρt, M ≥ 1, ρ ∈ IR. The coefficients
b : [0, T ]× U × C̃([−r, 0];U)→ U and σH : [0, T ]→ L0

Q(U, V ) are appropriate functions.

Definition 3.1 A U -valued process x(t) is called a mild solution of (8) if x ∈ C̃([−r, T ];L2(Ω, U)),
x(t) = ϕ(t) for t ∈ [−r, 0], and, for t ∈ [0, T ], satisfies

x(t) = S(t)ϕ(0) +

∫ t

0
S(t− s)b(s, x(s), xs)ds+

∫ t

0
S(t− s)σH(s)dBH

Q (s) IP− a.s. (9)
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Now, we state our first main result. We will make use of the following assumptions on the
coefficients.

(Hb) The function b ∈ Ĉ([0, T ]× U × C̃, U), and there exists a constant cb > 0 such that

|b(t, x, y)− b(t, x̃, ỹ)|2U ≤ cb
(
|x− x̃|2U + ‖y − ỹ‖2

C̃

)
,

where the space C̃ is defined in Section 2, (x, y), (x̃, ỹ) ∈ U × C̃, t ∈ [0, T ].
(HσH) The function σH : [0, T ] → L0

Q(U, V )) satisfies the following conditions: for the
complete orthonormal basis {en}n∈IN in V , we have

∞∑
n=1

‖σHQ1/2en‖L2([0,T ];U) <∞.
∞∑
n=1

|σH(t, x(t))Q1/2en|U is uniformly convergent for t ∈ [0, T ].

Note that assumption (HσH) immediately imply that, for every t ∈ [0, T ],∫ t

0
|σH(s)|2L0

Q(V,U)ds <∞.

Theorem 3.2 Under the assumptions on A, the conditions (Hb) and (HσH) , for every
ϕ ∈ C̃([−r, T ];L2(Ω, U)), Eq. (8) has a unique quadratic-mean almost periodic mild solution
x whenever

γ = 2MeρT
√
Tcb < 1,

where cb is a positive constant.

Proof . We can assume that ρ > 0, otherwise we can take ρ0 > 0 such that, for t ≥ 0,
|S(t)| ≤Meρ0t. Define the operator L on Ĉ([0, T ], U) by

(Lx)(t) := S(t)ϕ(0) +

∫ t

0
S(t− s)b(s, x(s), xs)ds+

∫ t

0
S(t− s)σH(s)dBH

Q (s) IP− a.s.
:= S(t)ϕ(0) + Φx(t) + Ψ(t).

(10)
Firstly, it suffices to show that Φx(.) is quadratic-mean almost periodic whenever x is

quadratic-mean almost periodic.
Indeed, assuming that x is quadratic-mean almost periodic, using condition (Hb) and

Lemma 2.7, one can see that s 7→ b(s, x(s), xs) is quadratic-mean almost periodic. Therefore,
for each ε > 0, there exists c(ε) > 0 such that any interval of length c(ε) contains at least κ
satisfying

sup
0≤t≤T

IE
∣∣∣b(t+ κ, x(t+ κ), xt+κ)− b(t, x(t), xt)

∣∣∣2
U
<

ε

(TMeρT )2
, (11)
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for T > 0 fixed. Furthermore

IE|Φx(t+ κ)− Φx(t)|2U = IE
∣∣∣ ∫ t

0
S(t− s)b(s+ κ, x(s+ κ), xs+κ)ds−

∫ t

0
S(t− s)b(s, x(s), xs)ds

∣∣∣2
U

≤ tIE

∫ t

0

∣∣∣S(t− s)
(
b(s+ κ, x(s+ κ), xs+κ)− b(s, x(s), xs)

)∣∣∣2
U
ds

≤ tM2e2ρtIE

∫ t

0

∣∣∣b(s+ κ, x(s+ κ), xs+κ)− b(s, x(s), xs)
∣∣∣2
U
ds

≤ TM2e2ρT
∫ t

0
sup

0≤τ≤s
IE
∣∣∣b(τ + κ, x(τ + κ), xτ+κ)− b(τ, x(τ), xτ )

∣∣∣2
U
ds

< ε.

Secondly, for the chosen v > 0 small enough, we have

IE|Ψ(t+ v)−Ψ(t)|2

= IE
∣∣∣ ∫ t+v

0
S(t+ v − s)σH(s)dBH

Q (s)−
∫ t

0
S(t− s)σH(s)dBH

Q (s)
∣∣∣2

≤ 2IE
∣∣∣ ∫ t

0
[S(t+ v − s)− S(t− s)]σH(s)dBH

Q (s)
∣∣∣2 + 2IE

∣∣∣ ∫ t+v

t
S(t− s)σH(s)dBH

Q (s)
∣∣∣2

:= I1 + I1.

Applying inequality (7) to I1 we get

I1 ≤ 2cH(2H − 1)t2H−1
∫ t

0

∣∣∣S(t− s)(S(v)− Id)σH(s)
∣∣∣2
L0
Q(V,U)

ds

≤ 2cH(2H − 1)t2H−1M2e2ρt
∫ t

0

∣∣∣(S(v)− Id)σH(s)
∣∣∣2
L0
Q(V,U)

ds

≤ 2cH(2H − 1)t2H−1M4e2ρt(1 + e2ρv)

∫ t

0

∣∣∣σH(s)
∣∣∣2
L0
Q(V,U)

ds.

Applying now inequality (7) to I2 we obtain

I2 ≤ 2cH(2H − 1)v2H−1M2e2ρv
∫ t+v

0

∣∣∣σH(s)
∣∣∣2
L0
Q(V,U)

ds.

We observe that the condition (HσH) ensures the existence of a positive constants c1 and c2

such that

2cH(2H − 1)t2H−1M4e2ρt(1 + e2ρv)

∫ t

0

∣∣∣σH(s)
∣∣∣2
L0
Q(V,U)

ds ≤ c1,

and

2cH(2H − 1)v2H−1M2e2ρv
∫ t+v

0

∣∣∣σH(s)
∣∣∣2
L0
Q(V,U)

ds ≤ c2.

Therefore, for the chosen v > 0 and all t ≥ 0 we have

IE|Ψ(t+ v)−Ψ(t)|2 ≤ c1 + c2 = c3.
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From the above discussion, it is clear that the operator L maps Ĉ([0, T ], U) into itself.
Finally we claim that L is a contraction mapping on Ĉ([0, T ], U). We have

IE
∣∣∣(Lx)(t)− (Ly)(t)

∣∣∣2 = IE

∣∣∣∣∣
∫ t

0
S(t− s)

[
b(s, x(s), xs)− b(s, y(s), ys)

]
ds

∣∣∣∣∣
2

≤ 2M2e2ρtIE

∫ t

0

∣∣∣b(s, x(s), xs)− b(s, y(s), ys)
∣∣∣2
U
ds

≤ 2M2e2ρT IE

∫ t

0
sup

0≤τ≤s

∣∣∣b(τ, x(τ), xτ )− b(τ, y(τ), yτ )
∣∣∣2
U
ds

≤ 2TM2e2ρT cb sup
0≤τ≤s

(
|x− y|2U + ‖x− y‖2

C̃

)
≤ 4TM2e2ρT cb‖x− y‖2∞.

Hence,
‖(Lx)(t)− (Ly)(t)‖∞ ≤ 2MeρT

√
Tcb‖x− y‖∞ = γ‖x− y‖∞. (12)

As γ < 1, by (12), we know that L is a contraction mapping. Hence, by the contraction
mapping principle, L has a unique fixed point x, which obviously is the unique quadratic-
mean almost periodic mild solution to Eq. (8).

2

Now, we give another main result. We first need to state the following conditions:
(H′) The semigroup {S(t)}t≥0 is bounded, i.e., there exists a constant M1 > 0 such that
|S(t)|U ≤M1;

(H′b) The function b ∈ Ĉ([0, T ] × U × C̃, U), and for each natural number n, there exists a
function ηn : IR→ IR+ such that

sup
|x|≤n

IE|b(t, x(t), xt)|2U ≤ ηn(t), for (x, xt) ∈ U × C̃, t ∈ [0, T ];

(H′σH) The function σH : [0, T ]→ L0
Q(U, V )), and there exists a function ϑ : IR→ IR+ such

that∣∣∣σH(t)
∣∣∣2
L0
Q(U,V )

≤ ϑ(t), for t ∈ [0, T ];

(H′′) lim inf
n→∞

1

n

(∫ T

0
ηn(s)ds+ tr(Q)cH(2H − 1)T 2H−1

∫ T

0
ϑ(s)ds

)
= Ω <∞.

Theorem 3.3 Let the conditions (H′), (H′b), (H′σH) and (H′′) be satisfied. Then Eq. (8)
has a quadratic-mean almost periodic mild solution whenever ΩM2

1 <
1
3 .

Proof . Let L be the operator defined by (10). First, we use the Schauder fixed point theorem
to prove that L has a fixed point. The proof will be given in several steps.

Step 1. Let {xn} be a sequence such that xn → x. Using the continuity of b(t, x(t), xt) with
respect to x(t) and xt, we get b(t, xn(t), (xn)t)→ b(t, x(t), xt) as n→∞. For each 0 ≤ t ≤ T
we have

IE
∣∣∣(Lxn)(t)− (Lx)(t)

∣∣∣2 = IE
∣∣∣ ∫ t

0
S(t− s)[b(s, xn(s), (xn)s)− b(s, x(s), xs)]ds

∣∣∣2
≤ 2M2

1 IE

∫ t

0

∣∣∣b(s, xn(s), (xn)s)− b(s, x(s), xs)
∣∣∣2
U
ds

≤ 2TM2
1 sup

0≤τ≤s
IE|b(τ, xn(τ), (xn)τ )− b(τ, x(τ), xτ )|2U
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which implies that L is continuous.
Step 2. Let Dn = {x ∈ Ĉ([0, T ], U); |x| ≤ n}, for each natural number n. We want to

show that the operator L maps bounded sets into bounded sets, i.e. there exists a natural
number n∗ such that LDn∗ ⊂ Dn∗ . If it is not true, then for each n, there exist xn ∈ Dn and
tn ∈ [0, T ] such that Lxn(tn) > n. This, together with (H′), (H′b), (H′σH) and (H′′) yields

n < |(Lxn)(tn)|2U

= IE

∣∣∣∣∣S(t)ϕ(0) +

∫ tn

0
S(tn − s)b(s, xn(s), (xn)s)ds+

∫ tn

0
S(tn − s)σH(s)dBH

Q (s)

∣∣∣∣∣
2

≤ 3IE|S(t)ϕ(0)|2 + 3IE

∣∣∣∣∣
∫ tn

0
S(tn − s)b(s, xn(s), (xn)s)ds

∣∣∣∣∣
2

+3IE

∣∣∣∣∣
∫ tn

0
S(tn − s)σH(s)dBH

Q (s)

∣∣∣∣∣
2

≤ 3M2
1 IE|ϕ(0)|2 + 3

∫ T

0
IE|S(t− s)b(s, x(s), xs)|2ds

+ 3M2
1 tr(Q)cH(2H − 1)T 2H−1

∫ T

0
|σH(s)|2L0

Q(U,V )ds

≤ 3M2
1 IE|ϕ(0)|2 + 3M2

1

∫ T

0
ηn(s)ds+ 3M2

1 tr(Q)cH(2H − 1)T 2H−1
∫ T

0
ϑ(s)ds.

(13)
Dividing both sides of (13) by n and taking the lower limit as n→∞, one obtains

1 < lim inf
n→∞

3M2
1

n

∫ T

0
ηn(s)ds+

3M2
1 tr(Q)cH(2H − 1)T 2H−1

n

∫ T

0
ϑ(s)ds.

This is a contradiction to the assumption ΩM2
1 <

1
3 . Then LDn∗ ⊂ Dn∗ .

Step 3. Let Dn∗ be a bounded set as in Step 2, and x ∈ Dn∗ . Then for t1 < t2 we have

IE|(Lx)(t2)− (Lx)(t1)|2U

≤ 3IE|[S(t2)− S(t1)]ϕ(0)|2 + 3IE

∣∣∣∣∣
∫ t2

0
S(t2 − s)b(s, x(s), xs)ds−

∫ t1

0
S(t1 − s)b(s, x(s), xs)ds

∣∣∣∣∣
2

+ 3IE

∣∣∣∣∣
∫ t2

0
S(t2 − s)σH(s)dBH

Q (s)−
∫ t1

0
S(t1 − s)σH(s)dBH

Q (s)

∣∣∣∣∣
2

≤ 3IE|[S(t2)− S(t1)]ϕ(0)|2

+ 3IE

∣∣∣∣∣
∫ t2

0
S(s)b(t2 − s, x(t2 − s), xt2−s)ds−

∫ t1

0
S(s)b(t1 − s, x(t1 − s), xt1−s)ds

∣∣∣∣∣
2

+ 3IE

∣∣∣∣∣
∫ t2

0
S(s)σH(t2 − s)dBH

Q (s)−
∫ t1

0
S(s)σH(t1 − s)dBH

Q (s)

∣∣∣∣∣
2

≤ 3IE|[S(t2)− S(t1)]ϕ(0)|2 + 6IE

∣∣∣∣∣
∫ t2

t1
S(s)b(t2 − s, x(t2 − s), xt2−s)ds

∣∣∣∣∣
2

+ 6IE

∣∣∣∣∣
∫ t1

0
S(s)[b(t2 − s, x(t2 − s), xt2−s)− b(t2 − s, x(t2 − s), xt2−s)]ds

∣∣∣∣∣
2

+ 6IE

∣∣∣∣∣
∫ t1

0
S(s)[σH(t2 − s)− σH(t1 − s)]dBH

Q (s)

∣∣∣∣∣
2

+ 6IE

∣∣∣∣∣
∫ t2

t1
S(s)σH(t2 − s)dBH

Q (s)

∣∣∣∣∣
2

.
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Applying (7) of Lemma 2.3, the assumptions (H′b) and (H′σH), we obtain

IE|(Lx)(t2)− (Lx)(t1)|2U
≤ 3IE|[S(t2)− S(t1)]ϕ(0)|2 + 6M2

1

∫ t2

t1
IE|b(t2 − s, x(t2 − s), xt2−s)|2ds

+ 6M2
1

∫ t1

0
IE|b(t2 − s, x(t2 − s), xt2−s)− b(t1 − s, x(t1 − s), xt1−s)|2ds

+ 6M2
1 tr(Q)cH(2H − 1)T 2H−1

∫ t1

0
|σH(t2 − s)− σH(t1 − s)|2L0

Q(U,V )ds

+ 6M2
1 tr(Q)cH(2H − 1)T 2H−1

∫ t2

t1
|σH(t2 − s)|2L0

Q(U,V )ds

≤ 3IE|[S(t2)− S(t1)]ϕ(0)|2 + 6M2
1

∫ t2

t1
ηt2−n(s)ds

+6M2
1 tr(Q)cH(2H − 1)T 2H−1

∫ t2

t1
ϑ(t2 − s)ds

+ 6M2
1

∫ t1

0
IE|b(t2 − s, x(t2 − s), xt2−s)− b(t1 − s, x(t1 − s), xt1−s)|2ds

+ 6M2
1 tr(Q)cH(2H − 1)T 2H−1

∫ t1

0
|σH(t2 − s)− σH(t1 − s)|2L0

Q(U,V )ds.

Thus L is equicontinuous.
It remains to prove that Θ(t) = {Lx(t);x ∈ Dn∗} is relatively compact in U . S(t) is

compact in U , since it is generated by the dense operator A. Then Θ(0) = S(0)x0 is relatively
compact in U .

Now, for t fixed and for each ε ∈ (0, t), x ∈ Dn∗ we define Lεx(t) as follow

Lεx(t) = S(t)ϕ(0) +

∫ t−ε

0
S(t− s)b(s, x(s), xs)ds+

∫ t−ε

0
S(t− s)σH(s)dBH

Q (s). (14)

Then the sets Θε(t) = {Lεx(t);x ∈ Dn∗} are relatively compact in U . Moreover, for each
x ∈ Dn∗ , one has

|Lx(t)− Lεx(t)|2U ≤ 2M2
1

(∫ t

t−ε
ηn(s)ds+ tr(Q)cH(2H − 1)T 2H−1

∫ t

t−ε
ϑ(s)ds

)
, (15)

from which, by combining the condition (H′′), follows that there are relatively compact sets
arbitrarily close to Θ(t) and hence Θ(t) is also relatively compact in U . Thus, the Arzela-
Ascoli theorem implies that LDn∗ is relatively compact, and L is completely continuous on
Dn∗ .

As a consequence of Steps 1-3 together with the Schauder fixed point theorem, we deduce
that L has a fixed point in Dn∗ which is a quadratic-mean almost periodic mild solution to
Eq. (8).

2

Now, we give the third main result. In this sequence, we require the following assumptions.
(H′′b) The function b ∈ Ĉ([0, T ]× U × C̃, U), and there exists a function η : IR → IR+ such
that

sup IE|b(t, x(t), xt)|2U ≤ η(t), for (x, xt) ∈ U × C̃, t ∈ [0, T ];

(H′′′) The integral

∫ t

0
η(t−s)ds+tr(Q)cH(2H−1)T 2H−1

∫ t

0
ϑ(t−s)ds exists for all t ∈ [0, T ].
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Theorem 3.4 Let the conditions (H′′b), (H′σH) and (H′′′) be satisfied. Then Eq. (8) has a
quadratic-mean almost periodic mild solution.

Proof . We shall also apply the Schauder fixed point theorem to prove this theorem. The
proof of Step 1 in this theorem is the same as the proof of Step 1 in Theorem 3.3 and so is
omitted. Now, we start our proof from Step 2.

Step 2. Let D = {x ∈ Ĉ([0, T ], U); |x| ≤ k}, where k = 3M2
1 (IE|ϕ(0)|2 + M2) and M2 is

the integral defined in (H′′′). We have

|(Lx)(t)|2U = IE

∣∣∣∣∣S(t)ϕ(0) +

∫ t

0
S(s)b(t− s, x(t− s), xt−s)ds+

∫ t

0
S(s)σH(t− s)dBH

Q (s)

∣∣∣∣∣
2

≤ 3M2
1 IE|ϕ(0)|2 + 3

∫ t

0
IE|S(s)b(t− s, x(t− s), xt−s)|2ds

+ 3M2
1 cH(2H − 1)T 2H−1tr(Q)

∫ t

0
σH(t− s)|2L0

Q(U,V )ds

≤ 3M2
1

(
IE|ϕ(0)|2 +

∫ t

0
η(t− s)ds+ cH(2H − 1)T 2H−1tr(Q)

∫ t

0
ϑ(t− s)ds

)
= k.

Therefore, L : D → D.
Step 3. Let D be a bounded set as in Step 2, t1 < t2 and x ∈ D. We have

IE|(Lx)(t2)− (Lx)(t1)|2

≤ 3IE|S(t2 − S(t1))ϕ(0)|2 + 6M2
1

∫ t2

t1
η(t2 − s)ds+ 6M2

1 cH(2H − 1)T 2H−1tr(Q)

∫ t2

t1
ϑ(t2 − s)ds

+ 6M2
1

∫ t1

0
IE|b(t2 − s, x(t2 − s), xt2−s)− b(t1 − s, x(t1 − s), xt1−s)|2ds

+ 6M2
1 cH(2H − 1)T 2H−1tr(Q)

∫ t1

0
|σH(t2 − s)− σH(t1 − s)|2L0

Q(U,V )ds.

Thus, L is equicontinuous.
Set Θ(t) = {Lx(t) : x ∈ D}. Fix t, for each ε ∈ (0, t) and x ∈ D. Let Lε be the

operator defined by (14); then the sets Θε(t) = {Lεx(t) : x ∈ D} are relatively compact in U .
Meanwhile, (15) implies that Lε arbitrarily close to Θ(t) and Θ(t) is also relatively compact
in U . Thus, the ArzelaAscoli theorem implies that LD is relatively compact, L is completely
continuous on D.
Finally, we can conclude from Step 1-2 that LD → D is continuous and completely continuous.
Thus, L has a fixed point in D by using the Schauder fixed point theorem. So, it follow that
Eq. (8) has at least a quadratic-mean almost periodic mild solution.

2

4 Stability

As in this section we first assume that the operator A is a closed linear operator generat-
ing a strongly continuous exponentially stable semigroup S(.) on U , that is, for t ≥ 0, it
holds |S(t)|U ≤ Me−λt, M,λ > 0. We also assume in addition to assumption (HσH) that∫ ∞

0
eλs|σH(s)|2L0

Q(U,V )ds <∞. Our first result on the stability of the quadratic-mean almost

periodic mild solution is the following theorem.
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Theorem 4.1 Under the assumptions on A, the conditions (Hb) and (HσH) , the quadratic-
mean almost periodic mild solution x(t) to Eq. (8) is globally exponentially stable.

Proof . Using the assumptions, one can choose a positive constant η such that 0 < η < λ.
One has

eηtIE|x(t)|2 ≤ 3eηtIE|S(t)ϕ(0)|2 + 3eηtIE

∣∣∣∣∣
∫ t

0
S(t− s)b(s, x(s), xs)ds

∣∣∣∣∣
2

+ eηtIE

∣∣∣∣∣
∫ t

−∞
S(t− s)σH(s)dBH

Q (s)

∣∣∣∣∣
2

= 3eηtIE|S(t)ϕ(0)|2 + I1 + I2.

(16)

Estimating the terms on the right-hand side of (16) yields

3eηtIE|S(t)ϕ(0)|2 ≤ 3e(η−ρ)tM2IE|ϕ(0)|2 → 0 as t→∞, (17)

and

I1 ≤ 3eηtM2cb

∫ t

0
e−λ(t−s)ds

∫ t

0
e−λ(t−s)

(
|x(s)|2U + ‖xs‖2C̃

)
ds.

For the chosen parameter θ, and any x(t) ∈ U we have

I1 ≤ 3
λM

2cbe
ηt
∫ t

0
e−λ(t−s)

(
|x(s)|2U + ‖xs‖2C̃

)
ds

= 3
λM

2cbe
−θt

∫ t

0
eθseηs

(
|x(s)|2U + ‖xs‖2C̃

)
ds.

Now, for any ε > 0, there exists a constant v > 0 such that eηs|x(s− r)|2U < ε, for s ≥ v, and
we have

I1 ≤ 3
λM

2cbe
−θt

∫ t

v
eθseηs

(
|x(s)|2U + ‖xs‖2C̃

)
ds

+ 3
λM

2cbe
−θt

∫ v

0
eθseηs

(
|x(s)|2U + ‖xs‖2C̃

)
ds

≤ 6M2cbε
λθ + 3

λM
2cbe

−θt
∫ v

0
eθseηs

(
|x(s)|2U + ‖xs‖2C̃

)
ds.

(18)

Using the fact that e−θt → 0 as t → ∞, it follows that there exists a constant u ≥ v such
that for any t ≥ u,

3

λ
M2cbe

−θt
∫ v

−∞
eθseηs

(
|x(s)|2U + ‖xs‖2C̃

)
ds < ε− 6M2cbε

λθ
. (19)

Thus, from (18) and (19), we get for any t ≥ u,

I1 = 4eηtIE

∣∣∣∣∣
∫ t

0
S(t− s)b(s, x(s), xs)ds

∣∣∣∣∣
2

< ε,

which implies

I1 = 4eηtIE

∣∣∣∣∣
∫ t

0
S(t− s)b(s, x(s), xs)ds

∣∣∣∣∣
2

→ 0 as t→∞. (20)
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Estimating I2, for any x(t) ∈ U , t ≥ −r, we have

I2 ≤ 3cH(2H − 1)M2T 2H−1eηt
∫ t

0
e−2λ(t−s)|σH(s)|2L0

Q(U,V )ds

≤ 3cH(2H − 1)M2T 2H
∫ t

0
eλs|σH(s)|2L0

Q(U,V )ds,

and the additional assumption to (HσH) ensures the existence of a positive constant ε such
that

3cH(2H − 1)M2T 2H
∫ t

0
eλs|σH(s)|2L0

Q(U,V )ds < ε for all t ≥ −r. (21)

Thus, from (17), (20) and (21), we obtain eηtIE|x(t)|2 → 0 as t → ∞. The quadratic-mean
almost periodic mild solution of (8) is exponentially stable.

2

Now we study the uniform stability of the quadratic-mean almost periodic mild solution to
Eq. (8). We first require the following assumption:
(H′′′b) The function b ∈ Ĉ([0, T ]× U × C̃, U), and there exists a function cb : IR→ IR+ such
that

|b(t, x, y)|2U ≤ cb(t)
(
|x|2U + ‖y‖2

C̃

)
,

where (x, y) ∈ U × C̃, t ∈ [0, T ].

Theorem 4.2 Under the assumptions (H′), (HσH) and (H′′′b), the quadratic-mean almost

periodic mild solution to Eq. (8) is uniformly stable whenever M2
1 I <

1
6 , where I =

∫ t

0
cb(s)ds.

Proof . Let x(t) be a solution of

x(t) = S(t)ϕ(0) +

∫ t

0
S(t− s)b(s, x(s), xs)ds+

∫ t

0
S(t− s)σH(s)dBH

Q (s) (22)

such that x(0) = x0, where x0 ∈ U . Then

|x(t)|2U ≤ 3IE|S(t)ϕ(0)|2 + 3IE

∣∣∣∣∣
∫ t

0
S(t− s)b(s, x(s), xs)ds

∣∣∣∣∣
2

+ 3IE

∣∣∣∣∣
∫ t

0
S(t− s)σH(s)dBH

Q (s)

∣∣∣∣∣
2

≤ 3M2
1 IE|ϕ(0)|2 + 3M2

1

∫ t

0
cb(s)

(
|x(s)|2U + ‖xs‖2C̃

)
ds

+ 3M2
1 cH(2H − 1)T 2H−1tr(Q)

∫ t

0
|σH(s)|2L0

Q(U,V )ds.

Using the assumption (HσH) we obtain

|x(t)|2U ≤ 3M2
1 ‖ϕ(0)‖2∞ + 6M2

1

(∫ t

0
cb(s)ds

)
‖x‖2∞ + c3

= 3M2
1 ‖ϕ(0)‖2∞ + 6M2

1 I‖x‖2∞ + c3,

Galaxy
Text Box
24



c3 is a positive positive constant.
Thus

‖x‖2∞ ≤ 3M2
1 ‖ϕ(0)‖2∞ + 6M2

1 I‖x‖2∞ + c3,
6M2

1 I < 1 yields

‖x‖2∞ ≤
1

1− 6M2
1 I

(
c3 + 3M2

1 ‖ϕ(0)‖2∞
)
.

Therefore, if ‖ϕ(0)‖2∞ < λ(ε), then ‖x‖2∞ < ε, which implies that the quadratic-mean almost
periodic mild solution to Eq. (8) is uniformly stable.

2

5 Example

Consider the following stochastic evolution equation:
dξ(t, x) =

[
∂2

∂x2
ξ(t, x) + δ[ξ(t, x)(sin(t) + sin(

√
2t))]

]
dt+ σH(t)dBH

Q (t), t ∈ [0, 1], x ∈ [0, π],

ξ(t, 0) = ξ(t, π) = 0, t ∈ [0, 1],
ξ(t, x) = ϕ(t, x), t ∈ [−r, 0],

(23)
where r ∈ (0, 1), ϕ(., x) ∈ C̃([−r, 0], IR) and BH

Q (t) is a Q-cylindrical fractional Brownian

motion with Hurst parameter H ∈ (1
2 , 1) satisfying tr(Q) = 1. Denote U = L2(IP, L2[0, π]),

and define A : D(A) ⊂ U → U given by A = ∂2

∂x2
with

D(A) = {ξ(.) ∈ U : ξ′′ ∈ U, ξ′ ∈ U is absolutely continuous on [0, π], ξ(0) = ξ(π) = 0}.
It is well known that a strongly continuous semigroup S, generated by the operator A,

satisfies |S(t)| ≤ e−t, for t ≥ 0. Taking b(t, ϕ, ϕt)(θ) = δ[ϕ(θ)(sin(t) + sin(
√

2t))], and σH
satisfies assumption (HσH). Thus one has

|b(t, x, xt)− b(t, y, yt)|2U ≤ 4δ2|x− y|2U .
Therefore, Eq. (23) has a quadratic-mean almost periodic mild solution, provided that,

δ <
√

3
6 according to Theorem 3.2.

Let ηn(t) = δn(t) = δ2(sin(t)+sin(
√

2t))2 for n ∈ IN, Eq. (23) has a quadratic-mean almost
periodic mild solution according to Theorem 3.3.

Let η(t) = δn(t) = δ2(sin(t) + sin(
√

2t))2, Eq. (23) has a quadratic-mean almost periodic
mild solution according to Theorem 3.4.
The quadratic-mean almost periodic mild solution to Eq. (23) is exponentially stable accord-
ing to Theorem 4.1.
The quadratic-mean almost periodic mild solution to Eq. (23) is uniformly stable, provided

that, δ <
√

3
6 according to Theorem 4.2.
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