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1. Introduction

Throughout this paper all rings are commutative with identity. LetA be a ring and letA[X1, . . . , Xn] be

the polynomial algebra over A. For simplicity, for any ν = (i1, . . . , in) ∈ Nn, we denote Xν = Xi1
1 · · ·Xin

n

and aν = ai1,...,in . We also denote X = (X1, . . . , Xn) and N(ν) = i1 + i2 + ... + in. Thus we may write
P ∈ A[X] as

(1.1) P =
∑
ν

aνX
ν , aν ∈ A.

If g1, ..., gn ∈ A and ν = (i1, . . . , in) ∈ Nn, we denote gν = gi11 ...g
in
n .

Let A,B be two rings. A homomorphism of rings φ : A→ B is called an epimorphism of rings if for any
pair of homomorphisms of rings ψ1, ψ2 : B → C, in another arbitrary ring C, the condition ψ1φ = ψ2φ
implies ψ1 = ψ2. The epimorphism of rings φ is called a flat epimorphism of rings if the A-module B is
flat (see [1], Ch. 1).

The following result is known.

Theorem 1.1. ([4], p. 261) Let ϕ : A → B be a homomorphism of rings. The following assertions are
equivalent:

a) ϕ is a flat epimorphism of rings.
b) Let F = {I ideal of A such that ϕ(I)B = B}. Then:

i) For any b ∈ B, there exists I ∈ F such that ϕ(I)b ⊆ ϕ(A);
ii) If x ∈ A, and ϕ(x) = 0, there exists I ∈ F such that Ix = 0.

If K is a field, a finitely generated K-algebra A is called an affine K-algebra. By an affine subdomain
of Sp A := (MaxA,A), where Max A is the set of maximal ideals of A, we understand a subset U ⊂MaxA
and a homomorphism of affine algebras ϕ : A→ B such that:

i) ϕa(Max B) ⊂ U , where ϕa(M) := ϕ−1(M),
ii) If ψ : A→ C is a homomorphism of affine algebras such that ψa(Max C) ⊂ U , then there exists a

unique homomorphism of affine algebras ψ̄ : B → C such that ψ̄φ = ψ.
Let A be a ring. A function ‖ ‖ : A → [0,∞) is called a non-archimedean semi-norm on A if the

following properties are satisfied:
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i) ‖0‖ = 0,
ii) ‖x− y‖ ≤ max{‖x‖, ‖y‖}, for all x, y ∈ A,
iii) ‖xy‖ ≤ ‖x‖‖y‖, for all x, y ∈ A,
iv) ‖1‖ ≤ 1.

A non-archimedean semi-norm is called a non-archimedean norm if
v) ‖x‖ = 0, x ∈ A, implies x = 0.
In this case the pair (A, ‖ ‖) is called a normed ring.
Let (A, ‖ ‖A) be a semi-normed ring (that is ‖ ‖A is a non-archimedean semi-norm on A). If P ∈

A[X1, ..., Xn] is given by (1.1), define the Gauss semi-norm of P (see [2], p. 36) by

(1.2) ‖P‖ = max
ν
‖aν‖A.

Throughout this paper the semi-norm on A[X1, ..., Xn] will be the Gauss semi-norm.
If (A, ‖ ‖) is a semi-normed ring and I be an ideal of A. Denote A/I the quotient ring of A with

respect to I and π : A→ A/I the natural homomorphism. Then (A/I, ‖ ‖res), where

(1.3) ‖π(a)‖res := inf
a′−a∈I

‖a′‖,

is a semi-normed ring. The corresponding topology on A/I is called the quotient topology.
Let A and B be two semi-normed rings. A ring homomorphism φ : A → B is said to be strict if the

induced isomorphism φ̄ : A/Kerφ → φ(A) is a homeomorphism (see [2], p. 21). Here the topology on
A/Kerφ is the quotient topology and on φ(A) we consider the induced topology from B.

If | | is a non-archimedean norm on A such that |xy| = |x||y|, for all x, y ∈ A, then | | is called a
non-archimedean absolute value (valuation) on A and the pair (A, | |) is called a valued ring.

Let (K, | |) be a valued field and let A = K[X1, ..., Xn]/I be a K-affine algebra. Throughout this paper
we consider on A the quotient topology defined by Gauss norm on K[X1, ..., Xn].

Let (K, | |) be a complete valued field. For a positive integer n the following K-subalgebra of the
K-algebra of formal power series in n indeterminates over K (see [2], p. 192):

Tn = K < X1, ..., Xn >:= {
∑

i1,...,in

ai1...inX
i1
1 ...X

in
n : ai1...in ∈ K, lim

i1+...+in→∞
|ai1...in | = 0}

is called the Tate algebra in n indeterminates over K.
Each residue algebra Tn/I of Tn by an ideal I of Tn is a K-Banach algebra with respect to the residue

norm defined by (1.3) (see [2], p. 221). This last K-Banach algebra Tn/I is called a K-affinoid algebra.
An affinoid subdomain of Sp A := (MaxA,A), where A is a K-affinoid algebra is a subset U ⊂MaxA

and a homomorphism of affinoid algebras ϕ : A→ B such that:
i) ϕa(Max B) ⊂ U , where ϕa(M) := ϕ−1(M),
ii) If ψ : A→ C is a homomorphism of affine algebras such that ψa(Max C) ⊂ U , then there exists a

unique homomorphism of affinoid algebras ψ̄ : B → C such that ψ̄φ = ψ.
As a corollary of a theorem of Gerritzen and Grauert (see [2], p. 309) it is known that an affinoid sub-

domain is a finite union of rational subdomains (defined in [2], p. 282). Moreover, a rational subdomain
is constructed as the completion of a suitable ring of fractions (see [2], p. 232). As a continuation of the
paper [3] my teacher Nicolae Popescu proposed, about ten years ago, to construct affinoid subdomains as
completions of affine domains, which generalize the case when B is a ring of fractions of A. This paper,
written to the memory of Nicolae Popescu (1937-2010), is a first step in this direction.

The readers are expected to be familiar with the basic notations and results of commutative algebra
and non-archimedean analysis, which can be found in, e.g. [5] and [2], respectively.
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2. Affine subdomains

Let A be a ring and let I = (g1, g2, ..., gn) be a finitely generated ideal of A. For a fixed non-negative
integer m, denote

(2.1) B = A[X1, ..., Xn]/J, J = (

n∑
i=1

giXi − 1,gνXj − a(ν)j ),

where are considered all ν = (i1, ..., in), with N(ν) = m, and a
(ν)
j ∈ A, j = 1, 2, ..., n. Denote by

φI : A→ B the canonical homomorphism.
In order to give a sufficient condition under which φI is a flat epimorphism of rings we prove the

following result:

Lemma 2.1. Let A be a ring and let m be a non-negative integer. If, in A[X1, . . . , Xn],

(2.2)
∑

ν = (i1, ..., in)
N(ν) ≤ m

aν(α1X1 − β1)i1 ...(αnXn − βn)in = 0,

where aν , αj , βj ∈ A, j = 1, 2, ..., n, then for every τ = (j1, ..., jn), with N(τ) = m it follows that

(2.3) ατaν = 0, for all ν with N(ν) ≤ m, α = (α1, ..., αn).

Proof. We use mathematical induction on m. Since (2.3) holds for m = 0, assume it holds for m = s.
We note that, for every ν = (i1, ..., in), δ = (j1, ..., jn), with N(ν) = m, N(δ) ≤ m − 1, there exist

cδν ∈ A such that

(2.4) (α1X1 − β1)i1 ...(αnXn − βn)in = ανXν +
∑

δ = (j1, ..., jn)
N(δ) ≤ m− 1

cδν(α1X1 − β1)j1 ...(αnXn − βn)jn .

Then, for m = s+ 1, the equation (2.2) can be written as

(2.5)
∑

τ = (j1, ..., jn)
N(τ) = s+ 1

aτα
τXτ +

∑
ν = (i1, ..., in)
N(ν) ≤ s

a′ν(α1X1 − β1)i1 ...(αnXn − βn)in = 0,

where

(2.6) a′ν = aν +
∑

τ = (j1, ..., jn)
N(τ) = s+ 1

aτ cν,τ , N(ν) ≤ s, cν,τ ∈ A.

By (2.5) we get

(2.7) ατaτ = 0, for all τ = (j1, ..., jn) with N(τ) = s+ 1.

Since (2.3) holds for m = s, by equations (2.2), (2.5) and (2.7), it follows that for all σ = (r1, ..., rn), with
N(σ) = s, we obtain

(2.8) ασa′ν = 0, for all ν with N(ν) ≤ s.

Now, by (2.6)-(2.8), it follows that

(2.9) ατaν = 0, for all ν with N(ν) ≤ s+ 1,

which implies the lemma. �
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Theorem 2.2. Let I = (g1, ..., gn) be an ideal of A and let a
(ν)
j ∈ A, where j = 1, 2, ..., n, N(ν) = m and

m is a fixed positive integer. If there exists N ∈ N such that for all τ with N(τ) = m− 1,

(2.10) IN (gτ −
n∑
j=1

a
(τ+ε(j))
j ) = 0, ε(j) = (δ1,j , ..., δn,j),

(2.11) IN (a
(τ+ε(s))
j gr − a(τ+ε

(r))
j gs) = 0, j, r, s = 1, 2, ..., n,

then φI : A→ B, where B is defined in (2.1), is a flat epimorphism of rings.

Proof. Let F = {I ′ : I ′ an ideal of A, ϕI(I
′)B = B}. Then, by (2.1), I ∈ F and, for all j = 1, 2, ..., n,

φI(I
m)X̄j ⊂ φI(A), where X̄j is the canonical image of Xj in B. Hence it follows that condition b) i)

from Theorem 1.1 is fulfilled.
Now we verify condition b) ii) from Theorem 1.1.

If x ∈ A and φI(x) = 0, then, for every j = 1, 2, ..., n and ν, with N(ν) = m, there exist P,Q
(ν)
j ∈

A[X1, ..., Xn] such that

(2.12) x = P (
n∑
j=1

gjXj − 1) +

n∑
j=1

∑
ν = (i1, ..., in)
N(ν) = m

Q
(ν)
j (gνXj − a(ν)j ).

If σ = (r1, ..., rn), with N(σ) = m, there exists a positive integer t, and τ with N(τ) = m− 1 such that

σ = τ + ε(t). Hence, by (2.10), INgσ = INgτ+ε
(t)

= IN
n∑
j=1

a(τ+ε
(j))gt and

(2.13) IN

gσx− P
n∑
j=1

(gσgjXj − gta(τ+ε
(j))

j )− gσ
n∑
j=1

∑
ν = (i1, ..., in)
N(ν) = m

(gνXj − a(ν)j )Q
(ν)
j

 = 0.

Since, by (2.11), IN (gta
(τ+ε(j))
j − gja(σ)j ) = 0 and IN (gσa

(ν)
j − gνa

(σ)
j ) = 0, by denoting

(2.14) Sj = gjP +
∑

ν = (i1, ..., in)
N(ν) = m

gνQ
(ν)
j ,

the equation (2.13) becomes

(2.15) IN

gσx−
n∑
j=1

(gσXj − a(σ)j )Sj

 = 0, for all σ with N(σ) = m.

Denote

d = max
1≤j≤n

(degSj),

which, by (2.14), is independent of ν. Then, by (2.4), for all θ = (s1, ..., sn), with N(θ) = ndm + 1, it
follows that there exists σ = (r1, ..., rn), with N(σ) = m, such that

(2.16) gθSj =
∑

δ = (t1, ..., tn)
N(δ) ≤ d

b
(δ)
j

(
gσX1 − a(σ)1

)t1
...
(
gσXn − a(σ)n

)tn
, b

(δ)
j ∈ A.
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Since IN is finitely generated, by (2.15), (2.16) and Lemma 2.1 with a0 = gθ+γ , where N(γ) = N , it
follows that IMx = 0, where M ≥ N +m+ ndm+ 1. Thus the condition b) ii) from Theorem 1.1 holds
and φI is a flat epimorphism of rings. �

Corollary 2.3. Under the hypotheses of Theorem 2.2, for all I1 ∈ F , there exists a non-negative integer
M such that IM ⊂ I1.

Proof. If I1 ∈ F , there exist a positive integer t, xi ∈ I1, bi ∈ B, i = 1, 2, ..., t, such that

(2.17)

t∑
i=1

ϕI(xi)bi = 1.

By Theorems 1.1 b) i) and 2.2 we can choose a non-negative integer M1 such that ϕI(I
M1)bi ⊂ ϕI(A).

Hence we get, for all σ, with N(σ) = M1,

(2.18) ϕI(g
σ)bi = ϕI(α

(σ)
i ), α

(σ)
i ∈ A.

By (2.17) and (2.18) it follows that

ϕI(g
σ) =

t∑
i=1

ϕI(xiα
(σ)
i ),

and by Theorem 2.2 and by Theorem 1.1 b) ii) there exists a non-negative integer M2 such that, for all
σ, with N(σ) = M1, we get

(2.19) IM2(gσ −
t∑
i=1

xiα
(σ)
i ) = 0.

Since xi ∈ I1, by (2.19), it follows that for M = M1 +M2, IM ⊂ I1. �

Example 2.4. Let A be a ring and let I = (g1, ..., gn) be an ideal of A. We choose, for example,

the elements b
(s)
j ∈ A, j, s = 1, 2, ..., n, such that

n∑
j=1

b
(j)
j = 1, and, for j 6= s, b

(s)
j = gs. If we take

a
(τ+ε(s))
j = gτ b

(s)
j , it follows that (2.10) and (2.11) hold. Thus ϕI is a flat epimorphism of rings.

Remark 2.5. Let K be a field and let A be a K-affine algebra. If B is defined by (2.1), then, by Theorem
2.2, U = φaI (Max B), is an affine subdomain of Sp A = (U , A) (see [3]).

Theorem 2.6. Let K be a field and let φ : A → B be a homomorphism of K-affine algebras such that
U = φa(MaxB) and φ define an affine subdomain of Sp A. Let F = {I ′ ideal in A;φ(I ′)B = B}. If
there exists I ∈ F such that, for all I ′ ∈ F , there exists a positive integer t such that It ⊂ I ′, then there
exist the positive integers n, N , m, and for all τ ∈ Nn with N(τ) = m − 1, i = 1, 2, ..., n, there exist

a
(τ+ε(s))
i ∈ A, s = 1, 2, ..., n, such that we can take I = (g1, ..., gn) such that (2.10), (2.11) hold.

Proof. Since U and φ define an affine subdomain of Sp A, by Theorem 3.2 from [3], φ is a flat epimorphism
of rings. Because I ∈ F it follows that there exists a positive integer n such that

(2.20)

n∑
i=1

φ(gi)bi = 1, gi ∈ I, bi ∈ B.

Without loss of generality we may assume I = (g1, ..., gn). By Theorem 1.1 b) i) and by hypotheses there
exists a positive integer m such that, for all ν with N(ν) = m, we get

(2.21) φ(gν)bi = φ(a
(ν)
i ), a

(ν)
i ∈ A.

If τ ∈ Nn with N(τ) = m− 1, by (2.21),

φ(a
(τ+ε(r))
i )φ(gs) = φ(gτ+ε

(r)

)biφ(gs) = φ(gτ+ε
(s)

)biφ(gr) = φ(a
(τ+ε(s))
i )φ(gr), r, s = 1, ..., n.
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Then, by Theorem 1.1 b) ii), there exists a positive integer n1 such that

In1(a
(τ+ε(s))
j gr − a(τ+ε

(r))
j gs) = 0, j, r, s = 1, 2, ..., n.

Similarly, by (2.20) and (2.21), we get

φ(gτ ) =

n∑
j=1

φ(gτ+ε
(j)

)bj =

n∑
j=1

φ(a
(τ+ε(j))
j ).

Then, by Theorem 1.1 b) ii), there exists a positive integer n2 such that

In2(gτ −
n∑
j=1

a
(τ+ε(j))
j ) = 0.

By taking N = max{n1, n2} it follows the statement of the theorem. �

3. Affinoid subdomains

Let K be a complete non-archimedean valued field and let A be a K-affine algebra. We need the
following result:

Lemma 3.1. Let A = K[Z1, ..., Zr]/I1 be a K-affine algebra, where I1 is an ideal of K[Z1, ..., Zr]. Then

Ã (the completion of A with respect to the residue semi-norm defined by Gauss semi-norme) is an affinoid
K-algebra.

Proof. Since the canonical homomorphism of semi-normed K-affine algebra πA : K[Z1, ..., Zr] → A is a

strict homomorphism which is onto, by Corollary 6 from [2], p. 23, we get that π̃A : K < Z1, ..., Zr >→ Ã
is onto. Hence it follows the lemma. �

If I is an ideal of A, denote by AI the algebra B defined in (2.1).

Theorem 3.2. Let K be a complete non-archimedean valued field, let A be a K-affine algebra and let
I be an ideal of A satisfying the conditions (2.10) and (2.11) (see Theorem 2.6). Then the canonical

homomorphism φ̃I : Ã→ ÃI defines the affinoid subdomain U = φ̃aI (Max ÃI) of Sp Ã.

Proof. By the canonical commutative diagram

-?

-

?
Ã < X1, ..., Xn >

A[X1, ..., Xn] AI

ÃIπ̃

iA[X1,...Xn] iAI

π

,

where π is a strict homomorphism of rings which is onto and, by Proposition 5 from [2], p. 22, it follows

that ÃI ∼= Ã < X1, ..., Xn > /JÃ < X1, ..., Xn >, because J̃ = JÃ < X1, ..., Xn > (see [2], Proposition
3, p. 222).

Let ψ : Ã→ C be a homomorphism of K-affinoid algebras such ψa(Max C) ⊂ φ̃aI (Max ÃI). We prove
that ψ(I)C = C.

Suppose the contrary. Then there exists MC ∈ Max C such that ψ(I)C ⊂MC . Hence I ⊂ ψa(MC) =

φ̃aI (M), whereM ∈ Max ÃI . Then φ̃I(I) ⊂M , a contradiction since φI(I)AI = AI implies φ̃I(I)ÃI = ÃI .

Thus ψ(I)C = C and there exist d(1), ..., d(n) ∈ C such that

(3.1)

n∑
i=1

ψ(gi)d
(i) = 1.
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We identify ÃI with Ã < X1, ..., Xn > /JÃ < X1, ..., Xn >, and, by considering c(i) = X̄i, from (2.1) we
get

(3.2)

n∑
i=1

φ̃I(gi)c
(i) = 1

and

(3.3) φ̃I(g
ν)c(i) = φ̃I(a

ν
i ), i = 1, 2, ..., n, for all ν with N(ν) = m.

For an arbitrary positive integer r, by (3.1), it follows that

(3.4)

n∑
σ;N(σ)=r

ψ(gσ)d(σ) = 1,

where d(σ) are monomials of degree r in d(1), ..., d(n) whose coefficients are non-negative integers.

By multiplying (3.1) by ψ(a
(τ+ε(j))
j gδ), where N(τ) = m− 1, N(δ) = N and by using (2.11) we find

ψ(gδ)ψ(a
(τ+ε(j))
j ) =

n∑
i=1

ψ(a
(τ+ε(i))
j )ψ(gj)d

(i)ψ(gδ).

By multiplying by d(δ), by summing with respect to δ, with N(δ) = N , and by using (3.4) we get

(3.5) ψ(a
(τ+ε(j))
j ) =

n∑
i=1

ψ(a
(τ+ε(i))
j )d(i)ψ(gj), for all τ with N(τ) = m− 1.

By multiplying (3.5) by ψ(gδ), by summing with respect to j, and by using (2.10) it follows that

ψ(gδ)ψ(gτ ) = ψ(gδ)

n∑
j=1

n∑
i=1

ψ(a
(τ+ε(i))
j )d(i)ψ(gj).

Then, by multiplying once again by d(δ) and by summing with respect to δ, we find

(3.6) ψ(gτ ) =

n∑
j=1

n∑
i=1

ψ(a
(τ+ε(i))
j )d(i)ψ(gj).

By multiplying (3.6) by d(τ), with N(τ) = m− 1, and, by using (3.4), we get

(3.7)

n∑
j=1

 ∑
τ,N(τ)=m−1

n∑
i=1

ψ(a
(τ+ε(i))
j )d(i)d(τ)

ψ(gj) = 1.

If we denote, for j = 1, 2, ..., n,

(3.8) d̃(j) =
∑

τ,N(τ)=m−1

n∑
i=1

ψ(a
(τ+ε(i))
j )d(i)d(τ),

then, from (3.7), we find

(3.9)

n∑
j=1

ψ(gj)d̃
(j) = 1.

If N(ν) = m, N(δ) = N , by (2.11) and (3.8), it follows that

ψ(gν+δ)d̃(j) =
∑

τ,N(τ)=m−1

n∑
i=1

ψ(a
(τ+ε(i))
j )d(i)d(τ)ψ(gν)ψ(gδ)
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= ψ(gδ)
∑

τ,N(τ)=m−1

n∑
i=1

ψ(a
(ν)
j )ψ(gτ+ε

(i)

)d(τ)d(i)

= ψ(gδ)ψ(a
(ν)
j )

∑
τ,N(τ)=m−1

n∑
i=1

ψ(gτ )d(τ)ψ(gε
(i)

)d(i) = ψ(gδ)ψ(a
(ν)
j ).

Hence
ψ(gδ)ψ(gν)d̃(j) = ψ(gδ)ψ(a

(ν)
j ).

By multiplying by d(δ) and by summing with respect to δ, we find

(3.10) ψ(gν)d̃(j) = ψ(a
(ν)
j ), j = 1, 2..., n.

Let MC ∈Max C. Then C/MC is a finite extension of K (see [2], Corollary 3, p. 228) and

(3.11) |ψ(gν)|C/MC
= |gν |Ã/ψa(MC) = |gν |Ã/φ̃a

I (M) = |φ̃I(gν)|ÃI/M
,

where M ∈ Max ÃI , | |C/MC
is the unique absolute value on C/MC which extends the absolute value on

K and ψa(MC) = φ̃aI (M) (see [2]).
Similarly we get

(3.12) |ψ(aνj )|C/MC
= |φ̃I(aνj )|ÃI/M

.

By (3.3), (3.10)-(3.12) it follows that, for all MC ∈Max C,

(3.13) |d̃(j)|C/MC
= |c(j)|ÃI/M

.

Hence (see [2], p. 169 and p. 236)

(3.14) ‖d̃(j)‖sup ≤ |c(j)|sup ≤ 1,

and the elements d̃(j) are power bounded (see [2], Proposition 1, p. 240). Then, by using Proposition 4

from [2], p. 222, there exists a continuous mapping θÃ : Ã < X1, ..., Xn >→ C such that

θÃ(Xj) = d̃(j) and θÃ/Ã = ψ.

By (3.9) and (3.10) we get JÃ < X1, ..., Xn >⊂ KerθÃ. Thus there exists a continuous mapping

θ : ÃI → C such that

(3.15) θφ̃I = ψ.

If θ′φ̃I = θφ̃I , because φ̃I iA = iAI
φI , and φI is an epimorphism of rings, it follows that θ′iAI

= θiAI
.

Since iAI
(AI) is dense in ÃI we get θ′ = θ. Hence ÃI is an affinoid subdomain of Sp Ã. �
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