AFFINOID SUBDOMAINS AS COMPLETIONS OF AFFINE SUBDOMAINS

GHIOCEL GROZA

Abstract

By following an idea of Nicolae Popescu, we construct affinoid subdomains as the completion of affine subdomains.

Mathematics Subject Classification (2010): 13B30, 18E35, 12J25, 54H13
Keywords: flat epimorphism of rings, affinoid algebra

Article history:

Received 16 June 2016
Received in revised form 28 June 2016
Accepted 30 June 2016

1. Introduction

Throughout this paper all rings are commutative with identity. Let A be a ring and let $A\left[X_{1}, \ldots, X_{n}\right]$ be the polynomial algebra over A. For simplicity, for any $\nu=\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{N}^{n}$, we denote $\mathbf{X}^{\nu}=X_{1}^{i_{1}} \cdots X_{n}^{i_{n}}$ and $a_{\nu}=a_{i_{1}, \ldots, i_{n}}$. We also denote $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ and $N(\nu)=i_{1}+i_{2}+\ldots+i_{n}$. Thus we may write $P \in A[\mathbf{X}]$ as

$$
\begin{equation*}
P=\sum_{\nu} a_{\nu} \mathbf{X}^{\nu}, a_{\nu} \in A . \tag{1.1}
\end{equation*}
$$

If $g_{1}, \ldots, g_{n} \in A$ and $\nu=\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{N}^{n}$, we denote $\mathbf{g}^{\nu}=g_{1}^{i_{1}} \ldots g_{n}^{i_{n}}$.
Let A, B be two rings. A homomorphism of rings $\phi: A \rightarrow B$ is called an epimorphism of rings if for any pair of homomorphisms of rings $\psi_{1}, \psi_{2}: B \rightarrow C$, in another arbitrary ring C, the condition $\psi_{1} \phi=\psi_{2} \phi$ implies $\psi_{1}=\psi_{2}$. The epimorphism of rings ϕ is called a flat epimorphism of rings if the A-module B is flat (see [1], Ch. 1).

The following result is known.
Theorem 1.1. ([4], p. 261) Let $\varphi: A \rightarrow B$ be a homomorphism of rings. The following assertions are equivalent:
a) φ is a flat epimorphism of rings.
b) Let $\mathcal{F}=\{I$ ideal of A such that $\varphi(I) B=B\}$. Then:
i) For any $b \in B$, there exists $I \in \mathcal{F}$ such that $\varphi(I) b \subseteq \varphi(A)$;
ii) If $x \in A$, and $\varphi(x)=0$, there exists $I \in \mathcal{F}$ such that $I x=0$.

If K is a field, a finitely generated K-algebra A is called an affine K-algebra. By an affine subdomain of $\operatorname{Sp} A:=(\operatorname{Max} A, A)$, where $\operatorname{Max} A$ is the set of maximal ideals of A, we understand a subset $\mathcal{U} \subset \operatorname{Max} A$ and a homomorphism of affine algebras $\varphi: A \rightarrow B$ such that:
i) $\varphi^{a}(\operatorname{Max} B) \subset \mathcal{U}$, where $\varphi^{a}(M):=\varphi^{-1}(M)$,
ii) If $\psi: A \rightarrow C$ is a homomorphism of affine algebras such that $\psi^{a}(\operatorname{Max} C) \subset \mathcal{U}$, then there exists a unique homomorphism of affine algebras $\bar{\psi}: B \rightarrow C$ such that $\bar{\psi} \phi=\psi$.

Let A be a ring. A function $\|\|: A \rightarrow[0, \infty)$ is called a non-archimedean semi-norm on A if the following properties are satisfied:
i) $\|0\|=0$,
ii) $\|x-y\| \leq \max \{\|x\|,\|y\|\}$, for all $x, y \in A$,
iii) $\|x y\| \leq\|x\|\|y\|$, for all $x, y \in A$,
iv) $\|1\| \leq 1$.

A non-archimedean semi-norm is called a non-archimedean norm if
v) $\|x\|=0, \quad x \in A$, implies $x=0$.

In this case the pair $(A,\| \|)$ is called a normed ring.
Let $\left(A,\| \|_{A}\right)$ be a semi-normed ring (that is $\left\|\|_{A}\right.$ is a non-archimedean semi-norm on A). If $P \in$ $A\left[X_{1}, \ldots, X_{n}\right]$ is given by (1.1), define the Gauss semi-norm of P (see [2], p. 36) by

$$
\begin{equation*}
\|P\|=\max _{\nu}\left\|a_{\nu}\right\|_{A} . \tag{1.2}
\end{equation*}
$$

Throughout this paper the semi-norm on $A\left[X_{1}, \ldots, X_{n}\right]$ will be the Gauss semi-norm.
If $(A,\| \|)$ is a semi-normed ring and I be an ideal of A. Denote A / I the quotient ring of A with respect to I and $\pi: A \rightarrow A / I$ the natural homomorphism. Then $\left(A / I,\| \|_{\text {res }}\right)$, where

$$
\begin{equation*}
\|\pi(a)\|_{\mathrm{res}}:=\inf _{a^{\prime}-a \in I}\left\|a^{\prime}\right\|, \tag{1.3}
\end{equation*}
$$

is a semi-normed ring. The corresponding topology on A / I is called the quotient topology.
Let A and B be two semi-normed rings. A ring homomorphism $\phi: A \rightarrow B$ is said to be strict if the induced isomorphism $\bar{\phi}: A / \operatorname{Ker} \phi \rightarrow \phi(A)$ is a homeomorphism (see [2], p. 21). Here the topology on $A / \operatorname{Ker} \phi$ is the quotient topology and on $\phi(A)$ we consider the induced topology from B.

If $|\mid$ is a non-archimedean norm on A such that $| x y|=|x|| y \mid$, for all $x, y \in A$, then $|\mid$ is called a non-archimedean absolute value (valuation) on A and the pair $(A,| |)$ is called a valued ring.

Let $(K,| |)$ be a valued field and let $A=K\left[X_{1}, \ldots, X_{n}\right] / I$ be a K-affine algebra. Throughout this paper we consider on A the quotient topology defined by Gauss norm on $K\left[X_{1}, \ldots, X_{n}\right]$.

Let $(K,| |)$ be a complete valued field. For a positive integer n the following K-subalgebra of the K-algebra of formal power series in n indeterminates over K (see [2], p. 192):
is called the Tate algebra in n indeterminates over K.
Each residue algebra T_{n} / I of T_{n} by an ideal I of T_{n} is a K-Banach algebra with respect to the residue norm defined by (1.3) (see [2], p. 221). This last K-Banach algebra T_{n} / I is called a K-affinoid algebra.

An affinoid subdomain of $\operatorname{Sp} A:=(\operatorname{Max} A, A)$, where A is a K-affinoid algebra is a subset $\mathcal{U} \subset \operatorname{Max} A$ and a homomorphism of affinoid algebras $\varphi: A \rightarrow B$ such that:
i) $\varphi^{a}(\operatorname{Max} B) \subset \mathcal{U}$, where $\varphi^{a}(M):=\varphi^{-1}(M)$,
ii) If $\psi: A \rightarrow C$ is a homomorphism of affine algebras such that $\psi^{a}(\operatorname{Max} C) \subset \mathcal{U}$, then there exists a unique homomorphism of affinoid algebras $\bar{\psi}: B \rightarrow C$ such that $\bar{\psi} \phi=\psi$.

As a corollary of a theorem of Gerritzen and Grauert (see [2], p. 309) it is known that an affinoid subdomain is a finite union of rational subdomains (defined in [2], p. 282). Moreover, a rational subdomain is constructed as the completion of a suitable ring of fractions (see [2], p. 232). As a continuation of the paper [3] my teacher Nicolae Popescu proposed, about ten years ago, to construct affinoid subdomains as completions of affine domains, which generalize the case when B is a ring of fractions of A. This paper, written to the memory of Nicolae Popescu (1937-2010), is a first step in this direction.

The readers are expected to be familiar with the basic notations and results of commutative algebra and non-archimedean analysis, which can be found in, e.g. [5] and [2], respectively.

2. Affine subdomains

Let A be a ring and let $I=\left(g_{1}, g_{2}, \ldots, g_{n}\right)$ be a finitely generated ideal of A. For a fixed non-negative integer m, denote

$$
\begin{equation*}
B=A\left[X_{1}, \ldots, X_{n}\right] / J, J=\left(\sum_{i=1}^{n} g_{i} X_{i}-1, \mathbf{g}^{\nu} X_{j}-a_{j}^{(\nu)}\right), \tag{2.1}
\end{equation*}
$$

where are considered all $\nu=\left(i_{1}, \ldots, i_{n}\right)$, with $N(\nu)=m$, and $a_{j}^{(\nu)} \in A, j=1,2, \ldots, n$. Denote by $\phi_{I}: A \rightarrow B$ the canonical homomorphism.

In order to give a sufficient condition under which ϕ_{I} is a flat epimorphism of rings we prove the following result:

Lemma 2.1. Let A be a ring and let m be a non-negative integer. If, in $A\left[X_{1}, \ldots, X_{n}\right]$,

$$
\begin{equation*}
\sum_{\substack{\nu=\left(i_{1}, \ldots, i_{n}\right) \\ N(\nu) \leq m}} a_{\nu}\left(\alpha_{1} X_{1}-\beta_{1}\right)^{i_{1}} \ldots\left(\alpha_{n} X_{n}-\beta_{n}\right)^{i_{n}}=0, \tag{2.2}
\end{equation*}
$$

where $a_{\nu}, \alpha_{j}, \beta_{j} \in A, j=1,2, \ldots, n$, then for every $\tau=\left(j_{1}, \ldots, j_{n}\right)$, with $N(\tau)=m$ it follows that

$$
\begin{equation*}
\alpha^{\tau} a_{\nu}=0, \text { for all } \nu \text { with } N(\nu) \leq m, \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \tag{2.3}
\end{equation*}
$$

Proof. We use mathematical induction on m. Since (2.3) holds for $m=0$, assume it holds for $m=s$.
We note that, for every $\nu=\left(i_{1}, \ldots, i_{n}\right), \delta=\left(j_{1}, \ldots, j_{n}\right)$, with $N(\nu)=m, N(\delta) \leq m-1$, there exist $c_{\delta \nu} \in A$ such that

$$
\begin{align*}
\left(\alpha_{1} X_{1}-\beta_{1}\right)^{i_{1}} \ldots\left(\alpha_{n} X_{n}-\beta_{n}\right)^{i_{n}}=\alpha^{\nu} \mathbf{X}^{\nu}+\sum_{\substack{\delta=\left(j_{1}, \ldots, j_{n}\right) \\
N(\delta) \leq m-1}} c_{\delta \nu}\left(\alpha_{1} X_{1}-\beta_{1}\right)^{j_{1}} \ldots\left(\alpha_{n} X_{n}-\beta_{n}\right)^{j_{n}} . \tag{2.4}
\end{align*}
$$

Then, for $m=s+1$, the equation (2.2) can be written as

$$
\begin{equation*}
\sum_{\substack{\tau=\left(j_{1}, \ldots, j_{n}\right) \\ N(\tau)=s+1}} a_{\tau} \alpha^{\tau} \mathbf{X}^{\tau}+\sum_{\substack{ \\\nu=\left(i_{1}, \ldots, i_{n}\right) \\ N(\nu) \leq s}} a_{\nu}^{\prime}\left(\alpha_{1} X_{1}-\beta_{1}\right)^{i_{1}} \ldots\left(\alpha_{n} X_{n}-\beta_{n}\right)^{i_{n}}=0, \tag{2.5}
\end{equation*}
$$

where

$$
\begin{gather*}
a_{\nu}^{\prime}=a_{\nu}+\sum_{\tau=\left(j_{1}, \ldots, j_{n}\right)} a_{\tau} c_{\nu, \tau}, N(\nu) \leq s, c_{\nu, \tau} \in A . \tag{2.6}\\
N(\tau)=s+1
\end{gather*}
$$

By (2.5) we get

$$
\begin{equation*}
\alpha^{\tau} a_{\tau}=0, \text { for all } \tau=\left(j_{1}, \ldots, j_{n}\right) \text { with } N(\tau)=s+1 \tag{2.7}
\end{equation*}
$$

Since (2.3) holds for $m=s$, by equations (2.2), (2.5) and (2.7), it follows that for all $\sigma=\left(r_{1}, \ldots, r_{n}\right)$, with $N(\sigma)=s$, we obtain

$$
\begin{equation*}
\alpha^{\sigma} a_{\nu}^{\prime}=0, \text { for all } \nu \text { with } N(\nu) \leq s . \tag{2.8}
\end{equation*}
$$

Now, by (2.6)-(2.8), it follows that

$$
\begin{equation*}
\alpha^{\tau} a_{\nu}=0, \text { for all } \nu \text { with } N(\nu) \leq s+1, \tag{2.9}
\end{equation*}
$$

which implies the lemma.

Theorem 2.2. Let $I=\left(g_{1}, \ldots, g_{n}\right)$ be an ideal of A and let $a_{j}^{(\nu)} \in A$, where $j=1,2, \ldots, n, N(\nu)=m$ and m is a fixed positive integer. If there exists $N \in \mathbb{N}$ such that for all τ with $N(\tau)=m-1$,

$$
\begin{gather*}
I^{N}\left(g^{\tau}-\sum_{j=1}^{n} a_{j}^{\left(\tau+\varepsilon^{(j)}\right)}\right)=0, \varepsilon^{(j)}=\left(\delta_{1, j}, \ldots, \delta_{n, j}\right), \tag{2.10}\\
I^{N}\left(a_{j}^{\left(\tau+\varepsilon^{(s)}\right)} g_{r}-a_{j}^{\left(\tau+\varepsilon^{(r)}\right)} g_{s}\right)=0, j, r, s=1,2, \ldots, n, \tag{2.11}
\end{gather*}
$$

then $\phi_{I}: A \rightarrow B$, where B is defined in (2.1), is a flat epimorphism of rings.
Proof. Let $\mathcal{F}=\left\{I^{\prime}: I^{\prime}\right.$ an ideal of $\left.A, \varphi_{I}\left(I^{\prime}\right) B=B\right\}$. Then, by $(2.1), I \in \mathcal{F}$ and, for all $j=1,2, \ldots, n$, $\phi_{I}\left(I^{m}\right) \bar{X}_{j} \subset \phi_{I}(A)$, where \bar{X}_{j} is the canonical image of X_{j} in B. Hence it follows that condition b) i) from Theorem 1.1 is fulfilled.

Now we verify condition b) ii) from Theorem 1.1.
If $x \in A$ and $\phi_{I}(x)=0$, then, for every $j=1,2, \ldots, n$ and ν, with $N(\nu)=m$, there exist $P, Q_{j}^{(\nu)} \in$ $A\left[X_{1}, \ldots, X_{n}\right]$ such that

$$
\begin{equation*}
x=P\left(\sum_{j=1}^{n} g_{j} X_{j}-1\right)+\sum_{j=1}^{n} \sum_{\substack{\nu=\left(i_{1}, \ldots, i_{n}\right) \\ N(\nu)=m}} Q_{j}^{(\nu)}\left(\mathbf{g}^{\nu} X_{j}-a_{j}^{(\nu)}\right) \tag{2.12}
\end{equation*}
$$

If $\sigma=\left(r_{1}, \ldots, r_{n}\right)$, with $N(\sigma)=m$, there exists a positive integer t, and τ with $N(\tau)=m-1$ such that $\sigma=\tau+\varepsilon^{(t)}$. Hence, by (2.10), $I^{N} g^{\sigma}=I^{N} g^{\tau+\varepsilon^{(t)}}=I^{N} \sum_{j=1}^{n} a^{\left(\tau+\varepsilon^{(j)}\right)} g_{t}$ and

$$
\begin{equation*}
I^{N}\left(\mathbf{g}^{\sigma} x-P \sum_{j=1}^{n}\left(\mathbf{g}^{\sigma} g_{j} X_{j}-g_{t} a_{j}^{\left(\tau+\varepsilon^{(j)}\right)}\right)-\mathbf{g}^{\sigma} \sum_{j=1}^{n} \sum_{\substack{\nu=\left(i_{1}, \ldots, i_{n}\right) \\ N(\nu)=m}}\left(\mathbf{g}^{\nu} X_{j}-a_{j}^{(\nu)}\right) Q_{j}^{(\nu)}\right)=0 \tag{2.13}
\end{equation*}
$$

Since, by $(2.11), I^{N}\left(g_{t} a_{j}^{\left(\tau+\varepsilon^{(j)}\right)}-g_{j} a_{j}^{(\sigma)}\right)=0$ and $I^{N}\left(\mathbf{g}^{\sigma} a_{j}^{(\nu)}-\mathbf{g}^{\nu} a_{j}^{(\sigma)}\right)=0$, by denoting

$$
\begin{equation*}
S_{j}=g_{j} P+\sum_{\substack{\nu=\left(i_{1}, \ldots, i_{n}\right) \\ N(\nu)=m}} \mathbf{g}^{\nu} Q_{j}^{(\nu)}, \tag{2.14}
\end{equation*}
$$

the equation (2.13) becomes

$$
\begin{equation*}
I^{N}\left(\mathbf{g}^{\sigma} x-\sum_{j=1}^{n}\left(\mathbf{g}^{\sigma} X_{j}-a_{j}^{(\sigma)}\right) S_{j}\right)=0, \text { for all } \sigma \text { with } N(\sigma)=m \tag{2.15}
\end{equation*}
$$

Denote

$$
d=\max _{1 \leq j \leq n}\left(\operatorname{deg} S_{j}\right)
$$

which, by (2.14), is independent of ν. Then, by (2.4), for all $\theta=\left(s_{1}, \ldots, s_{n}\right)$, with $N(\theta)=n d m+1$, it follows that there exists $\sigma=\left(r_{1}, \ldots, r_{n}\right)$, with $N(\sigma)=m$, such that

$$
\begin{equation*}
\mathbf{g}^{\theta} S_{j}=\sum_{\substack{\delta=\left(t_{1}, \ldots, t_{n}\right) \\ \\ N(\delta) \leq d}} b_{j}^{(\delta)}\left(\mathbf{g}^{\sigma} X_{1}-a_{1}^{(\sigma)}\right)^{t_{1}} \ldots\left(\mathbf{g}^{\sigma} X_{n}-a_{n}^{(\sigma)}\right)^{t_{n}}, \quad b_{j}^{(\delta)} \in A \tag{2.16}
\end{equation*}
$$

Since I^{N} is finitely generated, by (2.15), (2.16) and Lemma 2.1 with $a_{\mathbf{0}}=\mathbf{g}^{\theta+\gamma}$, where $N(\gamma)=N$, it follows that $I^{M} x=0$, where $M \geq N+m+n d m+1$. Thus the condition b) ii) from Theorem 1.1 holds and ϕ_{I} is a flat epimorphism of rings.

Corollary 2.3. Under the hypotheses of Theorem 2.2, for all $I_{1} \in \mathcal{F}$, there exists a non-negative integer M such that $I^{M} \subset I_{1}$.

Proof. If $I_{1} \in \mathcal{F}$, there exist a positive integer $t, x_{i} \in I_{1}, b_{i} \in B, i=1,2, \ldots, t$, such that

$$
\begin{equation*}
\sum_{i=1}^{t} \varphi_{I}\left(x_{i}\right) b_{i}=1 \tag{2.17}
\end{equation*}
$$

By Theorems 1.1 b$)$ i) and 2.2 we can choose a non-negative integer M_{1} such that $\varphi_{I}\left(I^{M_{1}}\right) b_{i} \subset \varphi_{I}(A)$. Hence we get, for all σ, with $N(\sigma)=M_{1}$,

$$
\begin{equation*}
\varphi_{I}\left(\mathbf{g}^{\sigma}\right) b_{i}=\varphi_{I}\left(\alpha_{i}^{(\sigma)}\right), \alpha_{i}^{(\sigma)} \in A \tag{2.18}
\end{equation*}
$$

By (2.17) and (2.18) it follows that

$$
\varphi_{I}\left(\mathbf{g}^{\sigma}\right)=\sum_{i=1}^{t} \varphi_{I}\left(x_{i} \alpha_{i}^{(\sigma)}\right)
$$

and by Theorem 2.2 and by Theorem 1.1 b) ii) there exists a non-negative integer M_{2} such that, for all σ, with $N(\sigma)=M_{1}$, we get

$$
\begin{equation*}
I^{M_{2}}\left(\mathbf{g}^{\sigma}-\sum_{i=1}^{t} x_{i} \alpha_{i}^{(\sigma)}\right)=0 \tag{2.19}
\end{equation*}
$$

Since $x_{i} \in I_{1}$, by (2.19), it follows that for $M=M_{1}+M_{2}, I^{M} \subset I_{1}$.
Example 2.4. Let A be a ring and let $I=\left(g_{1}, \ldots, g_{n}\right)$ be an ideal of A. We choose, for example, the elements $b_{j}^{(s)} \in A, j, s=1,2, \ldots, n$, such that $\sum_{j=1}^{n} b_{j}^{(j)}=1$, and, for $j \neq s, b_{j}^{(s)}=g_{s}$. If we take $a_{j}^{\left(\tau+\varepsilon^{(s)}\right)}=\mathbf{g}^{\tau} b_{j}^{(s)}$, it follows that (2.10) and (2.11) hold. Thus φ_{I} is a flat epimorphism of rings.
Remark 2.5. Let K be a field and let A be a K-affine algebra. If B is defined by (2.1), then, by Theorem $2.2, \mathcal{U}=\phi_{I}^{a}(\operatorname{Max} B)$, is an affine subdomain of $\operatorname{Sp} A=(\mathcal{U}, A)$ (see [3]).

Theorem 2.6. Let K be a field and let $\phi: A \rightarrow B$ be a homomorphism of K-affine algebras such that $\mathcal{U}=\phi^{a}(\operatorname{Max} B)$ and ϕ define an affine subdomain of $\operatorname{Sp} A$. Let $\mathcal{F}=\left\{I^{\prime}\right.$ ideal in $\left.A ; \phi\left(I^{\prime}\right) B=B\right\}$. If there exists $I \in \mathcal{F}$ such that, for all $I^{\prime} \in \mathcal{F}$, there exists a positive integer t such that $I^{t} \subset I^{\prime}$, then there exist the positive integers n, N, m, and for all $\tau \in \mathbb{N}^{n}$ with $N(\tau)=m-1, i=1,2, \ldots, n$, there exist $a_{i}^{\left(\tau+\varepsilon^{(s)}\right)} \in A, s=1,2, \ldots, n$, such that we can take $I=\left(g_{1}, \ldots, g_{n}\right)$ such that (2.10), (2.11) hold.
Proof. Since \mathcal{U} and ϕ define an affine subdomain of $\operatorname{Sp} A$, by Theorem 3.2 from [3], ϕ is a flat epimorphism of rings. Because $I \in \mathcal{F}$ it follows that there exists a positive integer n such that

$$
\begin{equation*}
\sum_{i=1}^{n} \phi\left(g_{i}\right) b_{i}=1, g_{i} \in I, b_{i} \in B \tag{2.20}
\end{equation*}
$$

Without loss of generality we may assume $I=\left(g_{1}, \ldots, g_{n}\right)$. By Theorem 1.1 b$)$ i) and by hypotheses there exists a positive integer m such that, for all ν with $N(\nu)=m$, we get

$$
\begin{equation*}
\phi\left(g^{\nu}\right) b_{i}=\phi\left(a_{i}^{(\nu)}\right), a_{i}^{(\nu)} \in A . \tag{2.21}
\end{equation*}
$$

If $\tau \in \mathbb{N}^{n}$ with $N(\tau)=m-1$, by (2.21),

$$
\phi\left(a_{i}^{\left(\tau+\varepsilon^{(r)}\right)}\right) \phi\left(g_{s}\right)=\phi\left(g^{\tau+\varepsilon^{(r)}}\right) b_{i} \phi\left(g_{s}\right)=\phi\left(g^{\tau+\varepsilon^{(s)}}\right) b_{i} \phi\left(g_{r}\right)=\phi\left(a_{i}^{\left(\tau+\varepsilon^{(s)}\right)}\right) \phi\left(g_{r}\right), r, s=1, \ldots, n .
$$

Then, by Theorem 1.1 b) ii), there exists a positive integer n_{1} such that

$$
I^{n_{1}}\left(a_{j}^{\left(\tau+\varepsilon^{(s)}\right)} g_{r}-a_{j}^{\left(\tau+\varepsilon^{(r)}\right)} g_{s}\right)=0, j, r, s=1,2, \ldots, n
$$

Similarly, by (2.20) and (2.21), we get

$$
\phi\left(g^{\tau}\right)=\sum_{j=1}^{n} \phi\left(g^{\tau+\varepsilon^{(j)}}\right) b_{j}=\sum_{j=1}^{n} \phi\left(a_{j}^{\left(\tau+\varepsilon^{(j)}\right)}\right)
$$

Then, by Theorem 1.1 b) ii), there exists a positive integer n_{2} such that

$$
I^{n_{2}}\left(g^{\tau}-\sum_{j=1}^{n} a_{j}^{\left(\tau+\varepsilon^{(j)}\right)}\right)=0
$$

By taking $N=\max \left\{n_{1}, n_{2}\right\}$ it follows the statement of the theorem.

3. Affinoid subdomains

Let K be a complete non-archimedean valued field and let A be a K-affine algebra. We need the following result:

Lemma 3.1. Let $A=K\left[Z_{1}, \ldots, Z_{r}\right] / I_{1}$ be a K-affine algebra, where I_{1} is an ideal of $K\left[Z_{1}, \ldots, Z_{r}\right]$. Then \tilde{A} (the completion of A with respect to the residue semi-norm defined by Gauss semi-norme) is an affinoid K-algebra.
Proof. Since the canonical homomorphism of semi-normed K-affine algebra $\pi_{A}: K\left[Z_{1}, \ldots, Z_{r}\right] \rightarrow A$ is a strict homomorphism which is onto, by Corollary 6 from [2], p. 23, we get that $\tilde{\pi}_{A}: K<Z_{1}, \ldots, Z_{r}>\rightarrow \tilde{A}$ is onto. Hence it follows the lemma.

If I is an ideal of A, denote by A_{I} the algebra B defined in (2.1).
Theorem 3.2. Let K be a complete non-archimedean valued field, let A be a K-affine algebra and let I be an ideal of A satisfying the conditions (2.10) and (2.11) (see Theorem 2.6). Then the canonical homomorphism $\tilde{\phi}_{I}: \tilde{A} \rightarrow \tilde{A}_{I}$ defines the affinoid subdomain $\mathcal{U}=\tilde{\phi}_{I}^{a}\left(\operatorname{Max} \tilde{A}_{I}\right)$ of $\operatorname{Sp} \tilde{A}$.
Proof. By the canonical commutative diagram

where π is a strict homomorphism of rings which is onto and, by Proposition 5 from [2], p. 22, it follows that $\tilde{A}_{I} \cong \tilde{A}<X_{1}, \ldots, X_{n}>/ J \tilde{A}<X_{1}, \ldots, X_{n}>$, because $\tilde{J}=J \tilde{A}<X_{1}, \ldots, X_{n}>$ (see [2], Proposition 3, p. 222).

Let $\psi: \tilde{A} \rightarrow C$ be a homomorphism of K-affinoid algebras such $\psi^{a}(\operatorname{Max} C) \subset \tilde{\phi}_{I}^{a}\left(\operatorname{Max} \tilde{A}_{I}\right)$. We prove that $\psi(I) C=C$.

Suppose the contrary. Then there exists $M_{C} \in \operatorname{Max} C$ such that $\psi(I) C \subset M_{C}$. Hence $I \subset \psi_{\tilde{\sim}}^{a}\left(M_{C}\right)_{\tilde{A_{~}^{\prime}}}=$ $\tilde{\phi}_{I}^{a}(M)$, where $M \in \operatorname{Max} \tilde{A}_{I}$. Then $\tilde{\phi}_{I}(I) \subset M$, a contradiction since $\phi_{I}(I) A_{I}=A_{I}$ implies $\tilde{\phi}_{I}(I) \tilde{A}_{I}=\tilde{A}_{I}$. Thus $\psi(I) C=C$ and there exist $d^{(1)}, \ldots, d^{(n)} \in C$ such that

$$
\begin{equation*}
\sum_{i=1}^{n} \psi\left(g_{i}\right) d^{(i)}=1 \tag{3.1}
\end{equation*}
$$

We identify \tilde{A}_{I} with $\tilde{A}<X_{1}, \ldots, X_{n}>/ J \tilde{A}<X_{1}, \ldots, X_{n}>$, and, by considering $c^{(i)}=\bar{X}_{i}$, from (2.1) we get

$$
\begin{equation*}
\sum_{i=1}^{n} \tilde{\phi}_{I}\left(g_{i}\right) c^{(i)}=1 \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{\phi}_{I}\left(\mathbf{g}^{\nu}\right) c^{(i)}=\tilde{\phi}_{I}\left(a_{i}^{\nu}\right), i=1,2, \ldots, n, \text { for all } \nu \text { with } N(\nu)=m . \tag{3.3}
\end{equation*}
$$

For an arbitrary positive integer r, by (3.1), it follows that

$$
\begin{equation*}
\sum_{\sigma ; N(\sigma)=r}^{n} \psi\left(\mathbf{g}^{\sigma}\right) d^{(\sigma)}=1 \tag{3.4}
\end{equation*}
$$

where $d^{(\sigma)}$ are monomials of degree r in $d^{(1)}, \ldots, d^{(n)}$ whose coefficients are non-negative integers.
By multiplying (3.1) by $\psi\left(a_{j}^{\left(\tau+\varepsilon^{(j)}\right)} \mathbf{g}^{\delta}\right)$, where $N(\tau)=m-1, N(\delta)=N$ and by using (2.11) we find

$$
\psi\left(\mathbf{g}^{\delta}\right) \psi\left(a_{j}^{\left(\tau+\varepsilon^{(j)}\right)}\right)=\sum_{i=1}^{n} \psi\left(a_{j}^{\left(\tau+\varepsilon^{(i)}\right)}\right) \psi\left(g_{j}\right) d^{(i)} \psi\left(\mathbf{g}^{\delta}\right)
$$

By multiplying by $d^{(\delta)}$, by summing with respect to δ, with $N(\delta)=N$, and by using (3.4) we get

$$
\begin{equation*}
\psi\left(a_{j}^{\left(\tau+\varepsilon^{(j)}\right)}\right)=\sum_{i=1}^{n} \psi\left(a_{j}^{\left(\tau+\varepsilon^{(i)}\right)}\right) d^{(i)} \psi\left(g_{j}\right), \text { for all } \tau \text { with } N(\tau)=m-1 \tag{3.5}
\end{equation*}
$$

By multiplying (3.5) by $\psi\left(\mathbf{g}^{\delta}\right)$, by summing with respect to j, and by using (2.10) it follows that

$$
\psi\left(\mathbf{g}^{\delta}\right) \psi\left(\mathbf{g}^{\tau}\right)=\psi\left(\mathbf{g}^{\delta}\right) \sum_{j=1}^{n} \sum_{i=1}^{n} \psi\left(a_{j}^{\left(\tau+\varepsilon^{(i)}\right)}\right) d^{(i)} \psi\left(g_{j}\right)
$$

Then, by multiplying once again by $d^{(\delta)}$ and by summing with respect to δ, we find

$$
\begin{equation*}
\psi\left(\mathbf{g}^{\tau}\right)=\sum_{j=1}^{n} \sum_{i=1}^{n} \psi\left(a_{j}^{\left(\tau+\varepsilon^{(i)}\right)}\right) d^{(i)} \psi\left(g_{j}\right) \tag{3.6}
\end{equation*}
$$

By multiplying (3.6) by $d^{(\tau)}$, with $N(\tau)=m-1$, and, by using (3.4), we get

$$
\begin{equation*}
\sum_{j=1}^{n}\left(\sum_{\tau, N(\tau)=m-1} \sum_{i=1}^{n} \psi\left(a_{j}^{\left(\tau+\varepsilon^{(i)}\right)}\right) d^{(i)} d^{(\tau)}\right) \psi\left(g_{j}\right)=1 \tag{3.7}
\end{equation*}
$$

If we denote, for $j=1,2, \ldots, n$,

$$
\begin{equation*}
\tilde{d}^{(j)}=\sum_{\tau, N(\tau)=m-1} \sum_{i=1}^{n} \psi\left(a_{j}^{\left(\tau+\varepsilon^{(i)}\right)}\right) d^{(i)} d^{(\tau)} \tag{3.8}
\end{equation*}
$$

then, from (3.7), we find

$$
\begin{equation*}
\sum_{j=1}^{n} \psi\left(g_{j}\right) \tilde{d}^{(j)}=1 \tag{3.9}
\end{equation*}
$$

If $N(\nu)=m, N(\delta)=N$, by (2.11) and (3.8), it follows that

$$
\psi\left(\mathbf{g}^{\nu+\delta}\right) \tilde{d}^{(j)}=\sum_{\tau, N(\tau)=m-1} \sum_{i=1}^{n} \psi\left(a_{j}^{\left(\tau+\varepsilon^{(i)}\right)}\right) d^{(i)} d^{(\tau)} \psi\left(\mathbf{g}^{\nu}\right) \psi\left(\mathbf{g}^{\delta}\right)
$$

$$
\begin{gathered}
=\psi\left(\mathbf{g}^{\delta}\right) \sum_{\tau, N(\tau)=m-1} \sum_{i=1}^{n} \psi\left(a_{j}^{(\nu)}\right) \psi\left(\mathbf{g}^{\tau+\varepsilon^{(i)}}\right) d^{(\tau)} d^{(i)} \\
=\psi\left(\mathbf{g}^{\delta}\right) \psi\left(a_{j}^{(\nu)}\right) \sum_{\tau, N(\tau)=m-1} \sum_{i=1}^{n} \psi\left(\mathbf{g}^{\tau}\right) d^{(\tau)} \psi\left(\mathbf{g}^{\varepsilon^{(i)}}\right) d^{(i)}=\psi\left(\mathbf{g}^{\delta}\right) \psi\left(a_{j}^{(\nu)}\right) .
\end{gathered}
$$

Hence

$$
\psi\left(\mathbf{g}^{\delta}\right) \psi\left(\mathbf{g}^{\nu}\right) \tilde{d}^{(j)}=\psi\left(\mathbf{g}^{\delta}\right) \psi\left(a_{j}^{(\nu)}\right)
$$

By multiplying by $d^{(\delta)}$ and by summing with respect to δ, we find

$$
\begin{equation*}
\psi\left(\mathbf{g}^{\nu}\right) \tilde{d}^{(j)}=\psi\left(a_{j}^{(\nu)}\right), j=1,2 \ldots, n \tag{3.10}
\end{equation*}
$$

Let $M_{C} \in \operatorname{Max} C$. Then C / M_{C} is a finite extension of K (see [2], Corollary 3, p. 228) and

$$
\begin{equation*}
\left|\psi\left(\mathbf{g}^{\nu}\right)\right|_{C / M_{C}}=\left|\mathbf{g}^{\nu}\right|_{\tilde{A} / \psi^{a}\left(M_{C}\right)}=\left|\mathbf{g}^{\nu}\right|_{\tilde{A} / \tilde{\phi}_{I}^{a}(M)}=\left|\tilde{\phi}_{I}\left(\mathbf{g}^{\nu}\right)\right|_{\tilde{A}_{I} / M} \tag{3.11}
\end{equation*}
$$

where $M \in \operatorname{Max} \tilde{A}_{I},| |_{C / M_{C}}$ is the unique absolute value on C / M_{C} which extends the absolute value on K and $\psi^{a}\left(M_{C}\right)=\tilde{\phi}_{I}^{a}(M)$ (see [2]).

Similarly we get

$$
\begin{equation*}
\left|\psi\left(a_{j}^{\nu}\right)\right|_{C / M_{C}}=\left|\tilde{\phi}_{I}\left(a_{j}^{\nu}\right)\right|_{\tilde{A}_{I} / M} \tag{3.12}
\end{equation*}
$$

By (3.3), (3.10)-(3.12) it follows that, for all $M_{C} \in \operatorname{Max} C$,

$$
\begin{equation*}
\left|\tilde{d}^{(j)}\right|_{C / M_{C}}=\left|c^{(j)}\right|_{\tilde{A}_{I} / M} \tag{3.13}
\end{equation*}
$$

Hence (see [2], p. 169 and p. 236)

$$
\begin{equation*}
\left\|\tilde{d}^{(j)}\right\|_{\text {sup }} \leq\left|c^{(j)}\right|_{\sup } \leq 1 \tag{3.14}
\end{equation*}
$$

and the elements $\tilde{d}^{(j)}$ are power bounded (see [2], Proposition 1, p. 240). Then, by using Proposition 4 from [2], p. 222, there exists a continuous mapping $\theta_{\tilde{A}}: \tilde{A}<X_{1}, \ldots, X_{n}>\rightarrow C$ such that

$$
\theta_{\tilde{A}}\left(X_{j}\right)=\tilde{d}^{(j)} \text { and } \theta_{\tilde{A}} / \tilde{A}=\psi
$$

By (3.9) and (3.10) we get $J \tilde{A}<X_{1}, \ldots, X_{n}>\subset \operatorname{Ker} \theta_{\tilde{A}}$. Thus there exists a continuous mapping $\theta: \tilde{A}_{I} \rightarrow C$ such that

$$
\begin{equation*}
\theta \tilde{\phi}_{I}=\psi . \tag{3.15}
\end{equation*}
$$

If $\theta^{\prime} \tilde{\phi}_{I}=\theta \tilde{\phi}_{I}$, because $\tilde{\phi}_{\tilde{A}} i_{A}=i_{A_{I}} \phi_{I}$, and ϕ_{I} is an epimorphism of rings, it follows that $\theta^{\prime} i_{A_{I}}=\theta i_{A_{I}}$. Since $i_{A_{I}}\left(A_{I}\right)$ is dense in \tilde{A}_{I} we get $\theta^{\prime}=\theta$. Hence \tilde{A}_{I} is an affinoid subdomain of $\operatorname{Sp} \tilde{A}$.

References

[1] N.Bourbaki, Éléments de mathématique. Algèbre commutative, Ch. I-II, 1961, Hermann Paris.
[2] S. Bosch, U. Günter, R. Remmert, Non-Archimedean Analysis, Springer-Verlag, Berlin, 1984.
[3] G. Groza, N. Popescu, On affine subdomains, Rev. Roum. Math. Pures Appl., 49(2004), 3, 231-246.
[4] N. Popescu, Abelian Categories with Applications to Rings and Modules, L.M.S. Monographs, Academic Press, London and New-York, 1973.
[5] O. Zariski, P. Samuel, Commutative Algebra, Vol. 1, Springer-Verlag, New York, 1958.
Department of Mathematics and Computer Science, Technical University of Civil Engineering Bucharest, 020396, Romania,

E-mail address: grozag@utcb.ro

