ADDITIVE INTEGRAL FUNCTIONS IN VALUED FIELDS

Ghiocel Groza*, S. M. Ali Khan**

Abstract

The additive integral functions with the coefficients in a complete non-archimedean algebraically closed field of characteristic $p \neq 0$ are studied.

Mathematics Subject Classification: 12J25, 30D20

Keywords: non-archimedean absolute value, additive integral function

1. Introduction

Let (K, ||) be a valued field of characteristic $p \neq 0$, where || is a non-trivial *non-archimedean absolute value* defined on K, that is a mapping $||: K \rightarrow [0, \infty)$ such that, for every $x, y \in K$,

- (*i*) |x| = 0 if and only if x = 0;
- (ii) |xy| = |x| |y|;
- $(iii) |x + y| \le \max\{|x|, |y|\};$
- (*iv*) there exists a non-zero $x \in K$ such that $|x| \neq 1$.

For $x, y \in K$, define d(x, y) = |x - y| and thus (K, d) is an ultrametric space. A formal power series

$$f(X) = \sum_{k=0}^{\infty} a_k X^k \in K[[X]]$$
⁽¹⁾

is called an *integral function* with coefficients in K if, for every $x \in K$, the sequence

$$S_n(x) = \sum_{k=0}^n a_k x^k \tag{2}$$

is a Cauchy sequence. It follows easily that H(K), the set of all integral functions with coefficients in K, is a K-algebra with respect to the ordinary addition and multiplication of integral functions. An integral function f with coefficients in K is called *additive* if, for every $x, y \in K$, in a fixed completion of K,

* Department of Mathematics and Computer Science, Technical University of Civil Engineering of Bucharest, Romania, E-mail: grozag@utcb.ro ** Abdus Salam School of Mathematical Sciences, GC University Lahore, Pakistan, E-mail: mohib.ali@gmail.com

$$f(x+y) = f(x) + f(y).$$
 (3)

Suppose now that *K* is an algebraically closed field of characteristic $p \neq 0$. Then, for every positive integer *r*, we may consider the Galois field $GF(p^r)$ as a subfield of *K*. In this case an additive integral function *f* is called $GF(p^r)$ -linear, if for every $x \in K$ and $\alpha \in GF(p^r)$,

$$f(\alpha x) = \alpha f(x). \tag{4}$$

Since, for every $\alpha \in GF(p^r)$, it follows that $\alpha^{p^r} = \alpha$ (see, for example, [3], p. 83), by (3) it follows that an additive integral function is GF(p) – linear.

This paper follows the ideas of Nicolae Popescu who conjectured that the additive integral functions have similar properties as the additive polynomials (see[1]).

2. Representation and zeros of additive integral functions

The following result gives a representation of the $GF(p^r)$ -linear integral functions.

Theorem 1. Let K be an algebraically closed field of characteristic $p \neq 0$ which is complete with respect to a non-archimedean absolute value and let f be an integral function with coefficients in K. Then f is $GF(p^r)$ - linear, where r is fixed, if and only if

$$f(X) = \sum_{i=0}^{\infty} a_i X^{p^{ir}}, \text{ with } a_i \in K.$$
(5)

Proof. Since $(x+y)^p = \sum_{i=0}^p {p \choose i} x^{p-i} y^i$ and ${p \choose i} \equiv 0 \pmod{p}$ it follows

that $(x+y)^p = x^p + y^p$. Hence $(x+y)^{p^i} = x^{p^i} + y^{p^i}$ which implies that the integral function f given by (5) is additive. Because, for every $\alpha \in GF(p^r)$, $\alpha^{p^r} = \alpha$, by (5) we obtain that f is a $GF(p^r)$ – linear function.

Conversely, we suppose that the integral function $f(X) = \sum_{j=0}^{\infty} b_j X^j$ is a $GF(p^r)$ – linear function. We use the formal derivative $f'(X) = \sum_{j=1}^{\infty} jb_j X^{j-1}$. It

is easy to see that this operation satisfies the standard rules of differentiation. Since f(x+y) - f(x) - f(y) = 0, for every $x, y \in K$, because the zeros of an integral function are isolated, by taking two arbitrary sequences $\{x_n\}_{n \in \mathbb{N}}$, $\{y_n\}_{n \in \mathbb{N}}$ of elements of K which converge to zero, it follows that f(X+Y) = f(X) + f(Y). Hence, for every $y \in K$,

$$\left. f'(y) = \frac{d}{dX} f(X+y) \right|_{X=0} = \frac{d}{dX} \left(f(X) + f(y) \right) \Big|_{X=0} = f'(0) = b_1. \text{ Because } f(0) = 0 \text{ we obtain that}$$

= 0 we obtain that

$$f(X) = c_0 X + \sum_{j=1}^{\infty} c_j X^{n_j}, \text{ with } c_0 = b_1,$$
(6)

where $n_j > 1$ and $n_j \equiv 0 \pmod{p}$. We write

$$f(X) = f_1(X) + f_2(X),$$
(7)

where

$$f_1(X) = c_0 X + \sum_{j \in I_1} c_j X^{n_j}, \ f_2(X) = \sum_{j \in I_2} c_j X^{n_j}, \tag{8}$$

 $I_1 = \{j : n_j \text{ is a power of } p^r\}$ and $I_2 = \{j : n_j \text{ is not a power of } p^r\}$. We shall prove that $f_2 = 0$. Since f and f_1 are $GF(p^r)$ -linear integral functions it follows that f_2 is a $GF(p^r)$ -linear integral function. Because K is an algebraically closed field it follows that the mapping $\tau_p : K \to K$ given by $\tau_p(x) = x^p$ is an automorphism of K. Hence $\tau_{p^e} : K \to K$ defined by $\tau_{p^e}(x) = x^{p^e}$ is also an automorphism of K and we obtain that

$$f_2(X) = f_3^{p^e}(X), (9)$$

where p^e is the largest power of p dividing all n_j , $j \in I_2$ and e is not divisible by r. Then, because τ_{p^e} is an automorphism of K it follows that f_3 is an additive integral function. Moreover, if there exists $\alpha \in GF(p^e)$ and $x \in K$ such that $f_3(\alpha x) \neq \alpha f_3(x)$ it follows that $\alpha^{p^e} \neq \alpha$, a contradiction which implies that f_3 is a $GF(p^e)$ -linear integral function. Thus by using the form of f_2 , because $1 = p^{0r}$ we obtain as above that $f'_3(y) = 0$, for every $y \in K$. This implies that

$$f_3(X) = \sum_{j=1}^{\infty} d_j X^{pm_j}$$
, with $d_j \in K$ and m_j a positive integer. Hence, because

 p^e is the largest power of p dividing all n_j , we obtain that $f_2 = 0$ which implies the theorem, \Box

Since every additive integral function is a GF(p)-linear integral function, by Theorem 1 we obtain the following result.

Corollary 1. Under the hypotheses of Theorem 1 f is an additive function if and only if

$$f(X) = \sum_{i=0}^{\infty} a_i X^{p^i}, \text{ with } a_i \in K.$$
(10)

Theorem 2. Let K be an algebraically closed field of characteristic $p \neq 0$ which is complete with respect to a non-archimedean absolute value and let f be an integral function with coefficients in K having infinitely many distinct roots. If $G = \{\alpha_i\}_{i\geq 0}$, where $\alpha_0 = 0$, is the set of all the roots of f, then f is $GF(p^r)$ – linear if and only if G is a $GF(p^r)$ – linear subspace of K and there exists a chain of $GF(p^r)$ – linear subspaces

$$G_{n_1} \subset G_{n_2} \subset \ldots \subset G_{n_s} \subset \ldots \tag{11}$$

of G such that the order of G_{n_i} is equal to n_j and p^r divides n_j , for every j.

Proof. Let f be an additive integral function. If $\alpha_i, \alpha_j \in G$, then, because f is an additive integral function, it follows that $f(\alpha_i - \alpha_j) = f(\alpha_i) - f(\alpha_j) = 0$ and for every $\alpha \in GF(p^r)$, $f(\alpha \alpha_i) = \alpha f(a_i) = 0$. Hence we obtain that G is a $GF(p^r)$ – linear subspace of K.

Now we consider the critical radius of f (see [2], p. 291) $r_1 < r_2 < ... < r_k < ...$. Then inside the ball $B_j = \{x \in K : |x| \le r_j\}$, f has n_j roots (the proof of Theorem 1 of [2], p. 307 is the same in this case). Since $|\alpha| = 1$, for every non-zero $\alpha \in GF(p^r)$, it follows that B_j is a $GF(p^r)$ -linear subspace of G. Hence $G_{n_j} = \{\alpha \in B_j : f(\alpha) = 0\}$, j=1,2,..., is a finite $GF(p^r)$ -linear subspace of K, p^r divides n_j and (11) holds.

Conversely, if *f* is an integral function, by Theorem of [2], p. 314, it follows that $f = CX \prod_{j=1}^{\infty} \left(1 - \frac{X}{\alpha_j}\right)$. Suppose that *G* is a $GF(p^r)$ – linear subspace of *K* and there

a chain of $GF(p^r)$ – linear subspaces G_{n_j} of G, of orders n_j , such that (11) holds. We consider the polynomials $P_j = CX \prod_{\substack{\alpha_j \in G_{n_j} \\ \alpha_j \neq 0}} \left(X - \alpha_j \right) = C_j Q_j$, where

$$Q_j = CX \prod_{\substack{\alpha_j \in G_{n_j} \\ \alpha_j \neq 0}} \left(1 - \frac{X}{\alpha_j} \right) \text{ and } C_j = \prod_{\substack{\alpha_j \in G_{n_j} \\ \alpha_j \neq 0}} \alpha_j \text{ . By Corollary 1.2.2 from [1] it}$$

follows that P_j is a $GF(p^r)$ – linear polynomial. Hence Q_j is a $GF(p^r)$ – linear polynomial and similarly as in the proof of Theorem of [2], p. 314 we obtain that $\lim_{j\to\infty} Q_j = f$. This implies the theorem. \Box

Finally we extend to integral functions a result of Ore on polynomials (see Theorem 1.4.1 of [1]).

Theorem 3. Let K be an algebraically closed field of characteristic $p \neq 0$ which is complete with respect to a non-archimedean absolute value and let f be an integral function with coefficients in K having infinitely many roots. If r is a positive

integer, then there exists a $GF(p^r)$ -linear integral function $g \in H(K)$ such that f divides g in H(K).

Proof. Suppose
$$f_1 = \prod_{j=1}^{\infty} \left(1 - \frac{X}{\alpha_j}\right)$$
, where α_j , $j=1,2,...$, are all the non-zero

distinct roots of f. Let m_j be the multiplicity of the root α_j of f, where $\alpha_0 = 0$. For every $m_j \ge 1$, we take k_j the smallest non-negative integer such that $m_j \le p^{k_j r}$.

We consider the function $g = X^{p^{k_0 r}} \prod_{j=1}^{\infty} \left(1 - \frac{X}{\alpha_j}\right)^{p^{k_j r}}$, where, if $m_0 = 0$, we take

 $k_0 = -\infty$. Then g is an integral function (see [2], p. 315), f divides g and by Theorem 1 it follows that g is $GF(p^r)$ – linear. Hence it follows the theorem. \Box

References

[1] Goss, D.: *Basic Structures of Function Field Arithmetic*, Springer Verlag, Berlin, 1996.

[2] Robert, A.: A Course in p-adic Analysis, Springer Verlag, New York, 2000.

[3] Zariski, O., Samuel, P.: *Commutative Algebra*, vol. I, Springer Verlag, New York, 1958.