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Abstract 
 

The additive integral functions with the coefficients in a complete non-archimedean  
algebraically closed field of characteristic 0≠p  are studied.  
 
Mathematics Subject Classification: 12J25, 30D20 
Keywords: non-archimedean absolute value, additive integral function 
 

1. Introduction 
 

Let  be a valued field of characteristic ( ||,K ) 0≠p , where  is a non-trivial 
non-archimedean absolute value defined on K, that is a mapping  such 
that, for every   
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formal power series  
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is called an integral function with coefficients in K if, for every Kx∈ , the sequence  
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is a Cauchy sequence. It follows easily that  the set of all integral functions 
with coefficients in K, is a 

),(KH
−K algebra with respect to the ordinary addition and 

multiplication of integral functions. An integral function f with coefficients in K is 
called additive if, for every ,, Kyx ∈  in a fixed completion of K, 
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).()()( yfxfyxf +=+  (3) 

Suppose now that K is an algebraically closed field of characteristic . Then, 

for  every positive integer r, we may consider the Galois field  as a subfield 

of K. In this case an additive integral function f is called linear, if for 

every  and ,  

0≠p

)( rpGF

−)( rpGF

Kx∈ )( rpGF∈α
).()( xfxf αα =  (4) 

Since, for every , it follows that  (see, for example, [3], p. 
83), by (3) it follows that an additive integral function is 

)( rpGF∈α αα =
rp

−)( pGF linear. 
 
This paper follows the ideas of Nicolae Popescu who conjectured that the additive 

integral functions have similar properties as the additive polynomials (see[1]).  
 

2. Representation and zeros of additive integral functions 
 

The following result gives a representation of the linear integral 
functions.  

−)( rpGF

Theorem 1. Let K be an algebraically closed field of characteristic   which 
is complete with respect to a non-archimedean absolute value and let f be an integral 

function with coefficients in K. Then f is - linear, where r is fixed,  if and 
only if  
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Proof. Since ( )  and  it follows 

that . Hence  which implies that the 

integral function f given by (5) is additive. Because, for every  

, by (5) we obtain that f is a linear function. 
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 Conversely, we suppose that the integral function   is a 

linear function.  We use the formal derivative . It 

is easy to see that this operation satisfies the standard rules of differentiation. Since 
, for every 
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0)()()( =−−+ yfxfyxf ,, Kyx ∈  because the zeros of an integral 
function are isolated, by taking two arbitrary sequences { } N∈nnx ,  of 

elements of K which converge to zero, it follows that 
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Hence, for every   ,Ky∈
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= 0 we obtain that  
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where  and  We write  1>jn ).(mod0 pn j ≡
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prove that .02 =f  Since  and  are linear  integral functions it 

follows that  is a linear integral function. Because K is an algebraically 

closed field it follows that the mapping 

f 1f −)( rpGF

2f −)( rpGF

KKp →:τ  given by  is an 

automorphism of K. Hence 

p
p xx =)(τ

KKep →:τ  defined by  is also an 

automorphism of K and we obtain that  

e
e

p
p xx =)(τ
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),()( 32 XfXf
ep=   

(9) 

where  is the largest power of p dividing all , ep jn 2Ij∈  and e is not divisible by r. 

Then, because epτ  is an automorphism of K it follows that  is an additive integral 

function. Moreover, if there exists  and 

3f

)( epGF∈α Kx∈  such that 

)()( 33 xfxf αα ≠  it follows that , a contradiction which implies that  is 

a linear integral function. Thus by using the form of , because  
we obtain as above that 

αα ≠
ep

3f

−)( epGF 2f rp01 =
,0)(3 =′ yf  for every .Ky∈  This implies that 

 with ,)(
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jXdXf Kd j ∈  and  a positive integer. Hence, because  

 is the largest power of p dividing all , we obtain that 

jm

ep jn 02 =f  which implies 

the theorem,      □ 
 Since every additive integral function is a −)( pGF linear integral function, 
by Theorem 1 we obtain the following result. 

Corollary 1. Under the hypotheses of Theorem 1 f is an additive function if 
and only if  
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Theorem 2. Let K be an algebraically closed field of characteristic   
which is complete with respect to a non-archimedean absolute value and let f be an 
integral function with coefficients in K having infinitely many distinct roots. If  

0≠p

{ } 0≥= iiG α , where 00 =α , is the set of all the roots of f, then  f is 

linear  if and only if G is a linear subspace of K and there 

exists a chain of linear subspaces  
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......

21
⊂⊂⊂⊂

snnn GGG  (11) 

of G such that the order of is equal to  and divides , for every j.  
jnG jn rp jn
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Proof. Let  f   be an additive integral function. If Gji ∈αα , , then, because f is 

an additive integral function, it follows that  0)()()( =−=− jiji fff αααα  and 

for every  ),( rpGF∈α .0)()( == ii aff ααα  Hence we obtain that G is a 

 linear subspace  of K.   −)( rpGF
Now we consider the critical radius of f (see [2], p. 291) ......21 <<<< krrr  . 

Then inside the ball { }jj rxKxB ≤∈= |:| ,  f  has  roots (the proof of Theorem 1 

of [2], p. 307 is the same in this case). Since 
jn

1|| =α , for every non-zero 

 it follows that  is a  linear subspace of G. Hence ),( rpGF∈α jB −)( rpGF

{ }0)(: =∈= αα fBG jn j
, j=1,2,…, is a finite linear subspace of K, 

 divides  and (11) holds. 
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Conversely, if f is an integral function, by Theorem of [2], p. 314, it follows that 
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 Suppose that G is a linear subspace of K and there 

a chain of linear subspaces  of G, of orders , such that (11) holds. 

We consider the polynomials 
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α . By Corollary 1.2.2 from [1] it 

follows that  is a linear polynomial. Hence  is a linear 

polynomial and similarly as in the proof of Theorem of [2], p. 314 we obtain that 
 This implies the theorem.    □ 

jP −)( rpGF jQ −)( rpGF

.lim fQ j
j

=
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 Finally we extend to integral functions a result of Ore on polynomials (see 
Theorem 1.4.1 of [1]). 
 Theorem 3.  Let K be an algebraically closed field of characteristic   
which is complete with respect to a non-archimedean absolute value and let f be an 
integral function with coefficients in K having infinitely many roots. If r is a positive 

0≠p
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integer, then there exists a linear integral function −)( rpGF )(KHg ∈  such that f 
divides g in . )(KH
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, where jα , j=1,2,… , are all the non-zero 

distinct roots of f. Let  be the multiplicity of the root jm jα  of f, where .00 =α  For 

every , we take  the smallest non-negative integer such that . 

We consider the function 
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 where, if  we take 

. Then g is an integral function (see [2], p. 315),  f divides g and by Theorem 

1 it follows that g is linear. Hence it follows the theorem.    □ 
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