ADDITIVE INTEGRAL FUNCTIONS IN VALUED FIELDS

Ghiocel Groza*, S. M. Ali Khan**

Abstract

The additive integral functions with the coefficients in a complete non-archimedean algebraically closed field of characteristic $p \neq 0$ are studied.

Mathematics Subject Classification: 12J25, 30D20
Keywords: non-archimedean absolute value, additive integral function

1. Introduction

Let $(K, \|)$ be a valued field of characteristic $p \neq 0$, where \| is a non-trivial non-archimedean absolute value defined on K, that is a mapping $\|: K \rightarrow[0, \infty)$ such that, for every $x, y \in K$,
(i) $|x|=0$ if and only if $x=0$;
(ii) $|x y|=|x||y|$;
(iii) $|x+y| \leq \max \{|x|,|y|\}$;
(iv) there exists a non-zero $x \in K$ such that $|x| \neq 1$.

For $x, y \in K$, define $d(x, y)=|x-y|$ and thus (K, d) is an ultrametric space. A formal power series

$$
\begin{equation*}
f(X)=\sum_{k=0}^{\infty} a_{k} X^{k} \in K[[X]] \tag{1}
\end{equation*}
$$

is called an integral function with coefficients in K if, for every $x \in K$, the sequence

$$
\begin{equation*}
S_{n}(x)=\sum_{k=0}^{n} a_{k} x^{k} \tag{2}
\end{equation*}
$$

is a Cauchy sequence. It follows easily that $H(K)$, the set of all integral functions with coefficients in K, is a K-algebra with respect to the ordinary addition and multiplication of integral functions. An integral function f with coefficients in K is called additive if, for every $x, y \in K$, in a fixed completion of K,

[^0]\[

$$
\begin{equation*}
f(x+y)=f(x)+f(y) . \tag{3}
\end{equation*}
$$

\]

Suppose now that K is an algebraically closed field of characteristic $p \neq 0$. Then, for every positive integer r, we may consider the Galois field $G F\left(p^{r}\right)$ as a subfield of K. In this case an additive integral function f is called $\operatorname{GF}\left(p^{r}\right)$-linear, if for every $x \in K$ and $\alpha \in G F\left(p^{r}\right)$,

$$
\begin{equation*}
f(\alpha x)=\alpha f(x) . \tag{4}
\end{equation*}
$$

Since, for every $\alpha \in G F\left(p^{r}\right)$, it follows that $\alpha^{p^{r}}=\alpha$ (see, for example, [3], p. 83), by (3) it follows that an additive integral function is $G F(p)$ - linear.

This paper follows the ideas of Nicolae Popescu who conjectured that the additive integral functions have similar properties as the additive polynomials (see[1]).

2. Representation and zeros of additive integral functions

The following result gives a representation of the $G F\left(p^{r}\right)$-linear integral functions.

Theorem 1. Let K be an algebraically closed field of characteristic $p \neq 0$ which is complete with respect to a non-archimedean absolute value and let f be an integral function with coefficients in K. Then f is $G F\left(p^{r}\right)$-linear, where r is fixed, if and only if

$$
\begin{equation*}
f(X)=\sum_{i=0}^{\infty} a_{i} X^{p^{i r}}, \text { with } a_{i} \in K \tag{5}
\end{equation*}
$$

Proof. Since $(x+y)^{p}=\sum_{i=0}^{p}\binom{p}{i} x^{p-i} y^{i}$ and $\binom{p}{i} \equiv 0(\bmod p)$ it follows that $(x+y)^{p}=x^{p}+y^{p}$. Hence $(x+y)^{p^{i}}=x^{p^{i}}+y^{p^{i}}$ which implies that the integral function f given by (5) is additive. Because, for every $\alpha \in G F\left(p^{r}\right)$, $\alpha^{p^{r}}=\alpha$, by (5) we obtain that f is a $G F\left(p^{r}\right)-$ linear function.

Conversely, we suppose that the integral function $f(X)=\sum_{j=0}^{\infty} b_{j} X^{j}$ is a $G F\left(p^{r}\right)$-linear function. We use the formal derivative $f^{\prime}(X)=\sum_{j=1}^{\infty} j b_{j} X^{j-1}$. It is easy to see that this operation satisfies the standard rules of differentiation. Since $f(x+y)-f(x)-f(y)=0$, for every $x, y \in K$, because the zeros of an integral function are isolated, by taking two arbitrary sequences $\left\{x_{n}\right\}_{n \in \mathbf{N}},\left\{y_{n}\right\}_{n \in \mathbf{N}}$ of elements of K which converge to zero, it follows that $f(X+Y)=f(X)+f(Y)$. Hence, for every $y \in K$,
$f^{\prime}(y)=\left.\frac{d}{d X} f(X+y)\right|_{X=0}=\left.\frac{d}{d X}(f(X)+f(y))\right|_{X=0}=f^{\prime}(0)=b_{1}$. Because $f(0)$ $=0$ we obtain that

$$
\begin{equation*}
f(X)=c_{0} X+\sum_{j=1}^{\infty} c_{j} X^{n_{j}}, \text { with } c_{0}=b_{1}, \tag{6}
\end{equation*}
$$

where $n_{j}>1$ and $n_{j} \equiv 0(\bmod p)$. We write

$$
\begin{equation*}
f(X)=f_{1}(X)+f_{2}(X), \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{1}(X)=c_{0} X+\sum_{j \in I_{1}} c_{j} X^{n_{j}}, f_{2}(X)=\sum_{j \in I_{2}} c_{j} X^{n_{j}} \tag{8}
\end{equation*}
$$

$I_{1}=\left\{j: n_{j}\right.$ is a power of $\left.p^{r}\right\}$ and $I_{2}=\left\{j: n_{j}\right.$ is not a power of $\left.p^{r}\right\}$. We shall prove that $f_{2}=0$. Since f and f_{1} are $G F\left(p^{r}\right)$-linear integral functions it follows that f_{2} is a $G F\left(p^{r}\right)$ - linear integral function. Because K is an algebraically closed field it follows that the mapping $\tau_{p}: K \rightarrow K$ given by $\tau_{p}(x)=x^{p}$ is an automorphism of K. Hence $\tau_{p^{e}}: K \rightarrow K$ defined by $\tau_{p^{e}}(x)=x^{p^{e}}$ is also an automorphism of K and we obtain that

$$
\begin{equation*}
f_{2}(X)=f_{3}^{p^{e}}(X) \tag{9}
\end{equation*}
$$

where p^{e} is the largest power of p dividing all $n_{j}, j \in I_{2}$ and e is not divisible by r. Then, because $\tau_{p^{e}}$ is an automorphism of K it follows that f_{3} is an additive integral function. Moreover, if there exists $\alpha \in G F\left(p^{e}\right)$ and $x \in K$ such that $f_{3}(\alpha x) \neq \alpha f_{3}(x)$ it follows that $\alpha^{p^{e}} \neq \alpha$, a contradiction which implies that f_{3} is a $G F\left(p^{e}\right)$ - linear integral function. Thus by using the form of f_{2}, because $1=p^{0 r}$ we obtain as above that $f_{3}^{\prime}(y)=0$, for every $y \in K$. This implies that $f_{3}(X)=\sum_{j=1}^{\infty} d_{j} X^{p m_{j}}$, with $d_{j} \in K$ and m_{j} a positive integer. Hence, because p^{e} is the largest power of p dividing all n_{j}, we obtain that $f_{2}=0$ which implies the theorem,

Since every additive integral function is a $G F(p)$ - linear integral function, by Theorem 1 we obtain the following result.

Corollary 1. Under the hypotheses of Theorem $1 f$ is an additive function if and only if

$$
\begin{equation*}
f(X)=\sum_{i=0}^{\infty} a_{i} X^{p^{i}}, \text { with } a_{i} \in K \tag{10}
\end{equation*}
$$

Theorem 2. Let K be an algebraically closed field of characteristic $p \neq 0$ which is complete with respect to a non-archimedean absolute value and let f be an integral function with coefficients in K having infinitely many distinct roots. If $G=\left\{\alpha_{i}\right\}_{i \geq 0}$, where $\alpha_{0}=0$, is the set of all the roots of f, then f is $G F\left(p^{r}\right)$ - linear if and only if G is a $G F\left(p^{r}\right)$ - linear subspace of K and there exists a chain of $G F\left(p^{r}\right)$ - linear subspaces

$$
\begin{equation*}
G_{n_{1}} \subset G_{n_{2}} \subset \ldots \subset G_{n_{s}} \subset \ldots \tag{11}
\end{equation*}
$$

of G such that the order of $G_{n_{j}}$ is equal to n_{j} and p^{r} divides n_{j}, for every j.

Proof. Let f be an additive integral function. If $\alpha_{i}, \alpha_{j} \in G$, then, because f is an additive integral function, it follows that $f\left(\alpha_{i}-\alpha_{j}\right)=f\left(\alpha_{i}\right)-f\left(\alpha_{j}\right)=0$ and for every $\alpha \in G F\left(p^{r}\right), \quad f\left(\alpha \alpha_{i}\right)=\alpha f\left(a_{i}\right)=0$. Hence we obtain that G is a $G F\left(p^{r}\right)$ - linear subspace of K.

Now we consider the critical radius of f (see [2], p. 291) $r_{1}<r_{2}<\ldots<r_{k}<\ldots$. Then inside the ball $B_{j}=\left\{x \in K:|x| \leq r_{j}\right\}, f$ has n_{j} roots (the proof of Theorem 1 of [2], p. 307 is the same in this case). Since $|\alpha|=1$, for every non-zero $\alpha \in G F\left(p^{r}\right)$, it follows that B_{j} is a $G F\left(p^{r}\right)$ - linear subspace of G. Hence $G_{n_{j}}=\left\{\alpha \in B_{j}: f(\alpha)=0\right\}, j=1,2, \ldots$, is a finite $G F\left(p^{r}\right)$-linear subspace of K, p^{r} divides n_{j} and (11) holds.

Conversely, if f is an integral function, by Theorem of [2], p. 314, it follows that $f=C X \prod_{j=1}^{\infty}\left(1-\frac{X}{\alpha_{j}}\right)$. Suppose that G is a $G F\left(p^{r}\right)$ - linear subspace of K and there a chain of $G F\left(p^{r}\right)$ - linear subspaces $G_{n_{j}}$ of G, of orders n_{j}, such that (11) holds. We consider the polynomials $P_{j}=C X \prod_{\alpha \in G}\left(X-\alpha_{j}\right)=C_{j} Q_{j}, \quad$ where $Q_{j}=C X \prod_{\substack{\alpha_{j} \in G_{n_{j}} \\ \alpha_{j} \neq 0}}\left(1-\frac{X}{\alpha_{j}}\right)$ and $C_{j}=\prod_{\substack{\alpha_{j} \in G_{n_{j}} \\ \alpha_{j} \neq 0}} \alpha_{j}$. By Corollary 1.2 .2 from [1] it follows that P_{j} is a $G F\left(p^{r}\right)$ - linear polynomial. Hence Q_{j} is a $G F\left(p^{r}\right)$ - linear polynomial and similarly as in the proof of Theorem of [2], p. 314 we obtain that $\lim _{j \rightarrow \infty} Q_{j}=f$. This implies the theorem.

Finally we extend to integral functions a result of Ore on polynomials (see Theorem 1.4.1 of [1]).

Theorem 3. Let K be an algebraically closed field of characteristic $p \neq 0$ which is complete with respect to a non-archimedean absolute value and let f be an integral function with coefficients in K having infinitely many roots. If r is a positive
integer, then there exists a $G F\left(p^{r}\right)$ - linear integral function $g \in H(K)$ such that f divides g in $H(K)$.

Proof. Suppose $f_{1}=\prod_{j=1}^{\infty}\left(1-\frac{X}{\alpha_{j}}\right)$, where $\alpha_{j}, j=1,2, \ldots$, are all the non-zero distinct roots of f. Let m_{j} be the multiplicity of the root α_{j} of f, where $\alpha_{0}=0$. For every $m_{j} \geq 1$, we take k_{j} the smallest non-negative integer such that $m_{j} \leq p^{k_{j} r}$. We consider the function $g=X^{p^{k_{0} r}} \prod_{j=1}^{\infty}\left(1-\frac{X}{\alpha_{j}}\right)^{p^{k_{j} r}}$, where, if $m_{0}=0$, we take $k_{0}=-\infty$. Then g is an integral function (see [2], p. 315), f divides g and by Theorem 1 it follows that g is $G F\left(p^{r}\right)$ - linear. Hence it follows the theorem.

References

[1] Goss, D.: Basic Structures of Function Field Arithmetic, Springer Verlag, Berlin, 1996.
[2] Robert, A.: A Course in p-adic Analysis, Springer Verlag, New York, 2000.
[3] Zariski, O., Samuel, P.: Commutative Algebra, vol. I, Springer Verlag, New York, 1958.

[^0]: * Department of Mathematics and Computer Science, Technical University of Civil Engineering of Bucharest, Romania, E-mail: grozag@utcb.ro
 ** Abdus Salam School of Mathematical Sciences, GC University Lahore, Pakistan, E-mail: mohib.ali@gmail.com

