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Abstract

Let D = (V,A) be a finite simple directed graph (shortly digraph) in which d−D(v) ≥ 1
for all v ∈ V . A function f : V −→ {−1, 1} is called a signed total dominating function if∑

u∈N−(v) f(u) ≥ 1 for each vertex v ∈ V . A set {f1, f2, . . . , fd} of signed total dominating

functions on D with the property that
∑d

i=1 fi(v) ≤ 1 for each v ∈ V (D), is called a signed
total dominating family (of functions) on D. The maximum number of functions in a signed
total dominating family on D is the signed total domatic number of D, denoted by dst(D). In
this paper we present some bounds on the signed total domatic number and we determine the
signed total domatic number of some classes of digraphs.
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1 Introduction

In this paper, D is a finite simple directed graph with vertex set V (D) and arc set A(D). Its
underlying graph is denoted G(D). We write d+

D(v) for the outdegree of a vertex v and d−D(v) for its
indegree. The minimum indegree is δ−(D). For every vertex v ∈ V , let N−D (v) be the set consisting
of all vertices of D from which arcs go into v. Note that for any digraph D with m arcs,∑

u∈V (D)

d−(u) =
∑

u∈V (D)

d+(u) = m. (1)

We often use the abbreviations V , N−(v), d−(v) for V (D), N−D (v), d−D(v). Consult [6] for the
notation and terminology which are not defined here.

For a real-valued function f : V (D) −→ R, the weight of f is w(f) =
∑
v∈V f(v). For S ⊆ V , we

define f(S) =
∑
v∈S f(v). So w(f) = f(V ).

If k ≥ 1 is an integer, then the signed total k-dominating function is defined as a function
f : V (D) −→ {−1, 1} such that f(N−(v)) =

∑
x∈N−(v) f(x) ≥ k for every v ∈ V (D). The signed

total k-domination number for a digraph D is

γtkS(D) = min{w(f) | f is a signed total k-dominating function of D}.
∗Corresponding author
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A γtkS(D)-function is a signed total k-dominating function onD of weight γtkS(D). As the assumption
δ−(D) ≥ k is necessary, we always assume that when we discuss γtkS(D), all digraphs involved satisfy
δ−(D) ≥ k and thus n(D) ≥ k + 1.

The signed total k-domination number of digraphs was introduced by Sheikholeslami and Volk-
mann [5]. When k = 1, the signed total k-domination number γtkS(D) is the usual signed total
domination number γst(D), which was introduced by Sheikholeslami in [3].

A set {f1, f2, . . . , fd} of distinct signed total k-dominating functions on D with the property that∑d
i=1 fi(v) ≤ k for each v ∈ V (D), is called a signed total (k, k)-dominating family on D. The

maximum number of functions in a signed total (k, k)-dominating family on D is the signed total
(k, k)-domatic number of D, denoted by dkst(D). The signed total (k, k)-domatic number of digraphs
was introduced by Sheikholeslami and Volkmann [4].

A set {f1, f2, . . . , fd} of distinct signed total k-dominating functions on D with the property that∑d
i=1 fi(v) ≤ 1 for each v ∈ V (D), is called a signed total k-dominating family on D. The maximum

number of functions in a signed total k-dominating family on D is the signed total k-domatic number
of D, denoted by dtkS(D). The signed total k-domatic number of digraphs was introduced by Atapour
et al. [1].

If k = 1, then the signed total (k, k)-domatic number and the signed total k-domatic number of
a digraph D are the same and is called signed total domatic number, denoted by dst(D). The signed
total domatic number is well-defined and dst(D) ≥ 1 for all digraphs D in which d−D(v) ≥ 1 for all
v ∈ V since the set consisting of any one STD function forms a STD family of D. A dst-family of a
digraph D is a STD family containing dst(D) STD functions.

The concept of signed total domatic number of an undirected graph was introduced by Henning
in [2] as follows. The signed total dominating function of a graph G is defined as a function f :
V (G) −→ {−1, 1} such that

∑
x∈N(v) f(x) ≥ 1 for every v ∈ V (G). The sum

∑
x∈V (G) f(x) is the

weight w(f) of f . The minimum of weights w(f), taken over all signed total dominating functions f
on G is called the signed total domination number of G, denoted by γst(G). A set {f1, f2, . . . , fd} of

signed total dominating functions on G with the property that
∑d
i=1 fi(v) ≤ 1 for each v ∈ V (G), is

called a signed total dominating family on G. The maximum number of functions in a signed total
dominating family on G is the signed total domatic number of G, denoted by dst(G).

In this paper we continue the study of the signed total domatic numbers in digraphs and we
determine the signed total domatic number of some classes of digraphs.

The proof of the following results can be found in [1, 4].

Theorem A. Let D be a digraph of order n and positive minimum indegree with signed total
domination number γst(D) and signed total domatic number dst(D). Then

γst(D) · dst(D) ≤ n.

Moreover if γst(D) · dst(D) = n, then for each dst-family {f1, · · · , fd} of D, each function fi is a

γst-function and
∑d
i=1 fi(v) = 1 for all v ∈ V .

Theorem B. The signed total domatic number of a digraph is an odd integer.

Theorem C. If D is a digraph with minimum indegree δ−(D) ≥ 1, then

1 ≤ dst(D) ≤ δ−(D).

Moreover if dst(D) = δ−(D), then for each function of any STD family {f1, f2, · · · , fd} and for all

vertices v of indegree δ−(D),
∑
u∈N−(v) fi(u) = 1 and

∑d
i=1 fi(u) = 1 for every u ∈ N−(v).

2 Bounds on the signed total domatic number

In this section we present some bounds on the signed total domatic number of a digraph.
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Theorem 1. Let D be a digraph, and let v be a vertex of even positive indegree d−(v) = 2t. Then

dst(D) ≤
{
t if t is odd
t− 1 if t is even.

Moreover if t is odd and dst = t, then for each function fi of each STD family and for each vertex v
of indegree 2t we have

∑
u∈N−(v) fi(u) = 2 and

∑d
i=1 fi(u) = 1.

Proof. Let d = dst(D) and let {f1, f2, . . . , fd} be a STD family on D . Since d−(v) is even and fi(u)
is odd for each i and each u, we observe that∑

u∈N−(v)

fj(u) ≥ 2 (2)

for each function fi. Using inequality (2) and
∑d
i=1 fi(u) ≤ 1 for each vertex u ∈ V (D), we obtain

2t = d−(v) =
∑

u∈N−(v)

1 ≥
∑

u∈N−(v)

d∑
i=1

fi(u) =

d∑
i=1

∑
u∈N−(v)

fi(u) ≥
d∑
i=1

2 = 2d.

This yields d ≤ t immediately and if d = t, every inequality becomes an equality. When t is even,
Theorem B implies d ≤ t− 1.

Restricting our attention to digraphs D of even minimum indegree, this theorem leads to a
considerably improvement of the upper bound given in Theorem C.

Corollary 2. If D is a digraph of even minimum indegree δ−(D) ≥ 2, then

dst(D) ≤

{
δ−(D)

2 when δ−(D) ≡ 2 (mod 4)

δ−(D)−2
2 when δ−(D) ≡ 0 (mod 4).

Let D be an orientation of a (4q + 2)-regular graph of order n. The number of arcs of D is
m = (2q + 1)n and its average indegree and outdegree are both equal to 2q + 1. Hence δ−(D) ≤
2q + 1 and D is inregular if and only if it is outregular. We study below such digraphs satisfying
dst(D) = 2q + 1.

Definition 3. Let q be a positive integer. Fq is the family of the orientations of (4q + 2)-regular
graphs of order n ≡ 0 (mod 2q + 1) such that there exist 2q + 1 subsets Aj of qn

2q+1 vertices such

that each vertex of D is contained in exactly q of them and |N−(u) ∩ Aj | = q for each vertex u in
V and each subset Aj .

After Theorem 12, we give an example of a family of graphs in F1 which can be generalized to
families of graphs in Fq for any q.

Proposition 4. If D ∈ Fq, then D is inregular and δ−(D) = 2q + 1.

Proof. We can associate to the digraph D a bipartite graph H with independent classes V and
A = {A1, A2, · · · , A2q+1} where a vertex v of V is adjacent to the subsets Aj containing it. Then
in H, the vertices of V have degree q and the vertices of A have degree qn

2q+1 . If a subset U of

V has exactly q elements in each Aj , then H contains q(2q + 1) edges between A and U , and
thus |U | = 2q + 1. Therefore the condition |N−(u) ∩ Aj | = q for each j and each u implies that
d−(u) = 2q + 1 for each vertex u of V . Hence D is (2q + 1)-inregular.

Theorem 5. A digraph D whose underlying graph is (4q + 2)-regular satisfies dst(D) = 2q + 1 if
and only if it belongs to Fq.
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Proof. Part only if: Let D be a digraph such that G(D) is (4q + 2)-regular and dst(D) = 2q + 1.
The number of arcs of D is m = (2q + 1)n and its average indegree is m/n = (2q + 1). Therefore
δ− ≤ 2q + 1 and by Theorem C, δ− = 2q + 1. Thus D is (2q + 1)-inregular and (2q + 1)-outregular.

Let fj , 1 ≤ j ≤ 2q + 1, be a STD family of D and for each j, let Aj = {u ∈ V |fj(u) = −1}. By

Theorem C and since dst(D) = δ−,
∑2q+1
j=1 fj(v) = 1 for every v and

∑
u∈N−(v) fi(u) = 1 for every

index i and every vertex v. From the first inequality, q + 1 functions fj take the value +1 in v and
q functions fj take the value −1 in v. Therefore each vertex v belongs to exactly q sets Aj . From
the second inequality, exactly q vertices of N−(v) are in Aj , i. e., |N−(v)∩Aj | = q for all v and all
j. For each j, there are qn arcs with origin in Aj . Since d+(v) = 2q + 1 for all v, (2q + 1)|Ai| = qn.
Hence n ≡ 0 (mod 2q + 1) and Ai = qn

2q+1 for every i.

Part if: Let D be a digraph in Fq and let A1, A2, · · · , A2q+1 be subsets of V (D) as in Definition 3.
By Theorem C and Proposition 4, dst(D) ≤ 2q + 1. To prove dst(D) = 2q + 1, we exhibit a STD
family of 2q + 1 functions. For j = 1, 2, · · · , 2q + 1, let fj be defined by fj(u) = −1 if u ∈ Aj ,
fj(u) = +1 otherwise. For each vertex u and each index j, the function fj assigns the value −1
to the q vertices of N−(u) ∩ Aj and the value +1 to the q + 1 other vertices of N−(u). Hence
for each j,

∑
v∈N−(u) fj(v) = +1 and fj is a STD function. Since every vertex u is in exactly q

subsets Aj , fj(u) takes the value −1 for exactly q indices j and the value +1 for the q + 1 other

ones. Hence,
∑2q+1
j=1 fj(u) = 1 for every u in V and {f1, f2, · · · , f2q+1} is a SDT-family. Therefore

dst(D) = 2q + 1.

Theorem 6. Let D be a digraph with positive minimum indegree, and let ∆ = ∆(G(D)) be the
maximum degree of G(D). Then

dS(D) ≤ ∆

2
,

with equality if and only if D ∈ Fq for some q.

Proof. First of all, we show that δ−(D) ≤ ∆/2. Suppose to the contrary that δ−(D) > ∆/2. Then
∆+(D) ≤ ∆− δ−(D) < ∆/2, and (1) leads to the contradiction

∆ · |V (D)|
2

<
∑

u∈V (D)

d−(u) =
∑

u∈V (D)

d+(u) <
∆ · |V (D)|

2
.

Applying Theorem C, we deduce that

dS(D) ≤ δ−(D) ≤ ∆

2
,

and this is the desired result.
Now let dS(D) = ∆

2 . It follows that δ−(D) = ∆
2 and so ∆ ≡ 0 , 2 (mod 4). If ∆ ≡ 0 (mod 4),

then Corollary 2 implies that dS(D) ≤ ∆
4 which is a contradiction.

Now let ∆ ≡ 2 (mod 4), and therefore ∆ = 4q + 2 for an integer q ≥ 0. This implies that
δ−(D) = 2q + 1 and so G(D) is a (4q + 2)-regular graph. Since dS(D) = 2q + 1, by Theorem 5 we
have D ∈ Fq.

The associated digraph D(G) of a graph G is the digraph obtained when each edge e of G is
replaced by two oppositely oriented arcs with the same ends as e. Since N−D(G)(v) = NG(v) for each

vertex v ∈ V (G) = V (D(G)), the following useful observation is valid.

Observation 7. If D(G) is the associated digraph of a graph G, then dst(D(G)) = dst(G).

There are a lot of interesting applications of Observation 7, as for example the following three
results:

Corollary 8. (Henning [2] 2006) If G is a graph with minimum degree δ(G) > 0, then dst(G) ≤
δ(G).
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Proof. Since δ(G) = δ−(D(G)), it follows from Theorem C and Observation 7

dst(G) = dst(D(G)) ≤ δ−(D(G)) = δ(G).

Corollary 9. (Henning [2] 2006) The signed total domatic number of a graph G is an odd integer.

If Kn is the complete graph of order n, then Henning [2] have shown that dst(Kn) = bn+1
3 c −

dn3 e+b
n
3 c if n (≥ 3) is odd and dst(Kn) = n

2−d
n+2

4 e+b
n+2

4 c if n is even. This result and Observation
7 imply immediately the next corollary.

Corollary 10. If K∗n is the complete digraph of order n, then dst(K
∗
n) = bn+1

3 c − d
n
3 e + bn3 c if

n (≥ 3) is odd and dst(K
∗
n) = n

2 − d
n+2

4 e+ bn+2
4 c if n is even.

In the following section, we use the bounds obtained in terms of the indegrees or of the signed
total dominating number to determine the value of dst(D) for some particular digraphs.

3 Determination of dst(D) for particular digraphs

For digraphs with few arcs, Theorems C and 1 immediately lead to the next results.

Theorem 11. Let D be a digraph such that 1 ≤ δ− ≤ 2 or such that δ− ≥ 3 and with a vertex of
indegree 4. Then dst(D) = 1.

Theorem 12. Every orientation D with δ−(D) ≥ 1 of a graph G satisfying one of the following
properties is such that dst(D) = 1 :

1. G has minimum degree at most 2.

2. G contains two adjacent vertices of degree 3.

3. G has maximum degree ∆(G) at most 6 except if G is 6-regular and D ∈ F1.

Proof. 1. and 2. If δ(G) ≤ 2, then δ−(D) ≤ 2. If x and y are two adjacent vertices of degree 3 in
G, suppose without loss of generality the edge xy is oriented from x to y in D. Then d−(x) ≤ 2 and
again δ−(D) ≤ 2.

3. If ∆(G) ≤ 6, the number m of arcs of D is at most 3n and its average indegree is at most 3. If
G is not 6-regular, then the average indegree of D is less than 3 and δ−(D) ≤ 2. If G is 6-regular,
then dst(D) = 1 except if D ∈ F1 by Theorem 5.

We construct an example of digraphs in F1 as follows. D is a circulant digraph of order n ≡ 0
(mod 3) with vertex set V = {u0, u1, · · · , un−1} and arcs uiui+1, uiui+2, uiui+3 where the indices
are taken modulo n. For j = 0, 1, 2, the three sets Aj = {uj , uj+3, uj+6, · · · , uj+n−3} of order n/3
form a partition of V and |N−(u)∩Aj | = 1 for each j and each vertex u. They allow to define three
functions fj : V −→ {−1,+1} by fj(u) = −1 if and only if u ∈ Aj . These three functions form a
STD family of order δ−(D) = 3.

Now we use Theorem A to determine dst for a particular class of tournaments. Let n = 2k + 1
be an odd positive integer. We define the circulant tournament CT(n) with n vertices as follows.
The vertex set of CT(n) is V (CT(n)) = {u0, u1, . . . , un−1}. For each i, the arcs go from ui to the
vertices ui+1, . . . , ui+k, the indices being taken modulo n. Sheikholeslami in [3] proved that:

Theorem D. Let n = 2k + 1 where k is a positive integer. Then

γst(CT(n)) =

{
3 if k is odd
5 if k is even.
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Theorem 13. Let n > 1 be an odd integer. Then

dst(CT(n)) =



n
3 if n ≡ 3 (mod 12)
n−4

3 if n ≡ 7 (mod 12)
n−2

3 if n ≡ 11 (mod 12)
n−6

5 if n ≡ 1 (mod 20)
n
5 if n ≡ 5 (mod 20)
n−4

5 if n ≡ 9 (mod 20)
n−8

5 if n ≡ 13 (mod 20)
n−2

5 if n ≡ 17 (mod 20)

Proof. Case 1. n = 2k + 1 with k is odd.
Then n ≡ 3 (mod 4), which is equivalent to n ≡ 3, 7 or 11 (mod 12).
Let ` = n

3 if n ≡ 3 (mod 12), ` = n−4
3 if n ≡ 7 (mod 12), ` = n−2

3 if n ≡ 11 (mod 12) be the
largest odd integer less or equal to bn3 c. By Proposition A and Theorems 1 and 3, dst(CT(n)) ≤ `.
If n = 3 or n = 7, then ` = 1 and thus dst(CT(n)) = 1. We suppose henceforth n = 2k + 1 with k
odd ≥ 5. To prove dst(CT(n)) = `, we exhibit a STD family of order `. For j = 0, 1, · · · , `− 1, let

Aj = A1
j ∪A2

j with

A1
j = {ui | j(

k − 1

2
) ≤ i ≤ j(k − 1

2
) +

k − 3

2
} and

A2
j = {ui |

n+ 1

2
+ j(

k − 1

2
) ≤ i ≤ n+ 1

2
+ j(

k − 1

2
) +

k − 3

2
},

where the indices i are taken modulo n, and define the function fj by

fj(u) =

 −1 if u ∈ Aj

+1 otherwise.

For each j ∈ {0, 1, · · · , `−1}, the function fj assigns the value−1 to two sequences of k−1
2 consecutive

vertices of CT (n) separated by at least

min {n+ 1

2
− k − 3

2
− 1, n− (

n+ 1

2
+
k − 3

2
)− 1} =

k + 1

2

vertices. For each vertex u, N−(u) consists of k consecutive vertices of CT (n), among them at most
k−1

2 receive the value −1 by fj and the other ones the value +1. Therefore for each j and each u,∑
v∈N−(u)

fj(v) ≥ 1. Hence fj is a STD function for 0 ≤ j ≤ `− 1.

We have now to prove that {f0, f1, · · · , f`−1} is a STD family of functions, in other words that
`−1∑
j=0

fj(u) ≤ 1 for every vertex u of CT (n). Since the ` sets A1
j are disjoint, the indices j such that

ui ∈ A1
j are different. Similarly, the ` sets A2

j are disjoint and the indices j such that ui ∈ A2
j are

different. Assume A1
j ∩ A2

j 6= ∅ and let ui ∈ A1
j ∩ A2

j . Then there exists a non-negative integer r1

and r2 such that

j
k − 1

2
≤ i+ r1n ≤ j

k − 1

2
+
k − 3

2
and

n+ 1

2
+ j

k − 1

2
≤ i+ r2n ≤

n+ 1

2
+ j

k − 1

2
+
k − 3

2
.

These integers satisfy r2 > r1 since

j
k − 1

2
+
k − 3

2
<
n+ 1

2
+ j

k − 1

2
,
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and r2 < r1 + 1 since
n+ 1

2
+ j

k − 1

2
+
k − 3

2
< j

k − 1

2
+ n.

This is not compatible and thus A1
j ∩A2

j = ∅. This shows that the set of indices j such that ui ∈ A1
j

and the set of indices j such that ui ∈ A2
j are disjoint. Therefore, if a vertex u is covered s1(u) times

by A1 = ∪`−1
j=0A

1
j and s2(u) times by A2 = ∪`−1

j=0A
2
j , then

fj(u) =

 −1 for s1(u) + s2(u) values of j

+1 for `− (s1(u) + s2(u)) values of j.

To prove

`−1∑
j=0

fj(u) ≤ 1 for every vertex u, it is sufficient to show that in any case, s1(u) + s2(u) ≥

`− (s1(u) + s2(u))− 1, i.e.,

s1(u) + s2(u) ≥ `− 1

2
. (3)

The ` disjoint sets A1
j are consecutive and

A1 = ∪`−1
j=0A

1
j = {ui | 0 ≤ i ≤ `k − 1

2
− 1}.

Similarly the ` disjoint sets A2
j are consecutive and

A2 = ∪`−1
j=0A

2
j = {ui |

n+ 1

2
≤ i ≤ n+ 1

2
+ `

k − 1

2
− 1}.

Therefore each set A1 and A2 covers `k−1
2 consecutive vertices.

Subcase 1.1 n = 12q + 3 with q ≥ 1. Hence k = 6q + 1 and ` = n
3 = 4q + 1.

Each set A1 and A2 contains `k−1
2 = 3q` = qn vertices. Therefore each vertex is covered exactly

q times by each of A1, A2 and s1(u) = s2(u) = q. Then s1(u) + s2(u) = 2q = `−1
2 for each u and (3)

is satisfied.

Subcase 1.2 n = 12q + 7 with q ≥ 1. Hence k = 6q + 3 and ` = n−4
3 = 4q + 1.

Each set A1 and A2 contains `k−1
2 = 3q` = qn + 1 vertices. The interval A1 covers q + 1 times

the vertex u0 and q times the other ones. The interval A2 covers q + 1 times the vertex un+1
2

and q

times the other ones. Therefore s1(u) + s2(u) ≥ 2q = `−1
2 for each u and (3) is satisfied.

Subcase 1.3 n = 12q + 11 with q ≥ 0. Hence k = 6q + 5 and ` = n−2
3 = 4q + 3.

Each set A1 and A2 contains `k−1
2 = qn+ n+1

2 vertices. The interval A1 covers q + 1 times the
vertices ui with 0 ≤ i ≤ n−1

2 and q times the other ones. The interval A2 covers q + 1 times the

vertices ui with n+1
2 ≤ i ≤ n and q times the other ones. Therefore s1(u) + s2(u) ≥ 2q + 1 = `−1

2
for each u and (3) is satisfied.

In all cases, f0, f1, · · · , f`−1 is a STD family and thus dst(CT(n)) = `.

Case 2. n = 2k + 1 with k even.
Then n ≡ 1 (mod 4), which is equivalent to n ≡ 1, 5, 9, 13 or 17 (mod 20).
Let ` = n−6

5 if n ≡ 1 (mod 20), ` = n
5 if n ≡ 5 (mod 20), ` = n−4

5 if n ≡ 9 (mod 20), ` = n−8
5 if

n ≡ 13 (mod 20) and ` = n−2
5 if n ≡ 17 (mod 20) be the largest odd integer less or equal to bn5 c.

By Proposition A and Theorems 1 and 3, dst(CT(n)) ≤ `.
If n = 5, 9 or 13, then ` = 1 and thus dst(CT(n)) = 1. We suppose henceforth n = 2k+ 1 with k

even ≥ 8. To prove dst(CT(n)) = `, we exhibit a STD family of order `. The proof is similar to the
proof of Case 1. We give the numerical values with less explanations.

For j = 0, 1, · · · , `− 1, let
Aj = A1

j ∪A2
j with
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A1
j = {ui | j(

k − 2

2
) ≤ i ≤ j(k − 2

2
) +

k − 4

2
} and

A2
j = {ui |

n+ 1

2
+ j(

k − 2

2
) ≤ i ≤ n+ 1

2
+ j(

k − 2

2
) +

k − 4

2
},

and define the function fj by fj(u) =

 −1 if u ∈ Aj

+1 otherwise.

The intervals A1
j and A2

j contain each k−2
2 vertices and are separated by at least

min {n+ 1

2
− k − 4

2
− 1, n− (

n+ 1

2
+
k − 4

2
)− 1} =

k + 2

2

vertices. For each vertex u, N−(u) consists of k consecutive vertices of CT (n), among them at most
k−2

2 receive the value −1 by fj and the other ones the value +1. Therefore fj is a STD function for
0 ≤ j ≤ `− 1.

As above, the indices j such that ui ∈ A1
j are different and the indices j such that ui ∈ A2

j are

different. If ui ∈ A1
j ∩A2

j , there exist non-negative integers r1 and r2 such that

j
k − 1

2
≤ i+ r1n ≤ j

k − 1

2
+
k − 4

2

and
n+ 1

2
+ j

k − 1

2
≤ i+ r2n ≤

n+ 1

2
+ j

k − 1

2
+
k − 4

2
.

This is impossible, which shows that the set of indices j such that ui ∈ A1
j and the set of indices j

such that ui ∈ A2
j are disjoint. If a vertex u is covered s1(u) times by A1 = ∪`−1

j=0A
1
j and s2(u) times

by A2 = ∪`−1
j=0A

2
j , it is sufficient, to prove that f0, f1, · · · , f`−1 is a STD-family, to show that (3) is

satisfied. Since

A1 = ∪`−1
j=0A

1
j = {ui | 0 ≤ i ≤ `k − 2

2
− 1}

and

A2 = ∪`−1
j=0A

2
j = {ui |

n+ 1

2
≤ i ≤ n+ 1

2
+ `

k − 2

2
− 1},

each set A1 and A2 covers `k−2
2 consecutive vertices.

Subcase 2.1 n = 20q + 1 with q ≥ 1. Hence k = 10q and ` = n−6
3 = 4q − 1.

Each set A1 and A2 contains `k−2
2 = (q− 1)n+ n+3

2 vertices. The interval A1 covers q times the
vertices ui with 0 ≤ i ≤ n+1

2 and q − 1 times the other ones. The interval A2 covers q times the

vertices ui with n+1
2 ≤ i ≤ n+1 and q−1 times the other ones. Therefore s1(u)+s2(u) ≥ 2q−1 = `−1

2
for each u and (3) is satisfied.

Subcase 2.2 n = 20q + 5 with q ≥ 1. Hence k = 10q + 2 and ` = n
5 = 4q + 1.

Each set A1 and A2 contains `k−2
2 = qn vertices and covers exactly q times each vertex ui.

Therefore s1(u) + s2(u) = 2q = `−1
2 for each u and (3) is satisfied.

Subcase 2.3 n = 20q + 9 with q ≥ 1. Hence k = 10q + 4 and ` = n−4
5 = 4q + 1.

Each set A1 and A2 contains `k−2
2 = qn+ 1 vertices and covers at least q times each vertex ui.

Therefore s1(u) + s2(u) ≥ 2q = `−1
2 for each u and (3) is satisfied.

Subcase 2.4 n = 20q + 13 with q ≥ 1. Hence k = 10q + 6 and ` = n−8
5 = 4q + 1.

Each set A1 and A2 contains `k−2
2 = qn+ 2 vertices and covers at least q times each vertex ui.

Therefore s1(u) + s2(u) ≥ 2q = `−1
2 for each u and (3) is satisfied.

Subcase 2.5 n = 20q + 17 with q ≥ 0. Hence k = 10q + 8 and ` = n−2
5 = 4q + 3.

Each set A1 and A2 contains `k−2
2 = qn+ n+1

2 vertices. The interval A1 covers q + 1 times the
vertices ui with 0 ≤ i ≤ n−1

2 and q times the other ones. The interval A2 covers q + 1 times the

vertices ui with n+1
2 ≤ i ≤ n and q times the other ones. Therefore s1(u) + s2(u) ≥ 2q + 1 = `−1

2
for each u and (3) is satisfied.
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