q-ANALOGUE OF THE ALZER'S INEQUALITY

HÉDI ELMONSER

Abstract

In this article, we are interested in giving a q-analogue of the Alzer's inequality.

Mathematics Subject Classification (2010): 26D15.
Keywords: Alzer's inequality; q-analogue.

Article history:
Received 26 April 2015
Received in revised form 24 August 2015
Accepted 26 August 2015

1. Introduction

In 1964 H. Mink and L. Sathre [15] proved the following inequality

$$
\begin{equation*}
\frac{n}{n+1}<\frac{(n!)^{\frac{1}{n}}}{((n+1)!)^{\frac{1}{n+1}}}, n \in \mathbf{N} \tag{1.1}
\end{equation*}
$$

The inequality (1.1) was generalized and refined by H. Alzer in [2]-[4]. He proved in [4] the following inequality:

$$
\begin{equation*}
\frac{n}{n+1} \leq\left[\frac{(n+1) \sum_{i=1}^{n} i^{r}}{n \sum_{i=1}^{n+1} i^{r}}\right]^{\frac{1}{r}}<\frac{(n!)^{\frac{1}{n}}}{\left((n+1)^{!}!\right)^{\frac{1}{n+1}}}, n \in \mathbf{N}, r \in \mathbf{R}_{+} \tag{1.2}
\end{equation*}
$$

The lower and upper bounds are the best possible.
Many proofs of the inequality (1.2) and some generalizations were given in ([1],[5]-[7],[9],[10],[12] -[14],,[16]-[23]).

The left hand side of the Alzer's inequality (1.2) was generalized by Feng Qi [8] as follows:

$$
\begin{equation*}
\frac{n+k}{n+m+k} \leq\left[\frac{\frac{1}{n} \sum_{i=k+1}^{n+k} i^{r}}{\frac{1}{n+m} \sum_{i=k+1}^{n+m+k} i^{r}}\right]^{\frac{1}{r}}, n, m \in \mathbf{N} \tag{1.3}
\end{equation*}
$$

where k is a nonnegative integer and $r \in \mathbf{R}_{+}$. The lower bound is best possible.
The main purpose of this paper is to give a q-analogue of inequalities (1.2) and (1.3).

2010 Mathematics Subject Classification. 26D15.
Key words and phrases. Alzer's inequality; q-analogue.

2. q-Analogue of the Alzer's inequality

Throughout this paper, we consider a positive integer $q \neq 1$ and for $x \in \mathbb{C}$, we write

$$
\begin{equation*}
[x]_{q}=\frac{1-q^{x}}{1-q} \tag{2.1}
\end{equation*}
$$

Note that $[x]_{q}$ tends to x when q tends to 1 (we refer to [11] for more details about q-calculus).
To prove the main result of the paper, we need the following lemma.
Lemma 2.1. For all $q>1$, for all nonnegative integers n and k and for all nonnegative real number r, we have

$$
\begin{equation*}
\sum_{i=k+1}^{n+k}[i]_{q}^{r}>\frac{[n]_{q}[n+k]_{q}^{r}[n+k+1]_{q}^{r}}{[n+1]_{q}[n+k+1]_{q}^{r}-[n]_{q}[n+k]_{q}^{r}} \tag{2.2}
\end{equation*}
$$

Proof. Let k be a nonnegative integer and r be a nonnegative real number. We prove the result by induction on n.

For $n=1$, we have

$$
\begin{aligned}
{[k+1]_{q}^{r}-\frac{[k+1]_{q}^{r}[k+2]_{q}^{r}}{[2]_{q}[k+2]_{q}^{r}-[k+1]_{q}^{r}} } & =[k+1]_{q}^{r} \frac{[2]_{q}[k+2]_{q}^{r}-[k+1]_{q}^{r}-[k+2]_{q}^{r}}{[2]_{q}[k+2]_{q}^{r}-[k+1]_{q}^{r}} \\
& =[k+1]_{q}^{r} \frac{q[k+2]_{q}^{r}-[k+1]_{q}^{r}}{(1+q)[k+2]_{q}^{r}-[k+1]_{q}^{r}} \\
& =[k+1]_{q}^{r} \frac{q\left(1-q^{k+2}\right)^{r}-\left(1-q^{k+1}\right)^{r}}{(1+q)\left(1-q^{k+2}\right)^{r}-\left(1-q^{k+1}\right)^{r}} \\
& =[k+1]_{q}^{r} \frac{q-\left(\frac{1-q^{k+1}}{\left.1-q^{k+2}\right)^{r}}\right.}{1+q-\left(\frac{1-q^{k+1}}{1-q^{k+2}}\right)^{r}} .
\end{aligned}
$$

Using the fact that $\frac{1-q^{k+1}}{1-q^{k+2}}<1<q$, we get

$$
[k+1]_{q}^{r}>\frac{[k+1]_{q}^{r}[k+2]_{q}^{r}}{[2]_{q}[k+2]_{q}^{r}-[k+1]_{q}^{r}},
$$

which achieves the proof of the result for $n=1$.
Suppose, now, that it is valid for $n>1$ and let's prove that it's valid for $n+1$. Using the fact that $\sum_{i=k+1}^{n+k+1}[i]_{q}^{r}=\sum_{i=k+1}^{n+k}[i]_{q}^{r}+[n+k+1]_{q}^{r}$, calculating straightforwardly, and simplifying easily, the induction step can be written as

$$
\frac{[n+2]_{q}[n+k+2]_{q}^{r}-[n+1]_{q}[n+k+1]_{q}^{r}}{[n+1]_{q}[n+k+1]_{q}^{r}-[n]_{q}[n+k]_{q}^{r}}>\left(\frac{[n+k+2]_{q}}{[n+k+1]_{q}}\right)^{r}
$$

Consider the functions f and g defined on $[n, n+1]$ as follows

$$
f(x)=[x+1]_{q}[x+k+1]_{q}^{r} \quad \text { and } \quad g(x)=[x]_{q}[x+k]_{q}^{r}
$$

Simple derivation gives

$$
f^{\prime}(x)=\frac{\ln q}{q-1}\left[q^{x+1}[x+k+1]_{q}^{r}+r q^{x+k+1}[x+1]_{q}[x+k+1]_{q}^{r-1}\right]
$$

and

$$
g^{\prime}(x)=\frac{\ln q}{q-1}\left[q^{x}[x+k]_{q}^{r}+r q^{x+k}[x]_{q}[x+k]_{q}^{r-1}\right] .
$$

So, for all $x \in[n, n+1]$, we have

$$
\begin{aligned}
\frac{f^{\prime}(x)}{g^{\prime}(x)} & =\frac{q^{x+1}[x+k+1]_{q}^{r}+r q^{x+k+1}[x+1]_{q}[x+k+1]_{q}^{r-1}}{q^{x}[x+k]_{q}^{r}+r q^{x+k}[x]_{q}[x+k]_{q}^{r-1}} \\
& =\frac{q[x+k+1]_{q}^{r}\left(1+r q^{k} \frac{[x+1]_{q}}{[x+k+1]_{q}}\right)}{[x+k]_{q}^{r}\left(1+r q^{k} \frac{[x]_{q}}{[x+k]_{q}}\right)} \\
& >\left(\frac{[x+k+1]_{q}}{[x+k]_{q}}\right)^{r} .
\end{aligned}
$$

From Cauchy's mean-value theorem and the previous inequality, there exists one point $\xi \in(n, n+1)$ such that

$$
\begin{equation*}
\frac{[n+2]_{q}[n+k+2]_{q}^{r}-[n+1]_{q}[n+k+1]_{q}^{r}}{[n+1]_{q}[n+k+1]_{q}^{r}-[n]_{q}[n+k]_{q}^{r}}=\frac{f^{\prime}(\xi)}{g^{\prime}(\xi)}>\left(\frac{[\xi+k+1]_{q}}{[\xi+k]_{q}}\right)^{r} \tag{2.3}
\end{equation*}
$$

But,

$$
\begin{aligned}
\frac{[\xi+k+1]_{q}}{[\xi+k]_{q}}-\frac{[n+k+2]_{q}}{[n+k+1]_{q}} & =\frac{\left(1-q^{\xi+k+1}\right)\left(1-q^{n+k+1}\right)-\left(1-q^{n+k+2}\right)\left(1-q^{\xi+k}\right)}{\left(1-q^{\xi+k}\right)\left(1-q^{n+k+1}\right)} \\
& =\frac{q^{n+k+2}+q^{\xi+k}-q^{\xi+k+1}-q^{n+k+1}}{\left(1-q^{\xi+k}\right)\left(1-q^{n+k+1}\right)} \\
& =\frac{q^{k}(q-1)\left(q^{n+1}-q^{\xi}\right)}{\left(1-q^{\xi+k}\right)\left(1-q^{n+k+1}\right)}>0 .
\end{aligned}
$$

Then,

$$
\left(\frac{[\xi+k+1]_{q}}{[\xi+k]_{q}}\right)^{r}>\left(\frac{[n+k+2]_{q}}{[n+k+1]_{q}}\right)^{r}
$$

This inequality together with (2.3) gives

$$
\begin{equation*}
\frac{[n+2]_{q}[n+k+2]_{q}^{r}-[n+1]_{q}[n+k+1]_{q}^{r}}{[n+1]_{q}[n+k+1]_{q}^{r}-[n]_{q}[n+k]_{q}^{r}}>\left(\frac{[n+k+2]_{q}}{[n+k+1]_{q}}\right)^{r} \tag{2.4}
\end{equation*}
$$

which proves that the result is valid for $n+1$.
Now, we are in a situation to prove the main result of this paper.

Theorem 2.2.

$$
\frac{[n+k]_{q}}{[n+m+k]_{q}} \leq\left\{\begin{array}{l}
\left.\frac{1}{q^{m\left(1+\frac{1}{r}\right)}}\left(\frac{[n+m]_{q} \sum_{i=k+1}^{n+k} q^{-i r}[i]_{q}^{r}}{[n]_{q} \sum_{i=k+1}^{n+k+m} q^{-i r}[i]_{q}^{r}}\right)^{\frac{1}{r}}, \text { if } q \in\right] 0,1[, \tag{2.5}\\
\left.\left(\frac{[n+m]_{q} \sum_{i=k+1}^{n+k}[i]_{q}^{r}}{[n]_{q} \sum_{i=k+1}^{n+m}[i]_{q}^{r}}\right)^{\frac{1}{r}}, \text { if } q \in\right] 1,+\infty[,
\end{array}\right.
$$

where $n, m \in \mathbf{N}, k$ is a nonnegative integer and $r \in \mathbf{R}_{+}$. The lower bounds are best possible.
Proof. It is easy to verify that for all positive real $q \neq 1$, we have

$$
[n]_{q}=q^{n-1}[n]_{\frac{1}{q}}
$$

and so,

$$
\frac{[n+k]_{q}}{[n+m+k]_{q}}=\frac{q^{n+k-1}[n+k]_{\frac{1}{q}}}{q^{n+m+k-1}[n+m+k]_{\frac{1}{q}}}=\frac{[n+k]_{\frac{1}{q}}}{q^{m}[n+m+k]_{\frac{1}{q}}}
$$

Then, to prove the result, it suffices to focus on the case $q>1$.

Let $q>1$ and r be a nonnegative real number.
From the previous lemma and the fact that

$$
\begin{equation*}
\sum_{i=k+1}^{n+k+1}[i]_{q}^{r}=\sum_{i=k+1}^{n+k}[i]_{q}^{r}+[n+k+1]_{q}^{r} \tag{2.6}
\end{equation*}
$$

we obtain for all $n \in \mathbf{N}$ and k nonnegative integer

$$
\begin{equation*}
\frac{1}{[n]_{q}[n+k]_{q}^{r}} \sum_{i=k+1}^{n+k}[i]_{q}^{r}>\frac{1}{[n+1]_{q}[n+k+1]_{q}^{r}} \sum_{i=k+1}^{n+k+1}[i]_{q}^{r} . \tag{2.7}
\end{equation*}
$$

So, by induction on m, we get for all $n \in \mathbf{N}$ and k, m nonnegative integers

$$
\frac{1}{[n]_{q}[n+k]_{q}^{r}} \sum_{i=k+1}^{n+k}[i]_{q}^{r}>\frac{1}{[n+m]_{q}[n+m+k]_{q}^{r}} \sum_{i=k+1}^{n+m+k}[i]_{q}^{r} .
$$

Then,

$$
\left(\frac{[n+k]_{q}}{[n+m+k]_{q}}\right)^{r}<\frac{[n+m]_{q} \sum_{i=k+1}^{n+k}[i]_{q}^{r}}{[n]_{q} \sum_{i=k+1}^{n+k+m}[i]_{q}^{r}},
$$

which achieves the proof.

The limit case is given by
$\forall q \in] 1,+\infty[$,

$$
\begin{equation*}
\lim _{r \rightarrow+\infty}\left(\frac{[n+m]_{q} \sum_{i=k+1}^{n+k}[i]_{q}^{r}}{[n]_{q} \sum_{i=k+1}^{n+k+m}[i]_{q}^{r}}\right)^{\frac{1}{r}}=\frac{[n+k]_{q}}{[n+m+k]_{q}} \tag{2.8}
\end{equation*}
$$

$\forall q \in] 0,1[$,

$$
\begin{equation*}
\lim _{r \rightarrow+\infty} \frac{1}{q^{m\left(1+\frac{1}{r}\right)}}\left(\frac{[n+m]_{q} \sum_{i=k+1}^{n+k} q^{-i r}[i]_{q}^{r}}{[n]_{q} \sum_{i=k+1}^{n+k+m} q^{-i r}[i]_{q}^{r}}\right)^{\frac{1}{r}}=\frac{[n+k]_{q}}{[n+m+k]_{q}} \tag{2.9}
\end{equation*}
$$

Thus, the lower bound is best possible.
Indeed, using the fact that $\left.0 \leq \frac{[i]_{q}}{[j]_{q}}<1, \forall 1 \leq i<j, \forall q \in\right] 1,+\infty[$,

$$
\begin{aligned}
\lim _{r \rightarrow+\infty}\left(\frac{[n+m]_{q} \sum_{i=k+1}^{n+k}[i]_{q}^{r}}{[n]_{q} \sum_{i=k+1}^{n+k+m}[i]_{q}^{r}}\right)^{\frac{1}{r}} & =\lim _{r \rightarrow+\infty}\left(\frac{[n+m]_{q}}{[n]_{q}}\right)^{\frac{1}{r}} \frac{[n+k]_{q}}{[n+m+k]_{q}}\left(\frac{1+\sum_{i=k+1}^{n+k-1}\left(\frac{[i]_{q}}{[n+k]_{q}}\right)^{r}}{1+\sum_{i=k+1}^{n+k+m-1}\left(\frac{[i]_{q}}{[n+m+k]_{q}}\right)^{r}}\right)^{\frac{1}{r}} \\
& =\frac{[n+k]_{q}}{[n+m+k]_{q}}
\end{aligned}
$$

$\forall q \in] 0,1[$,

$$
\begin{aligned}
\lim _{r \rightarrow+\infty} \frac{1}{q^{m\left(1+\frac{1}{r}\right)}}\left(\frac{[n+m]_{q} \sum_{i=k+1}^{n+k} q^{-i r}[i]_{q}^{r}}{[n]_{q} \sum_{i=k+1}^{n+k+m} q^{-i r}[i]_{q}^{r}}\right)^{\frac{1}{r}} & =\lim _{r \rightarrow+\infty} \frac{1}{q^{m\left(1+\frac{1}{r}\right)}}\left(\frac{[n+m]_{q}}{[n]_{q}}\right)^{\frac{1}{r}} \frac{[n+k]_{\frac{1}{q}}}{[n+m+k]_{\frac{1}{q}}} \\
& \times\left(\frac{1+\sum_{i=k+1}^{n+k-1}\left(\frac{[i]_{\frac{1}{q}}}{[n+k]_{\frac{1}{q}}}\right)^{r}}{1+\sum_{i=k+1}^{n+k+m-1}\left(\frac{[i]_{\frac{1}{q}}}{[n+m+k]_{\frac{1}{q}}}\right)^{r}}\right)^{\frac{1}{r}} \\
& =\frac{1}{q^{m}} \frac{[n+k]_{\frac{1}{q}}}{[n+m+k]_{\frac{1}{q}}}=\frac{[n+k]_{q}}{[n+m+k]_{q}} .
\end{aligned}
$$

For $k=0$ and $m=1$, we find the following special case:
Corollary 2.3. If r, q are positive real numbers and n is a positive integer, then

$$
\frac{[n]_{q}}{[n+1]_{q}} \leq\left\{\begin{array}{l}
\left.\frac{1}{q^{1+\frac{1}{r}}}\left(\frac{[n+1]_{q} \sum_{i=1}^{n} q^{-i r}[i]_{q}^{r}}{[n]_{q} \sum_{i=1}^{n+1} q^{-i r}[i]_{q}^{r}}\right)^{\frac{1}{r}}, \text { if } q \in\right] 0,1[, \tag{2.10}\\
\left.\left(\frac{[n+1]_{q} \sum_{i=1}^{n}[i]_{q}^{r}}{[n]_{q} \sum_{i=1}^{n+1}[i]_{q}^{r}}\right)^{\frac{1}{r}}, \text { if } q \in\right] 1,+\infty[.
\end{array}\right.
$$

The lower bounds are best possible.
Remark 2.4. When q tends to $1\left(q \rightarrow 1^{+}\right.$or $\left.q \rightarrow 1^{-}\right),[n]_{q}$ tends to n and the inequality (2.10) tends to the Alzer's one.

References

[1] S. Abramovich, J. Barić, M. Matić and J. Peĉarić, On van de Lune-Alzers inequality, J. Math. Inequal. 1 (2007), no. 4, 563-587.
[2] Horst Alzer, On some inequlities involving (n ! $)^{\frac{1}{n}}$, Rocky Mt. J. Math. 24 (1994), no. 3, 867-873.
[3] Horst Alzer, On some inequlities involving (n ! $)^{\frac{1}{n}}, I I$, Period. Math. Hung. 28 (1994), no. 3, 229-233.
[4] Horst Alzer, On an inequality of H. Minc and L. Sathre, J. Math. Anal. Appl. 179 (1993), 396-402.
[5] G. Bennett, Meaningful sequences, Houston J. Math., 33(2007), no.2, 555-580.
[6] S. S. Dragomir and J. Van Hoek, Some new analytic inequalities and their applications in guessing theory, J. Math. Anal. Appl. 225 (1998), Issue 2, 542556.
[7] N. Elezovic and J. Pecaric, On Alzer'z inequality, J. Math. Anal. Appl. 223(1998), 366-369.
[8] Feng Qi, Generalization of H. Alzer's Inequality, J. Math. Anal. Appl. 240 (1999), 294-297.
[9] Feng Qi, Generalization of H. Alzer's and Kuang's inequality, Tamkang J. Math. 31 (2000), no 3.
[10] Feng Qi and L. Debnath, On a new generalization of Alzer's inequality, Internat J. Math. and Math. Sc 23 (2000), no. 12, 815-818. (1999), no. 6, Article 14.
[11] G. Gasper and M. Rahman, Basic Hypergeometric Series, Encyclopedia of Mathematics and its application, Vol 35, Cambridge Univ. Press, Cambridge, UK, 1990.
[12] J. C. Kuang, Some extensions and refinements of Minc-Sathre inequality, Math Gaz. 83 (1999), 123-127.
[13] Z. Liu, New generalizations of H. Alzer's inequality, Tamkaqng J. Math. 34(2003), no.3, 255-260.
[14] J. S. Martins, Arithmetic and geometric means, an application to Lorentz sequence spaces, Math. Nachr. 139 (1988), 281-288.
[15] H. Mink and L. Sathre, Some inequalities involving ($r!)^{\frac{1}{r}}$, Proc. Edinburgh Math. Soc. 14 (19641965), 41-46.
[16] N. Ozeki, On some inequalities, J. College Arts Sci. Chiba Univ. 4 (1965), no. 3, 211-214. (Japanese).
[17] József Sándor, On an inequality of Alzer, J. Math. Anal. Appl. 192 (1995), 1034-1035.
[18] József Sándor, Comments of an inequality for the sum of powers of positive numbers, RGMIA Res. Rep. Coll. 2.
[19] József Sándor, On an inequality of Alzer, II, Octogon Math. Mag., 11(2003), No.2, 554-555 (1999), no 2, 259-261.
[20] József Sándor, On an inequality of Alzer for negative powers, RGMIA, 9(2006), NO.4, Art.4.
[21] J. S. Ume, An elementary proof of Alzer's inequality, Math . Japon. 44 (1996), no. 3, 521-522.
[22] J. S. Ume, An inequality for positive real numbers, MIA, 5(2002), no.4, 693-696.
[23] J. S. Ume, A simple proof of generalized Alzer inequality, Indian J. Pure Appl. Math, 35 (2004), no. 8, 969-971.

E-mail address: monseur2004@yahoo.fr

