COFINITENESS AND ARTINIANNESS OF GENERALIZED LOCAL COHOMOLOGY MODULES

FATEMEH DEHGHANI-ZADEH

ABSTRACT. Let R be a commutative Noetherian ring, \mathfrak{a} and \mathfrak{b} ideals of R and let M and N be two finitely generated R-modules. In this paper, we study the cofiniteness of $H^{j}_{\mathfrak{b}}(H^{i}_{\mathfrak{a}}(M, N))$ in several cases.

Mathematics Subject Classification (2010): 13D45, 13E99

Key words: generalized local cohomology modules, cofinite modules, artinian modules.

Article history: Received 10 December 2014 Received in revised form 13 April 2015 Accepted 20 April 2015

1. INTRODUCTION

Throughout this paper, R will denote a commutative Noetherian (not necessarily local) ring, and M, N are two finitely generated R-modules. Also, \mathfrak{a} and \mathfrak{b} will denote two proper ideals of R.

Let $H^i_{\mathfrak{a}}(M,N) = \varinjlim_{n \in \mathbb{N}} \operatorname{Ext}^i_R(M/\mathfrak{a}^n M,N)$ be the *i*-th generalized local cohomology module relative to

the ideal \mathfrak{a} and R-modules M and N (see [8]). For M = R, let us denote $H^i_{\mathfrak{a}}(R, N)$ by $H^i_{\mathfrak{a}}(N)$, the *i*-th ordinary local cohomology module with respect to \mathfrak{a} . In [6] Grothendieck conjectured that for any ideal \mathfrak{a} and for any finite generated R-module N, the R-module $\operatorname{Hom}(R/\mathfrak{a}, H^i_{\mathfrak{a}}(N))$ is finite generated. In an Inventiones Mathematicae paper (see [7]) Hartshorn gives a counterexample to this conjecture and makes some additional assumptions to the original proposal of Grothendieck, introducing for instance the notion of \mathfrak{a} -cofiniteness for a module. He defined an R-module T to be \mathfrak{a} -cofinite if $\operatorname{Ext}^i_R(R/\mathfrak{a}, T)$ is finitely generated for all $i \geq 0$ and $\operatorname{Supp} T \subseteq V(\mathfrak{a})$, where $V(\mathfrak{a})$ denotes the set of prime ideals of R containing \mathfrak{a} , and asked the following question:

Let N be a finitely generated R-module and let \mathfrak{a} be an ideal of R. Then, is $H^{i}_{\mathfrak{a}}(N)$ \mathfrak{a} -cofinite?

This question has been studied by several authors; see for example, Yoshida [15], Zamani [14], Cuong, Goto and Hong [12], Dehghani-Zadeh [3], Bahmanpour and Naghipour [2].

In this note the following question is of interest: Are the modules $H^{j}_{\mathfrak{b}}(H^{i}_{\mathfrak{a}}(M,N))$, b-cofinite? The main purpose of this paper is to provide an affirmative answer to this question. In this direction as the result of this paper we prove $H^{j}_{\mathfrak{b}}(H^{i}_{\mathfrak{a}}(M,N))$ is b-cofinite, in the following cases:

- (i) dim $R/\mathfrak{a} \leq 1$ and dim $R/\mathfrak{b} \leq 1$.
- (ii) dim $R/\mathfrak{a} = 2$ and dim $R/\mathfrak{b} = 1$ and $i \leq f_{\mathfrak{a}}(M, N)$, where $f_{\mathfrak{a}}(M, N)$ is the least non-negative integer *i* such that $H^i_{\mathfrak{a}}(M, N)$ is not finitely generated.

In addition, we assume that R is a local ring with its maximal ideal \mathfrak{m} and we study in what conditions on "i" the module $H^j_{\mathfrak{b}}(H^i_{\mathfrak{a}}(M,N))$ is \mathfrak{b} -cofinite, does not matter the number dim R/\mathfrak{b} and dim R/\mathfrak{a} are.

2. Cofiniteness of $H^{j}_{\mathfrak{h}}(H^{i}_{\mathfrak{g}}(M, N))$ for ideals of small dimension.

The concept of a cofinite module plays an important role in this paper. We say that T is a cofinite module if there is a proper ideal I of R such that T is I-cofinite. In this section, we study the cofiniteness of the modules $H^j_{\mathfrak{b}}(H^i_{\mathfrak{a}}(M,N))(i, j \in \mathbb{N}_0)$, where $\mathfrak{a}, \mathfrak{b}$ are ideals in an arbitrary Noetherian (not necessarily local) ring R with $\mathfrak{a} \subseteq \mathfrak{b}$ and M, N finitely generated modules over R.

For any unexplained notation and terminology, we refer the reader to [1] and [13].

The following remark, which is needed in the proof of the next theorems, describes some of properties of cofinite modules.

Remark 2.1. (i) Assume that T is an \mathfrak{a} -cofinite R-module. Then T is \mathfrak{a} -torsion-free if and only if \mathfrak{a} contains an element x which is T-regular. (see a proof in [1, Lemma 2.1.1] for instance).

- (ii) The class of Artinian a-cofinite modules is closed under taking submodules, quotients and extensions. (see [10, Corollary 4.4]).
- (iii) Let T and T' be two \mathfrak{a} -cofinite modules. If $f: T \to T'$ is a homomorphism between these two \mathfrak{a} -cofinite modules and one of the three modules Kerf, Imf and Cokerf is \mathfrak{a} -cofinite, then all three of them are \mathfrak{a} -cofinite.
- (iv) If R is a local ring with its maximal ideal \mathfrak{m} , then an R-module is \mathfrak{m} -cofinite if and only if it is an Artinian R-module (see [9]).
- (v) For each *R*-module *T*, set $\Gamma_{\mathfrak{b}}(T) = \bigcup_{n \in \mathbb{N}} (0:_T \mathfrak{b}^n)$, the set of elements of *T* which are annihilated by some power of \mathfrak{b} .

Theorem 2.2. Let $\mathfrak{a} \subseteq \mathfrak{b}$ be two ideals of R such that $\dim R/\mathfrak{b} = 0$. Let T be an \mathfrak{a} -cofinite R-module and M be a finitely generated R-module. Then $H^i_{\mathfrak{b}}(M,T)$ is an Artinian, \mathfrak{a} and \mathfrak{b} -cofinite R-module.

Proof. Firstly, we provide some facts which are needed in the course of the proof. As T is a-cofinite, the R-module $\operatorname{Hom}(R/\mathfrak{a}, T)$ is finitely generated. Hence $\operatorname{Hom}(R/\mathfrak{b}, T)$ and $\operatorname{Hom}(R/\mathfrak{b}, \Gamma_{\mathfrak{b}}(T))$ are finitely generated R-modules. Since $\dim R/\mathfrak{b} = 0$, it follows that $\operatorname{Hom}(R/\mathfrak{b}, \Gamma_{\mathfrak{b}}(T))$ is of finite length. Therefore, by [10, Proposition 4.1], we deduce that $\Gamma_{\mathfrak{b}}(T)$ is an \mathfrak{b} -cofinite and Artinian R-module. In addition, finiteness of $\operatorname{Hom}(R/\mathfrak{a}, T)$ shows that, $\operatorname{Hom}(R/\mathfrak{a}, \Gamma_{\mathfrak{b}}(T))$ is finitely generated. According to Melkersson [10, Proposition 4.1], $\Gamma_{\mathfrak{b}}(T)$ is an Artinian and a-cofinite R-module. Now we use mathematical induction on "i". If i = 0, then $H^0_{\mathfrak{b}}(M, N) \cong \operatorname{Hom}(M, \Gamma_{\mathfrak{b}}(T))$, and the assertion is trivial, by Remark (2.1, ii). Let i > 0 and we assume that the result is true for i - 1. Let us consider the exact sequence

$$H^{i}_{\mathfrak{b}}(M,\Gamma_{\mathfrak{b}}(T)) \longrightarrow H^{i}_{\mathfrak{b}}(M,T) \longrightarrow H^{i}_{\mathfrak{b}}(M,T/\Gamma_{\mathfrak{b}}(T)),$$

in conjunction with the fact that $H^i_{\mathfrak{b}}(M, \Gamma_{\mathfrak{b}}(T)) \cong \operatorname{Ext}^i_R(M, \Gamma_{\mathfrak{b}}(T))$, to see that $H^i_{\mathfrak{b}}(M, T)$ is Artinian and \mathfrak{b} -cofinite if and only if $H^i_{\mathfrak{b}}(M, T/\Gamma_{\mathfrak{b}}(T))$ is Artinian and \mathfrak{b} -cofinite. We assume that $\Gamma_{\mathfrak{b}}(T) = 0$. Then, in view of Remark (2.1, i), the ideal \mathfrak{b} contains an element x which is T-regular. Now, let us look at the exact sequence $0 \longrightarrow T \xrightarrow{x} T \longrightarrow T/xT \longrightarrow 0$ which gives rise to the exact sequence

$$H^{i-1}_{\mathfrak{h}}(M, T/xT) \longrightarrow H^{i}_{\mathfrak{h}}(M, T) \xrightarrow{x} H^{i}_{\mathfrak{h}}(M, T).$$

Now, the above exact sequence is used in conjunction with the inductive hypothesis and Remark (2.1, ii) to see that $(0 :_{H^i_{\mathfrak{b}}(M,T)} x)$ is Artinian and \mathfrak{b} -cofinite. Hence, by [10, Proposition 4.1], $H^i_{\mathfrak{b}}(M,T)$ is Artinian and \mathfrak{b} -cofinite. In the same way we can prove that $H^i_{\mathfrak{b}}(M,T)$ is also \mathfrak{a} -cofinite. \Box

Corollary 2.3. Let $\mathfrak{a} \subseteq \mathfrak{b}$ be two ideals of R such that $\dim R/\mathfrak{b} = 0$ and $\dim R/\mathfrak{a} = 1$. Then for each $j, i \geq 0$, $H^j_{\mathfrak{b}}(H^i_{\mathfrak{a}}(M, N))$ is an Artinian and \mathfrak{b} and \mathfrak{a} -cofinite R-module.

Proof. It follows from Theorem 2.2 and [3, Theorem 3.3].

64

Theorem 2.4. Let $\mathfrak{a} \subseteq \mathfrak{b}$ be two ideals of R such that $\dim R/\mathfrak{b} = \dim R/\mathfrak{a} = 1$. If T is \mathfrak{a} -cofinite and i a positive integer, then $Ext_R^{i-1}(R/\mathfrak{b}, H_\mathfrak{b}^1(T))$ is a finitely generated R-module if and only if $Ext_R^{i+1}(R/\mathfrak{b}, \Gamma_\mathfrak{b}(T))$ is a finitely generated R-module.

Proof. By [11, Theorem 11.38], there exists a Grothendieck's spectral sequence

$$E_2^{p,q} = \operatorname{Ext}_R^p(R/\mathfrak{b}, H^q_{\mathfrak{b}}(T)) \xrightarrow{p} \operatorname{Ext}_R^{p+q}(R/\mathfrak{b}, T). \quad (*)$$

Since Supp $T \subseteq V(\mathfrak{a})$ and dim $R/\mathfrak{a} = 1$, it follows that dim $(T) \leq 1$. This implies that R-module $H^q_{\mathfrak{b}}(T) = 0$ for q > 1 (see [1, Theorem 6.1.2]). Hence $E_2^{p,q} = 0$ unless q = 0, 1. Therefore, using the spectral sequence (*) with [13, Exercise 5.2.2], the long exact sequence is resulted, which is following:

$$\operatorname{Ext}_{R}^{i+1}(R/\mathfrak{b},T) \xrightarrow{\varphi} \operatorname{Ext}_{R}^{i+1}(R/\mathfrak{b},H_{\mathfrak{b}}^{0}(T)) \xrightarrow{d} \operatorname{Ext}_{R}^{i-1}(R/\mathfrak{b},H_{\mathfrak{b}}^{1}(T)) \xrightarrow{\psi} \operatorname{Ext}_{R}^{i}(R/\mathfrak{b},T) \longrightarrow \operatorname{Ext}_{R}^{i}(R/\mathfrak{b},H_{\mathfrak{b}}^{0}(T)).$$

In view of hypothesis and [4, Corollary 1], $\operatorname{Ext}_{R}^{i}(R/\mathfrak{b},T)$ is finitely generated for all *i*. Hence $\operatorname{Im}\varphi$ and $\operatorname{Im}\psi$ are finitely generated. This proves the claim.

Theorem 2.5. Let $\mathfrak{a} \subseteq \mathfrak{b}$ be two ideals of R such that $\dim R/\mathfrak{b} = \dim R/\mathfrak{a} = 1$. Then $H^j_\mathfrak{b}(H^i_\mathfrak{a}(M, N))$ is \mathfrak{b} -cofinite for all i and j.

Proof. Consider the Grothendieck spectral sequence

$$E_2^{p,q} = H^p_{\mathfrak{b}} \Big(H^q_{\mathfrak{a}}(M,N) \Big) \stackrel{p}{\Longrightarrow} H^{p+q}_{\mathfrak{b}}(M,N). \quad (**)$$

Since $\operatorname{Supp} H^q_{\mathfrak{a}}(M, N) \subseteq V(\mathfrak{a})$ and $\dim R/\mathfrak{a} = 1$, it follows that $E_2^{p,q} = 0$ unless p = 0, 1. Referring [13, Exercise 5.2.1], the spectral sequence (**) results to the following short exact sequence:

$$0 \longrightarrow H^{1}_{\mathfrak{b}}(H^{i-1}_{\mathfrak{a}}(M,N)) \longrightarrow H^{i}_{\mathfrak{b}}(M,N) \longrightarrow H^{0}_{\mathfrak{b}}(H^{i}_{\mathfrak{a}}(M,N)) \longrightarrow 0.$$

Thus, there is a long exact sequence

$$\cdots \longrightarrow \operatorname{Ext}_{R}^{n} \left(R/\mathfrak{b}, H^{i}_{\mathfrak{b}}(M, N) \right) \longrightarrow \operatorname{Ext}_{R}^{n} \left(R/\mathfrak{b}, H^{0}_{\mathfrak{b}}(H^{i}_{\mathfrak{a}}(M, N)) \right) \longrightarrow \\ \longrightarrow \operatorname{Ext}_{R}^{n+1} \left(R/\mathfrak{b}, H^{1}_{\mathfrak{b}}(H^{i-1}_{\mathfrak{a}}(M, N)) \right) \longrightarrow \operatorname{Ext}_{R}^{n+1} \left(R/\mathfrak{b}, H^{i}_{\mathfrak{b}}(M, N) \right) \longrightarrow \cdots .(\ddagger)$$

In view of [3, Theorem 3.3], $H^i_{\mathfrak{b}}(M, N)$ is \mathfrak{b} -cofinite and $H^i_{\mathfrak{a}}(M, N)$ is \mathfrak{a} -cofinite for all *i*. Therefore, using the exact sequence (\ddagger) and Theorem 2.4 the result follows.

Lemma 2.6. Let $H^i_{\mathfrak{a}}(N)$ be Artinian for all i < t. Then $H^i_{\mathfrak{a}}(M, N)$ is Artinian and \mathfrak{a} -cofinite for all i < t.

Proof. Since $H^i_{\mathfrak{a}}(N)$ is Artinian for all i < t, it follows that $\operatorname{Supp} H^i_{\mathfrak{a}}(N)$ is a finite set. Hence, by [2, Theorem 2.6], the *R*-module $H^i_{\mathfrak{a}}(N)$ is also \mathfrak{a} -cofinite. The assertion follows from [4, Theorem 2.1] and Remark (2.1,ii).

The following Corollary is an immediate consequence of Lemma 2.6.

Corollary 2.7. If dim $R/\mathfrak{a} = 0$, then $H^i_\mathfrak{a}(M, N)$ is Artinian and \mathfrak{a} -cofinite for all *i*.

Theorem 2.8. Let \mathfrak{a} , \mathfrak{b} be two ideals of R such that $\dim R/\mathfrak{b} = \dim R/\mathfrak{a} = 0$. Then $H^j_{\mathfrak{b}}(H^i_{\mathfrak{a}}(M, N))$ is \mathfrak{b} -cofinite for all i, j.

Proof. Since, for each $i, j \geq 0$, $\operatorname{Supp} H^j_{\mathfrak{b}}(H^i_{\mathfrak{a}}(M, N)) \subseteq V(\mathfrak{b})$, it is enough to show that

$$Ext_{R}^{t}(R/\mathfrak{b}, H_{\mathfrak{b}}^{j}(H_{\mathfrak{a}}^{i}(M, N)))$$

is finitely generated for all $t \ge 0$. By using the previous corollary $H^i_{\mathfrak{a}}(M, N)$ is \mathfrak{a} -cofinite and Artinian, and so $H^0_{\mathfrak{b}}(H^i_{\mathfrak{a}}(M, N))$ is \mathfrak{a} -cofinite and Artinian. Since $\mathfrak{a} \subseteq \mathfrak{b}$, it follows from [5, Corollary1] that $Ext^t_R(R/\mathfrak{b}, H^0_{\mathfrak{b}}(H^i_{\mathfrak{a}}(M, N)))$ is finitely generated, for all $t \ge 0$. As $\operatorname{Supp} H^i_{\mathfrak{a}}(M, N) \subseteq V(\mathfrak{a})$ and $\dim R/\mathfrak{a} =$ 0, it follows that $H^i_{\mathfrak{b}}(H^i_{\mathfrak{a}}(M, N)) = 0$ for all j > 0. This completes the proof. \Box **Definition 2.9.** Let \mathfrak{a} be a proper ideal of R. The number

 $f_{\mathfrak{a}}(M,N) = \inf \left\{ i \in \mathbb{N}_0 \mid H^i_{\mathfrak{a}}(M,N) \text{ is not finitely generated} \right\},\$

is called the finiteness dimension of M and N relative to the ideal \mathfrak{a} . The arithmetic rank of an ideal \mathfrak{a} , denoted by ara(\mathfrak{a}), is the least number of generates of all ideals \mathfrak{c} which have the same radical as \mathfrak{a} .

Theorem 2.10. Let $\mathfrak{a} \subseteq \mathfrak{b}$ be two proper ideals of R such that $\dim R/\mathfrak{a} = 2$ and $\dim R/\mathfrak{b} = 1$. Let $f_{\mathfrak{a}}(M,N) = f$. Then $H^0_{\mathfrak{b}}(H^f_{\mathfrak{a}}(M,N))$ is \mathfrak{b} -cofinite and for all i < f and any j, $H^j_{\mathfrak{b}}(H^i_{\mathfrak{a}}(M,N))$ is a \mathfrak{b} -cofinite R-module too.

Proof. As dim $R/\mathfrak{a} = 2$ and dim $R/\mathfrak{b} = 1$, there is $x \in \mathfrak{b}$ such that dim $R/(\mathfrak{a} + Rx) = 1$. This is by [11, Theorem 11.38], the Grothendieck spectral sequence $E_2^{p,q} = H_{xR}^p(H_\mathfrak{a}^q(M,N))$ converges to $H^{p+q} = H_{Rx+\mathfrak{a}}^{p+q}(M,N)$. As $\operatorname{ara}(Rx) = 1$, it is easy to see that $E_2^{p,q} = 0$ unless p = 0, 1; it follows that the sequence $0 \to E_2^{1,f-1} \to H^f \to E_2^{0,f} \to 0$ is exact, which, in turn, yields the exact sequence

$$H^1_{xR}(H^{f-1}_{\mathfrak{a}}(M,N)) \to H^f_{Rx+\mathfrak{a}}(M,N) \to H^0_{Rx}(H^f_{\mathfrak{a}}(M,N)) \to 0.$$
 (§)

In view of Definition 2.9, the *R*-module $H_{\mathfrak{a}}^{f^{-1}}(M, N)$ is finitely generated. Therefore, by [10, Proposion 5.1] the *R*-module $H_{Rx}^1(H_{\mathfrak{a}}^{f^{-1}}(M, N))$ is *Rx*-cofinite and Artinian. So, $Ext_R^t(R/Rx, H_{Rx}^1(H_{\mathfrak{a}}^{f^{-1}}(M, N)))$ is a finitely generated *R*-module for all *t*. In view of [5, Corollary 1], $Ext_R^t(R/(Rx+\mathfrak{a}), H_{Rx}^1(H_{\mathfrak{a}}^{f^{-1}}(M, N)))$ is a finitely generated *R*-module. Also, as $\operatorname{Supp} H_{Rx}^1(H_{\mathfrak{a}}^{f^{-1}}(M, N)) \subseteq V(Rx+\mathfrak{a})$ we get that $H_{Rx}^1(H_{\mathfrak{a}}^{f^{-1}}(M, N))$ is Artinian and $(Rx+\mathfrak{a})$ -cofinite. Now, since $\dim R/(Rx+\mathfrak{a}) = 1$, $H_{Rx+\mathfrak{a}}^f(M, N)$ is $(Rx+\mathfrak{a})$ -cofinite. It follows from the exact sequence (§) and Remark (2.1,iii) that the *R*-module $H_{Rx}^0(H_{\mathfrak{a}}^f(M, N))$ is $(Rx+\mathfrak{a})$ -cofinite. Therefore, the result follows from $H_{\mathfrak{b}}^0(H_{Rx}^0(H_{\mathfrak{a}}^f(M, N)) \cong H_{\mathfrak{b}}^0(H_{\mathfrak{a}}^f(M, N))$ and Theorem 2.5. The last part of the theorem is clear by [15, Theorem 1.1] and the definition of $f_{\mathfrak{a}}(M, N)$.

3. Cofiniteness of $H^{j}_{\mathfrak{b}}(H^{i}_{\mathfrak{a}}(M,N))$ for some indices i, j.

Let \mathfrak{a} and \mathfrak{b} be two ideals of R and let \mathfrak{m} be a maximal ideal of R such that $\mathfrak{a} + \mathfrak{b}$ is \mathfrak{m} -primary. The aim of this section is to study the cofiniteness of the modules $H^j_{\mathfrak{b}}(H^i_{\mathfrak{a}}(M,N))$ for some particular values of "*i*'s".

Definition 3.1. Let us define the following number:

$$q_{\mathfrak{a}}(M,N) = \sup \left\{ i \mid H^{i}_{\mathfrak{a}}(M,N) \text{ is not Artinian} \right\}.$$

If $H^i_{\mathfrak{a}}(M, N)$ is Artinian for all *i*, we write $q_{\mathfrak{a}}(M, N) = -\infty$.

In addition, $cd_{\mathfrak{a}}(M, N)$ denotes the largest non-negative integer *i* such that $H^{i}_{\mathfrak{a}}(M, N)$ is not equal to zero.

Theorem 3.2. Let \mathfrak{a} , \mathfrak{b} be two ideals of R and let \mathfrak{m} be a maximal ideal of R such that $\mathfrak{a}+\mathfrak{b}$ is \mathfrak{m} -primary. If $Supp M \subseteq V(\mathfrak{a})$, then $H^i_{\mathfrak{b}}(M)$ is Artinian and \mathfrak{b} -cofinite for all i.

Proof. It is argued by induction on i. It is straightforward to see that the result is true when i = 0. Now, inductively assume that i > 0 and that the assertion has been proved for i - 1. It follows, from [1, Corollary 2.1.7(iii)] that $H^i_{\mathfrak{b}}(M) \cong H^i_{\mathfrak{b}}(M/\Gamma_{\mathfrak{b}}(M))$ for all $i \ge 1$. Also, $M/\Gamma_{\mathfrak{b}}(M)$ is a \mathfrak{b} -torsion free R-module. Then the ideal \mathfrak{b} contains an element x, which avoids all members of AssM. It is clear that $\operatorname{Supp}(M/xM) \subseteq V(\mathfrak{a})$. In addition, the exact sequence $0 \longrightarrow M \longrightarrow M \longrightarrow M/xM \longrightarrow 0$ induces the exact sequence

$$H^{i-1}_{\mathfrak{b}}(M/xM) \longrightarrow H^{i}_{\mathfrak{b}}(M) \xrightarrow{x} H^{i}_{\mathfrak{b}}(M) \longrightarrow H^{i}_{\mathfrak{b}}(M/xM),$$

that implies that the *R*-module $(0 :_{H^i_{\mathfrak{b}}(M)} x)$ is Artinian and \mathfrak{b} -cofinite. Therefore, in view of [10, Proposition 4.1], $H^i_{\mathfrak{b}}(M)$ is Artinian and \mathfrak{b} -cofinite.

Theorem 3.3. Let \mathfrak{a} and \mathfrak{b} be two ideals of R and \mathfrak{m} be a maximal ideal of R such that $\mathfrak{a}+\mathfrak{b}$ is \mathfrak{m} -primary. Let $\operatorname{ara}(\mathfrak{b}) = t$ and $\operatorname{cd}_{\mathfrak{a}}(M,N) = c$. Then $H^t_{\mathfrak{b}}(H^c_{\mathfrak{a}}(M,N))$ and $H^{t-1}_{\mathfrak{b}}(H^c_{\mathfrak{a}}(M,N))$ are Artinian R-modules.

Proof. Consider the Grothendieck spectral sequence [11, Theorem 11.38]

$$E_2^{p,q} = H^p_{\mathfrak{h}}(H^q_{\mathfrak{a}}(M,N)) \Longrightarrow H^{p+q}_{\mathfrak{m}}(M,N).$$

This spectral sequence induces an exact sequence of R-modules and R-homomorphisms

$$0 \longrightarrow \ker d_2^{i,j} \longrightarrow E_2^{i,j} \xrightarrow{d_2^{i,j}} E_2^{i+2,j-1} \text{ for all } i \ge 0.$$

By the hypotheses $E_2^{p,q} = 0$ for all p > t or q > c. Then the sequence (\sharp) yields the isomorphisms below: $\operatorname{Ker} d_2^{t,c} \cong E_2^{t,c}$, $\operatorname{Ker} d_2^{t-1,c} \cong E_2^{t-1,c}$ and $E_2^{t,c} \cong E_r^{t,c}$ and $E_2^{t-1,c} \cong E_r^{t-1,c}$ for all $r \ge 2$, it follows that $E_{\infty}^{t-1,c} \cong E_2^{t-1,c} \cong H_{\mathfrak{b}}^{t-1}(H_{\mathfrak{a}}^c(M,N))$ and $E_{\infty}^{t,c} \cong E_2^{t,c} \cong H_{\mathfrak{b}}^t(H_{\mathfrak{a}}^c(M,N))$. Now, since $E_{\infty}^{p,q}$ is a subquotient of the Artinian *R*-module $H_{\mathfrak{m}}^{p+q}(M,N)$ for each $p,q \in \mathbb{N}_0$, the assertion immediately follows. \Box

Remark 3.4. Let (R, \mathfrak{m}) be a local ring and let x_1, x_2, \dots, x_n be elements of R. For each $i = 1, \dots, n$, we put $N_i = N/(x_1, x_2, \dots, x_i)N$ and $\Omega = \{\mathfrak{p} \in \operatorname{Ass} N \mid \dim R/\mathfrak{p} > 1\}$. Then the element x_1 is a generalized regular element of N in \mathfrak{a} if $x_1 \in \mathfrak{a} - \bigcup_{\mathfrak{p} \in \Omega} \mathfrak{p}$. The sequence x_1, x_2, \dots, x_n is named to be a generalized regular sequence of N in \mathfrak{a} of length n if x_i is a generalized regular element of N_i in \mathfrak{a} for all $i = 1, \dots, n$. The length of a maximal generalized regular N-sequence in \mathfrak{a} is called the generalized depth of N in \mathfrak{a} and is denoted by gdepth(\mathfrak{a}, N). It is clear that gdepth($M/\mathfrak{a}M, N$) is a non-negative integer and it is equal to the length of any maximal generalized regular N-sequence in $\mathfrak{a} + (0:_R M)$.

Lemma 3.5. (see [14, Theorem 3.2]). Let (R, \mathfrak{m}) be local ring. Then

 $gdepth(M/\mathfrak{a}M, N) = \min \{i \mid SuppH^i_\mathfrak{a}(M, N) \text{ is an infinite set} \}.$

Lemma 3.6. (see [12, Theorem 1.2]). Let t be a non-negative integer such that $\dim Supp(H^i_{\mathfrak{a}}(M,N)) \leq 1$ for all i < t. Then $H^i_{\mathfrak{a}}(M,N)$ is \mathfrak{a} -cofinite for all i < t.

Theorem 3.7. Let \mathfrak{a} and \mathfrak{b} be two ideals of R and let \mathfrak{m} be a maximal ideal of R such that $\mathfrak{a} + \mathfrak{b}$ is \mathfrak{m} -primary and let $gdepth(M/\mathfrak{a}M, N) = t$. Then $H^j_{\mathfrak{b}}(H^i_{\mathfrak{a}}(M, N))$ is Artinian and \mathfrak{b} -cofinite for all i < t and $j \geq 0$. Moreover, $H^j_{\mathfrak{b}}(H^t_{\mathfrak{a}}(M, N))$ is an Artinian and \mathfrak{b} -cofinite R-module for all j = 0, 1.

Proof. By Lemma 3.6 and Lemma 3.5, we have that $H^i_{\mathfrak{a}}(M,N)$ is \mathfrak{a} -cofinite for all i < t. It is straightforward that $H^j_{\mathfrak{b}}(H^i_{\mathfrak{a}}(M,N)) \cong H^j_{\mathfrak{m}}(H^i_{\mathfrak{a}}(M,N))$. Hence, by Theorem 2.2, $H^j_{\mathfrak{b}}(H^i_{\mathfrak{a}}(M,N))$ is Artinian and \mathfrak{b} -cofinite for all $j \ge 0$ and i < t. Since, by [11, Theorem 11.38], the Grothendieck's spectral sequence $E_2^{p,q} = H^p_{\mathfrak{b}}(H^q_{\mathfrak{a}}(M,N))$ converges to $H^{p+q}_{\mathfrak{m}}(M,N)$. It follows from previous paragraph that $E_2^{p,q}$ is Artinian and \mathfrak{b} -cofinite for all q < t. Note that $H^i_{\mathfrak{m}}(M,N)$ is Artinian for all $i \ge 0$. By using an argument similar to the proof of [4, Theorem 2.2], we obtain that $H^j_{\mathfrak{b}}(H^t_{\mathfrak{a}}(M,N))$ is Artinian for all j = 0, 1. Since the radical of the annihilator of $\operatorname{Hom}(R/\mathfrak{b}, H^j_{\mathfrak{b}}(H^t_{\mathfrak{a}}(M,N))$ is equal to \mathfrak{m} , the *R*-module $H^j_{\mathfrak{b}}(H^t_{\mathfrak{a}}(M,N))$ is Artinian and \mathfrak{b} -cofinite for all j = 0, 1.

Lemma 3.8. Let \mathfrak{a} , \mathfrak{b} be two ideals of R and let \mathfrak{m} be a maximal ideal of R such that $\mathfrak{a} + \mathfrak{b}$ is \mathfrak{m} -primary. Let $\Gamma_{\mathfrak{a}}(T) = T$ and we assume that T is an Artinian R-module. Then $H^i_{\mathfrak{b}}(M,T)$ is Artinian and \mathfrak{b} -cofinite for all i.

Proof. The hypotheses says that $\text{Hom}(R/\mathfrak{b}, \Gamma_{\mathfrak{b}}(T))$ is of finite length. Therefore, by [10, Proposion 4.1], we deduce that $\Gamma_{\mathfrak{b}}(T)$ is \mathfrak{b} -cofinite and Artinian. Now, one can complete the proof by using a similar method which we used in the proof of Theorem 2.2.

Theorem 3.9. Let us suppose that there exists an integer $t \ge 0$ such that $H^i_{\mathfrak{a}}(M, N)$ is \mathfrak{a} -cofinite for all $i \ne t$. Then $H^i_{\mathfrak{a}}(M, N)$ is \mathfrak{a} -cofinite for all i and $H^j_{\mathfrak{b}}(H^i_{\mathfrak{a}}(M, N))$ is an Artinian and \mathfrak{b} -cofinite R-module for all i, j, where $\mathfrak{a} + \mathfrak{b}$ is \mathfrak{m} -primary.

Proof. Let us consider the convergent spectral sequence

$$E_2^{p,q} = \operatorname{Ext}_R^p(R/\mathfrak{a}, H^q_\mathfrak{a}(M, N)) \stackrel{p}{\Longrightarrow} \operatorname{Ext}_R^{p+q}(M/\mathfrak{a}M, \Gamma_\mathfrak{a}(N)).$$

Since $E_r^{p,q}$ is a subquotient of $E_2^{p,q}$ for all $r \ge 2$, our hypotheses give us that $E_r^{p,q}$ is finitely generated for all $r \ge 2$, $p \ge 0$, and $q \ne t$. For each $r \ge 2$ and $p, q \ge 0$, let $Z_r^{p,q} = \text{Ker}(E_r^{p,q} \longrightarrow E_r^{p+r,q-r+1})$ and $B_r^{p,q} = \text{Im}(E_r^{p-r,q+r-1} \longrightarrow E_r^{p,q})$. Note that $B_r^{p,q}$ is finitely generated for all p, q and $r \ge 2$, since either $E_r^{p-r,q+r-1}$ or $E_r^{p,q}$ is finitely generated. For all $r \ge 2$ and $p \ge 0$ we have the exact sequences

$$0 \longrightarrow B_r^{p,t} \longrightarrow Z_r^{p,t} \longrightarrow E_{r+1}^{p,t} \longrightarrow 0 \qquad \text{and} \\ 0 \longrightarrow Z_r^{p,t} \longrightarrow E_r^{p,t} \longrightarrow B_r^{p+r,t-r+1} \longrightarrow 0.$$

On the other hand, $E_{\infty}^{p,t}$ is isomorphic to a subquotient of $\operatorname{Ext}_{R}^{p+t}(M/\mathfrak{a}M,\Gamma_{\mathfrak{a}}(N))$. Thus it is finitely generated for all p. Since $E_{\infty}^{p,t} = E_{r}^{p,t}$ for r sufficiently large, it follows that $E_{r}^{p,t}$ is finitely generated for all p and all large r. Fix p and r and suppose $E_{r+1}^{p,t}$ is finitely generated. From the first exact sequence we obtain that $Z_{r}^{p,t}$ is finitely generated. From the second exact sequence we get that $E_{r}^{p,t}$ is finitely generated for all $r \geq 2$. In particular, $E_{2}^{p,t} = \operatorname{Ext}_{R}^{p}(R/\mathfrak{a}, H_{\mathfrak{a}}^{t}(M, N))$ is finitely generated for all p and the result follows from Theorem 2.2.

The following corollary immediately follows from Theorem 3.9 and Definition 3.1.

Corollary 3.10. Let \mathfrak{a} , \mathfrak{b} be two ideals of R and let \mathfrak{m} be a maximal ideal of R such that $\mathfrak{a} + \mathfrak{b}$ is \mathfrak{m} -primary. Let $f_{\mathfrak{a}}(M,N) = q_{\mathfrak{a}}(M,N) = t$. Then $H^{j}_{\mathfrak{b}}(H^{i}_{\mathfrak{a}}(M,N))$ is an Artinian and \mathfrak{b} -cofinite R-module for all i, j.

Proof. If $i < f_{\mathfrak{a}}(M, N)$ then, in view of the definition of $f_{\mathfrak{a}}(M, N)$ and Theorem 3.2, $H^{j}_{\mathfrak{b}}(H^{i}_{\mathfrak{a}}(M, N))$ is an Artinian and \mathfrak{b} -cofinite *R*-module for all *j*. If $i > q_{\mathfrak{a}}(M, N)$, then $H^{i}_{\mathfrak{a}}(M, N)$ is Artinian. It follows from Lemma 3.8 that $H^{j}_{\mathfrak{b}}(H^{i}_{\mathfrak{a}}(M, N))$ is an Artinian and \mathfrak{b} -cofinite *R*-module for all *j*. Thus we consider the case where i = t. To this end, consider the Grothendieck spectral sequence

$$E_2^{p,q} = H^p_{\mathfrak{b}} \big(H^q_{\mathfrak{a}}(M,N) \big) \stackrel{p}{\Longrightarrow} H^{p+q}_{\mathfrak{m}} \big(M,N \big).$$

By using an argument similar with that one used in the proof of Theorem 3.9 the result follows. \Box

Acknowledgment. The author is deeply grateful to the referee for careful reading of the original manuscript and the valuable suggestions.

References

- M. P. Brodmann and R. Y. Sharp, Local cohomology : An Algebraic introduction with geometric applications, Cambridge University. Press, 1998.
- K. Bahmanpour and R. Naghipur, Cofiniteness of local cohomology modules for ideals of small dimension, J. Algebra. 321 (2009), 1997-2011.
- F. Dehghani-Zadeh, Cofinite modules and asymptotic behaviour of generalized local cohomology, Proceedings of the 5-th Asian Mathematical Conference, Malaysia, (2009), 592-602.
- [4] F. Dehghani-Zadeh, Finiteness properties generalized local cohomology containing the irrelevant ideal, J. Korean. Math. Soc. 49 (2012), 1215-1228.
- [5] D. Delfino, T. Marley, Cofinite modules and local cohomology, J. Pure Appl. Algebra.121, (1997), 47-52.
- [6] A. Grothendieck, Cohomologie local des faiscfaux coherents et théoreémes de lefschetz locaux et globaux (SGA2), North Holland, Amsterdam, 1968.
- [7] R. Hartshorne, Affine duality and cofiniteness, Invent. Math. 9 (1970), 145-164.
- [8] J. Herzog, Komplexe, Auflösungen und Dualität in der Lokalen Algebra, Habilitationsschrift, Universität Regensburg, 1974.

- [9] L. Melkersson, Properties of cofinite modules and applications to local cohomology, Math. Proc. Cambridge Philos. Soc. 125 (1999), 417-423.
- [10] L. Melkersson, Modules cofinite with respect to an ideal, J. Algebra. 285 (2005), 649-668.
- [11] J. Rotman, An introduction to homological algebra, Academic Press, New York, 1979.
- [12] N. Tu Cuong, S. Goto and N. Van Hong, On the cofiniteness of generalized local cohomology modules, Kyoto J. Math. 55 (2015), no. 1, 169-185.
- [13] C. A. Weibel, An introduction to homological algebra, Cambridge: Cambridge University Press, 1994.
- [14] N. Zamani, Finiteness results on generalized local cohomology modules. Algebra colloq. 16 (2009), no. 1, 65-70.
- [15] K. I. Yoshida, Cofiniteness of local cohomology modules for dimension on ideals, Nagoya Math. J. 147 (1995), 179-191.

DEPARTMENT OF MATHEMATICS, YAZD BRANCH, ISLAMIC AZAD UNIVERSITY, YAZD, IRAN. *E-mail address*: dehghanizadeh@iauyazd.ac.ir and f.dehghanizadeh@yahoo.com