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Abstract

A Γ-semihyperring is a generalization of a semiring, a generalization of a semi-
hyperring and a generalization of a Γ-semiring. In this paper, we define the notion
of a fuzzy (prime) Γ-hyperideal of a Γ-semihyperring. Then we prove some results
in this respect. Also, by using the notion of fuzzy Γ-hyperideals, we give several
characterizations of Γ-semihyperrings.
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1 Introduction

In 1964, Nobusawa introduced Γ-rings as a generalization of ternary rings. Barnes
[4] weakened slightly the conditions in the definition of Γ-ring in the sense of Nobusawa.
Barnes [4], Luh [27] and Kyuno [21] studied the structure of Γ-rings and obtained
various generalizations analogous to corresponding parts in ring theory. The concept of
Γ-semigroups was introduced by Sen and Saha [30, 31] as a generalization of semigroups
and ternary semigroups. Then the notion of Γ-semirings introduced by Rao [28].

Algebraic hyperstructures represent a natural extension of classical algebraic struc-
tures and they were introduced by the French mathematician Marty [22] . Algebraic
hyperstructures are a suitable generalization of classical algebraic structures. In a clas-
sical algebraic structure, the composition of two elements is an element, while in an
algebraic hyperstructure, the composition of two elements is a set. Since then, hun-
dreds of papers and several books have been written on this topic, see [5, 6, 12, 33]. In
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[2, 3, 20], Davvaz et. al. introduced the notion of a Γ-semihypergroup as a generaliza-
tion of a semihypergroup. Many classical notions of semigroups and semihypergroups
have been extended to Γ-semihypergroups and a lot of results on Γ-semihypergroups
are obtained. In [17, 18, 19], Davvaz et. al. studied the notion of a Γ-semihyperring as
a generalization of semiring, a generalization of a semihyperring and a generalization
of a Γ-semiring.

After the introduction of fuzzy sets by Zadeh [34], reconsideration of the concept
of classical mathematics began. In 1971, Rosenfeld [29] introduced fuzzy sets in the
context of group theory and formulated the concept of a fuzzy subgroup of a group.
The concept of a fuzzy ideal of a ring was introduced by Liu [26]. The study of fuzzy
hyperstructures is an interesting research topic of fuzzy sets. In [9], Davvaz introduced
the concept of fuzzy Hv-ideals of Hv-rings. Then this concept was studied in the depth
in several papers, for example see [7, 8, 11, 14, 15, 16, 23, 24, 25]. In [13], Davvaz and
Leoreanu studied the notion of a fuzzy Γ-hyperideal of a Γ-semihypergroup. Now, in
this paper, we define the notion of a fuzzy (prime) Γ-hyperideal of a Γ-semihyperring.

2 Γ-semihyperrings

Let H be a non-empty set and let P∗(H) be the set of all non-empty subsets of H.
A hyperoperation on H is a map ◦ : H ×H −→ P∗(H) and the couple (H, ◦) is called
a hypergroupoid. If A and B are non-empty subsets of H and x ∈ H, then we denote

A ◦B =
⋃

a∈A, b∈B
a ◦ b, x ◦A = {x} ◦A and A ◦ x = A ◦ {x}.

A hypergroupoid (H, ◦) is called a semihypergroup if for all x, y, z of H we have (x ◦
y) ◦ z = x ◦ (y ◦ z), which means that⋃

u∈x◦y
u ◦ z =

⋃
v∈y◦z

x ◦ v.

Let (S, ·) be an ordinary semigroup and let P be a subset of S. We define

x ◦ y = x · P · y, for all x, y ∈ S.

Then, (S, ◦) is a semihypergroup.
A semihyperring is an algebraic structure (R,+, ·) which satisfies the following prop-

erties;
(1) (R,+) is a commutative semihypergroup, that is,

(i) (x+ y) + z = x+ (y + z),
(ii) x+ y = y + x for all x, y, z ∈ R.

(2) (R, ·) is a semihypergroup that is (x · y) · z = x · (y · z) for all x, y ∈ R.
(3) The multiplication is distributive with respect to hyperoperation + that is x ·

(y + z) = x · y + x · z, (x+ y) · z = x · z + y · z
(4) The element 0 ∈ R is an absorbing element that is x · 0 = 0 · x = 0 for all

x ∈ R. A semihyperring (R,+) is called commutative if and only if a · b = b · a for all
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a, b ∈ R. Vougiouklis in [32] and Davvaz in [10] studied the notion of semihyperrings
in a general form, i.e., both the sum and product are hyperoperations, also see [1].

A semihyperring (R,+) with identity 1R ∈ R means that 1R ·x = x · 1R = x for all
x ∈ R. An element x ∈ R is called unit if there exists y ∈ R such that 1R = x ·y = y ·x.
Here U(R) is the set of all unit elements. A nonempty subset S of a semihyperring
(R,+, ·) is called a sub-semihyperring if a+ b ⊆ S and a · b ⊆ S for all a, b ∈ S. A left
hyperideal of a semihyperring R is a non-empty subset I of R satisfying

(i) x+ y ⊆ I for all x, y ∈ I.
(ii) x · a ⊆ I for all a ∈ I and x ∈ R.
The concept of Γ-semihyperring is introduced and studied by Dehkordi and Davvaz

[17]. We recall the following definition from [17].

Definition 2.1. Let R be a commutative semihypergroup and Γ be a commutative
group. Then R is called a Γ-semihyperring if there exists a map R× Γ×R −→ P∗(R)
(image to be denoted by a α b for a, b ∈ R and α ∈ Γ) and P∗(R) is the set of all
non-empty subsets of R satisfying the following conditions:

(i) aα(b+ c) = aαb+ aαc,

(ii) (a+ b)αc = aαc+ bαc,

(iii) a(α+ β)c = aαc+ aβc,

(iv) aα(bβc) = (aαb)βc.

In the above definition if R is a semigroup, then R is called a multiplicative Γ-
semihyperring . A Γ-semihyperring R is called commutative if xαy = yαx for every
x, y ∈ R and α ∈ Γ. We say that R is a Γ-semihyperring with zero, if there exists 0 ∈ R
such that a ∈ a + 0 and 0 ∈ 0αa, 0 ∈ aα0 for all a ∈ R and α ∈ Γ. Let A and B be
two non-empty subsets of Γ-semihyperring R and x ∈ R. We define

A+B = {x | x ∈ a+ b a ∈ A, b ∈ B}

and
AΓB = {x | x ∈ aαb a ∈ A, b ∈ B, α ∈ Γ}.

A non-empty subset R1 of Γ-semihyperring R is called a sub Γ-semihyperring if it is
closed with respect to the multiplication and addition. In other words, a non-empty
subset R1 of Γ-semihyperring R is a sub Γ-semihypergroup if R1 + R1 ⊆ R1 and
R1ΓR1 ⊆ R1.

Example 1. [17] LetR = Z4 and Γ = {0, 2}. ThenR is a multiplicative Γ-semihyperring
with the following hyperoperation:

xαy = {0, 2},

where x, y ∈ R and α ∈ Γ.
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Example 2. [17] Let R be a ring, {Ag}g∈R be a family of disjoint non-empty sets and
(Γ,+) be a subgroup of (R,+). Then S =

⋃
g∈RAg is a Γ-semihyperring with the

following hyperoperations:

x⊕ y = Ag1+g2 , xαy = Ag1αg2 ,

where x ∈ Ag1 and y ∈ Ag2 .

Definition 2.2. A non-empty subset I of Γ-semihyperringR is a right (left) Γ-hyperideal
of R if I is a subhypergroup of (R,+) and IΓR ⊆ I (RΓI ⊆ I), and is an ideal of R if
both a right and left ideal.

Remark 1. Note that in Definition 2.1, if R is a commutative semigroup and there
exists a map R × Γ× R −→ R which satisfies the conditions of Definition 2.1, then R
is called a Γ-semiring.

The notion of Γ-semiring was introduced by Rao [28] as a generalization of Γ-rings,
rings and semirings.

Example 3. Let R be an additive semigroup of all m × n matrices over the set of
all non negative rational numbers and let Γ be the additive semigroup of all n × m
matrices over the set of all non-negative integers. Then, R is a Γ-semiring with matrix
multiplication as the ternary operation.

Example 4. Let Q+ be the set of all non-zero rational numbers and let Γ be the set of
all positive integers. Let a, b ∈ Q+ and α ∈ Γ. If we define the map R × Γ× R −→ R
by aαb 7→ |a|αb, then Q+ is a Γ-semiring.

Example 5. Consider the semigroup of positive integers R = (Z+,+) and the semi-
group of even positive integers Γ = (2Z+,+). Then R is a Γ-semiring.

3 Fuzzy Γ-hyperideals of Γ-semihyperrings

In this section, we define the notion of a fuzzy Γ-hyperideal of a Γ-semihyperring
and study some properties of it.

Definition 3.1. Let R be a Γ-semihyperring and µ be a fuzzy subset of R. Then

(1) µ is called a fuzzy left Γ-hyperideal of R if

min{µ(x), µ(y)} ≤ infz∈x+y{µ(z)}, ∀x, y ∈ R,
µ(y) ≤ infz∈xγy{µ(z)}, ∀x, y ∈ R, ∀γ ∈ Γ.

(2) µ is called a fuzzy right Γ-hyperideal of R if

min{µ(x), µ(y)} ≤ infz∈x+y{µ(z)}, ∀x, y ∈ R,
µ(x) ≤ infz∈xγy{µ(z)}, ∀x, y ∈ R, ∀γ ∈ Γ.
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(3) µ is called a fuzzy Γ-hyperideal of R if it is both a fuzzy left Γ-hyperideal and a
fuzzy right Γ-hyperideal of R.

Example 6. Let (R,+, ·) be a semihyperring and Γ be a hyperideal of R. We define
the map R × Γ × R −→ P∗(R) by (x, γ, y) 7→ {a ∈ R | a ∈ x · γ · y}. Then, R is a
Γ-semihyperring. Now, we define the fuzzy subset µ of R by

µ(x) =

{
2
3 if x ∈ Γ
0 otherwise.

Then, µ is a Γ-hyperideal of R.

Definition 3.2. Let R be a Γ-semiring and µ be a fuzzy subset of R. Then

(1) µ is called a fuzzy left Γ-ideal of R if

min{µ(x), µ(y)} ≤ µ(x+ y), ∀x, y ∈ R,
µ(y) ≤ µ(xγy), ∀x, y ∈ R, ∀γ ∈ Γ.

(2) µ is called a fuzzy right Γ-ideal of R if

min{µ(x), µ(y)} ≤ µ(x+ y), ∀x, y ∈ R,
µ(x) ≤ µ(xγy), ∀x, y ∈ R, ∀γ ∈ Γ.

(3) µ is called a fuzzy Γ-ideal of R if it is both a fuzzy left Γ-ideal and a fuzzy right
Γ-ideal of R.

Example 7. Let G and H be two additive abelian groups, R = Hom(G,H) and
Γ = Hom(H,G). Then, it is easy to see that R is a Γ-semiring with the pointwise
addition and composition of homomorphisms.We define a fuzzy subset µ by

µ(ϕ) =

{
4
5 if ϕ = 0

1
3 if ϕ 6= 0.

Then, µ is a Γ-ideal of R.

Let I be a non-empty subset of a Γ-semihyperring R and χI be the characteristic
function of I. Then I is a left Γ-hyperideal (right Γ-hyperideal, Γ-hyperideal) of R if
and only if χI is a fuzzy left Γ-hyperideal (respectively, fuzzy right Γ-hyperideal, fuzzy
Γ-hyperideal) of R.

Lemma 3.3. If {µi}i∈Λ is a collection of fuzzy Γ-hyperideals R, then
⋂
i∈Λ

µi and
⋃
i∈Λ

µi

are fuzzy Γ-hyperideal of R, too.
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Proof. For all a, b ∈ R and α ∈ Γ, we have
(a)

inf
z∈a+b

{( ⋂
i∈Λ

µi

)
(z)

}
= inf

z∈a+b

{
inf
i∈Λ
{µi(z)}

}
≥ inf

i∈Λ
{min{µi(a), µi(b)}}

= min

{
inf
i∈Λ
{µi(a)}, inf

i∈Λ
{µi(b)}

}
= min

{( ⋂
i∈Λ

µi

)
(a),

( ⋂
i∈Λ

µi

)
(b)

}
,

inf
z∈aγb

{( ⋂
i∈Λ

µi

)
(z)

}
= inf

z∈aγb

{
inf
i∈Λ
{µi(z)}

}
= inf

i∈Λ

{
inf
z∈aγb

{µi(z)}
}

≥ inf
i∈Λ
{µi(b)}

=

( ⋂
i∈Λ

µi

)
(b).

Similarly, we can prove that

inf
z∈aγb

{(⋂
i∈Λ

µi

)
(z)

}
≥

(⋂
i∈Λ

µi

)
(a).

(b)

inf
z∈a+b

{( ⋃
i∈Λ

µi

)
(z)

}
= inf

z∈a+b

{
sup
i∈Λ
{µi(z)}

}
≥ sup

i∈Λ
{min{µi(a), µi(b)}}

= min

{
sup
i∈Λ
{µi(a)}, sup

i∈Λ
{µi(b)}

}
= min

{( ⋃
i∈Λ

µi

)
(a),

( ⋃
i∈Λ

µi

)
(b)

}
,

inf
z∈aγb

{( ⋃
i∈Λ

µi

)
(z)

}
= inf

z∈aγb

{
sup
i∈Λ
{µi(z)}

}
= sup

i∈Λ

{
inf
z∈aγb

{µi(z)}
}

≥ sup
i∈Λ
{µi(b)}

=

( ⋃
i∈Λ

µi

)
(b).

Similarly, we can prove

inf
z∈aγb

{(⋃
i∈Λ

µi

)
(z)

}
≥

(⋃
i∈Λ

µi

)
(a).
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We recall the t-level cut of µ or the level subset with respect to µ as follows:

U(µ; t) = {x ∈ R | µ(x) ≥ t} .

Theorem 3.4. A fuzzy subset µ of a Γ-semihyperring R is a fuzzy Γ-hyperideal of R
if and only if for every t ∈ [0, 1], the set U(µ; t) is a Γ-hyperideal of R when it is a
non-empty set.

Proof. Suppose that µ is a fuzzy Γ-hyperideal of R. For every x, y in U(µ; t), we have
µ(x) ≥ t and µ(y) ≥ t. Hence, min{µ(x), µ(y)} ≥ t and so infz∈x+y{µ(z)} ≥ t.
Therefore, for every z ∈ x + y we get µ(z) ≥ t which implies that z ∈ U(µ; t). Thus,
x+ y ⊆ U(µ; t).

Now, we show that U(µ; t)ΓR ⊆ U(µ; t). Assume that x ∈ U(µ; t), γ ∈ Γ and r ∈ R
are arbitrary elements. Since x ∈ U(µ; t), µ(x) ≥ t. Then, t ≤ µ(x) ≤ infz∈xγr{µ(z)}
which implies that for every z ∈ xγr, µ(z) ≥ t. Hence, z ∈ U(µ; t). Therefore,
xγr ⊆ U(µ; t). Similarly, we can see RΓU(µ; t) ⊆ U(µ; t).

Conversely, suppose that for every 0 ≤ t ≤ 1, U(µ; t) (6= ∅) is a Γ-hyperideal of R.
For every x, y in R, we can write µ(x) ≥ t0 and µ(y) ≥ t0, where t0 = min{µ(x), µ(y)}.
Then, x ∈ U(µ; t0) and y ∈ U(µ; t0). Since U(µ; t0) is a Γ-hyperideal, we obtain
x + y ⊆ U(µ; t0). Therefore, for every z ∈ x + y we have µ(z) ≥ t0 implying that
infz∈x+y{µ(z)} ≥ t0 and so min{µ(x), µ(y)} ≤ infz∈x+y{µ(α)} and in this way the first
condition of the definition is verified.

Now, suppose that x, y ∈ R and γ ∈ Γ are arbitrary elements such that µ(x) = s0.
Then, x ∈ U(µ; s0). Since U(µ; s0) is a Γ-hyperideal, we obtain xγy ⊆ U(µ; s0). Hence,
for every z ∈ xγy, we have z ∈ U(µ; s0) so µ(z) ≥ s0. Therefore, infz∈xγy{µ(z)} ≥ µ(x).
Similarly, we can see infz∈xγy{µ(z)} ≥ µ(y).

Proposition 3.5. Let R be a Γ-semihyperring and µ be a fuzzy Γ-hyperideal of R.

(1) If a is a fixed element of R, then the set µa = {x ∈ R | µ(x) ≥ µ(a)} is a Γ-
hyperideal.

(2) The set U = {x ∈ R | µ(x) = (µ(0)} is a Γ-hyperideal of R.

Proof. It is straightforward.

4 Fuzzy prime Γ-hyperideals of Γ-semihyperrings

Definition 4.1. Let R be a Γ-semihyperring and P be a proper right (left) Γ-hyperideal
of R. Then P is called a prime right (left) Γ-hyperideal if for every x, y ∈ R, xΓRΓy ⊆ P
implies that x ∈ P or y ∈ P .

Example 8. [18]. Let S be the Γ-semihyperring defined in Example 2. If P is a prime
Γ-hyperideal of R such that Γ ∩ P = ∅, then SP =

⋃
g∈P Ag is a prime Γ-hyperideal of

Γ-semihyperring S.
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Proposition 4.2. [18]. Let R be a Γ-semihyperring with zero and P be a right ideal
of R. Then the following are equivalent:

(1) P is a prime Γ-hyperideal,

(2) IΓJ ⊆ P implies that I ⊆ P or J ⊆ P , where I and J are two left (right)
Γ-hyperideals of R.

Definition 4.3. Let R be a Γ-semihyperring and θ, σ be two fuzzy subsets of R. Then
the sum θ ⊕ σ, the product θΓσ and the composition θ ◦ σ are defined by

(θ ⊕ σ)(z) =

{
sup
z∈x+y

{min{θ(x), σ(y)}} for x, y ∈ R

0 otherwise.

(θΓσ)(z) =

{
sup
z∈xγy

{min{θ(x), σ(y)}} for x, y ∈ R and γ ∈ Γ

0 otherwise.

(θ ◦ σ)(z) =

 sup{min
i
{min{θ(xi), σ(yi)}}}, 1 ≤ i ≤ n, z ∈

n∑
i=1

xiγiyi, xi, yi ∈ R, γi ∈ Γ

0 otherwise.

Lemma 4.4. Let R be a Γ-semihyperring and µ be a fuzzy Γ-hyperideal of R. Then

min{µ(x1), . . . , µ(xn)} ≤ inf
z∈x1+...+xn

{µ(z)},

for all x1, x2, . . . , xn ∈ R.

Proof. The validity of this lemma is proved by mathematical induction.

Proposition 4.5. Let R be a Γ-semihyperring and θ, σ be two fuzzy Γ-hyperideals of
R. Then

θΓσ ⊆ θ ◦ σ ⊆ θ ∩ σ.

Proof. By using definitions, it is easy to see that θΓσ ⊆ θ ◦ σ. Now, suppose that

x ∈
n∑
i=1

xiγiyi, where xi, yi ∈ R for 1 ≤ i ≤ n and γi ∈ Γ. Hence, there exist ai ∈ xiγiyi

(for 1 ≤ i ≤ n) such that x ∈
n∑
i=1

ai. So, by Lemma 4.4, we obtain

θ(x) ≥ min{θ(a1), . . . , θ(an)}
≥ min {infz1∈x1γ1y1{θ(z1)}, . . . , infzn∈xnγnyn{θ(zn)}}
≥ min{θ(x1), . . . , θ(xn)}.

Similarly, we obtain σ(x) ≥ min{σ(y1), . . . , σ(yn)}. Therefore, we have

(θ ∩ σ)(x) = min{θ(x), σ(x)}
≥ min{min{θ(x1), . . . , θ(xn)}, min{σ(y1), . . . , σ(yn)}}
= mini{min{θ(xi), σ(yi)}}.
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Thus, (θ ∩ σ)(x) ≥ sup{min
i
{min{θ(xi), σ(yi)}}}, where 1 ≤ i ≤ n and x ∈

n∑
i=1

xiγiyi,

xi, yi ∈ R, γi ∈ Γ. Therefore, θ ◦ σ ⊆ θ ∩ σ.

Definition 4.6. A non-constant fuzzy Γ-hyperideal µ of a Γ-semihypergroup S is called
a fuzzy prime Γ-hyperideal of S if for any two fuzzy Γ-hyperideals θ, σ of S,

θΓσ ⊆ µ implies θ ⊆ µ or σ ⊆ µ.

Example 9. The following Γ-semihyperring is given in [19]. Let R = {a, b, c, d}, Γ = Z2

and α = 0, β = 1. Then R is a Γ-semihyperring with the following hyperoperations:
⊕ a b c d

a {a,b} {a,b} {c,d} {c,d}
b {a,b} {a,b} {c,d} {c,d}
c {c,d} {c,d} {a,b} {a,b}
d {c,d} {c,d} {c,d} {a,b}

β a b c d

a {a,b} {a,b} {a,b} {a,b}
b {a,b} {a,b} {a,b} {a,b}
c {a,b} {a,b} {c,d} {c,d}
d {a,b} {a,b} {c,d} {c,d}

For every x, y ∈ R we define xαy = {a, b}. Now, we define the fuzzy subset µ of
R as follows:

µ(x) =

{
5
7 if x = a or x = b

1
5 if x = c or x = d.

Then, µ is a prime Γ-hyperideal of R.

The proof of the following theorem is similar to the proof of Theorem 6.3 in [13].
Here, we give the proof for the sake of completeness.

Theorem 4.7. Let I be a Γ-hyperideal of a Γ-semihyperring R, t ∈ [0, 1) and µ be the
fuzzy subset of R defined by

µ(x) =

{
1 if x ∈ I
t if x 6∈ I.

Then µ is a fuzzy prime Γ-hyperideal of R if and only if I is a prime Γ-hyperideal of
R.

Proof. Suppose that I is prime. Clearly, µ is a fuzzy Γ-hyperideal of R. Let θ, σ be fuzzy
Γ-hyperideals of R such that θΓσ ⊆ µ, θ 6⊆ µ and σ 6⊆ µ. Thus, there exist x, y ∈ R
such that µ(x) < θ(x) and µ(y) < θ(y). Since I is prime, we obtain xΓRΓy 6⊆ I. So
there exist r ∈ R and γ1, γ2 ∈ Γ such that xγ1rγ2y 6⊆ I. Now, there exists z ∈ xγ1rγ2y
such that µ(z) = t. Therefore, we obtain

t = µ(z) ≥ (θΓσ)(z)
≥ min{θ(x), σ(u)} (where z ∈ xγy)
≥ min{θ(x), σ(y)}
> min{µ(x), µ(y)} = t
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This is a contradiction. Thus, µ is prime.
Conversely, suppose that µ is a fuzzy prime Γ-hyperideal and A,B be two Γ-

hyperideals of R such that AΓB ⊆ I, A 6⊆ I and B 6⊆ I. So there exist a ∈ A \ I
and b ∈ B \ I. Now, we define fuzzy subsets θ, σ of R as follows:

θ(x) =

{
1 if x ∈ A
t if x 6∈ A. and σ(x) =

{
1 if x ∈ B
t if x 6∈ B. .

Then θ, σ are fuzzy Γ-hyperideals of R such that θΓσ ⊆ µ. On the other hand, we have
θ(a) = 1 > t = µ(a), which implies that θ 6⊆ µ. Similarly, we obtain σ 6⊆ µ. This is a
contradiction. Thus, I is prime.

Let I be a Γ-hyperideal of a Γ-semihyperring R. Then, the characteristic function
χI of I is a fuzzy prime Γ-hyperideal of R if I is prime.

Theorem 4.8. Let R be a Γ-semihyperring and µ be a non-empty subset of R. Then
the following statements are equivalent:

(1) µ is a fuzzy prime Γ-hyperideal of R.

(2) For any t ∈ [0, 1], the level subset U(µ; t) is a prime Γ-hyperideal of R when it is
non-empty.

Proof. The proof is similar to the proof of Theorem 3.4.

5 Image and inverse image of homomorphisms

Definition 5.1. Let R and R′ be Γ and Γ′-semihyperrings, respectively, ϕ : R −→ R′

and f : Γ −→ Γ′ be two maps. Then, (ϕ, f) is called a (Γ,Γ′)-homomorphism if

(1) ϕ(x+ y) = {ϕ(t) | t ∈ x+ y} ⊆ ϕ(x) + ϕ(y),

(2) ϕ(xαy) = {ϕ(t) | t ∈ xαy} ⊆ ϕ(x)f(α)ϕ(y),

(3) f(x+ y) = f(x) + f(y).

In the above definition if ϕ(x + y) = ϕ(x) + ϕ(y) and ϕ(xαy) = ϕ(x)f(α)ϕ(y)
then (ϕ, f) is called a strong (Γ,Γ′)-homomorphism. An ordered set (ϕ, f) is called an
epimorphism, if ϕ : R −→ R′ and f : Γ −→ Γ′ are surjective and is called a (Γ,Γ′)-
isomorphism if ϕ : R −→ R′ and f : Γ −→ Γ′ are bijective. In the following examples
we consider homomorphisms between Γ-semihyperrings.

Example 10. [18]. Let A0 = [0, 1], A1 = (1, 2), A2 = [2, 3) and An = [n, n+1) for every
n ∈ Z, n /∈ {0, 1}. Suppose that R1 = R2 =

⋃
n∈ZAn. Then R1 is a 2Z-semihyperring

and R2 is a Z-semihyperring. Suppose that x ∈ R1. Then, there exists n ∈ Z such that
x ∈ An. We define ϕ : R1 −→ R2 and f : 2Z −→ Z as follow:

ϕ(x) =

{
0 if n is odd
1 if n is even

and f = 0.

It is easy to see that (ϕ, f) is a (2Z,Z)-homomorphism.
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Example 11. [18]. Let An = [n, n + 1), for every n ∈ Z and R =
⋃
n∈ZAn. Then

for every x ∈ R there exists n ∈ Z such that x ∈ An. We define ϕ : R −→ R and
f : Z −→ Z as follow:

ϕ(x) = n and f(x) = x, where x ∈ An.

It is easy to see that (ϕ, f) is a (Z,Z)-homomorphism.

Let ϕ be a mapping from a set X to a set Y . Let µ be a fuzzy subset of X and λ
be a fuzzy subset of Y . Then the inverse image ϕ−1(λ) of λ is the fuzzy subset of X
defined by ϕ−1(λ)(x) = λ(ϕ(x)) for all x ∈ X. The image ϕ(µ) of µ is the fuzzy subset
of Y defined by

ϕ(µ)(y) =

{
sup{µ(t) | t ∈ ϕ−1(y)} if ϕ−1(y) 6= ∅
0 otherwise

for all y ∈ Y . It is not difficult to see that the following assertions hold:

(1) If {λi}i∈I be a family of fuzzy subsets of Y , then

ϕ−1

(⋃
i∈I

λi

)
=
⋃
i∈I

ϕ−1(λi) and ϕ−1

(⋂
i∈I

λi

)
=
⋂
i∈I

ϕ−1(λi).

(2) If µ is a fuzzy subset of X, then µ ⊆ ϕ−1 (ϕ(µ)). Moreover, if ϕ is one to one,
then ϕ−1 (ϕ(µ)) = µ.

(3) If λ is a fuzzy subset of Y , then ϕ
(
ϕ−1(λ)

)
⊆ λ. Moreover, if ϕ is onto, then

ϕ
(
ϕ−1(λ)

)
= λ.

Proposition 5.2. Let R be a Γ-semihyperring and R′ be a Γ′-semihyperring. Let (ϕ, f)
be a strong (Γ,Γ′)-homomorphism from R to R′. Then

(1) If λ is a fuzzy Γ-hyperideal of R′, then ϕ−1(λ) is a fuzzy Γ-hyperideal of R, too.

(2) If (ϕ, f) is an epimorphism and µ is a fuzzy Γ-hyperideal of S, then ϕ(µ) is a
fuzzy Γ-hyperideal of R′, too.

Proof. (1) Suppose that x, y ∈ S and γ ∈ Γ. Then we have

inf
z∈x+y

{
ϕ−1(λ)(z)

}
= inf

z∈x+y
{λ(ϕ(z))}

≥ inf
ϕ(z)∈ϕ(x+y)

{λ(ϕ(z))}

≥ inf
ϕ(z)∈ϕ(x)+ϕ(y)

{λ(ϕ(z))}

≥ min{λ(ϕ(x)), λ(ϕ(y))}

= min{ϕ−1(λ)(x), ϕ−1(λ)(y)},
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and
inf
z∈xγy

{
ϕ−1(λ)(z)

}
= inf

z∈xγy
{λ(ϕ(z))}

≥ inf
ϕ(z)∈ϕ(xγy)

{λ(ϕ(z))}

≥ inf
ϕ(z)∈ϕ(x)f(γ)ϕ(y)

{λ(ϕ(z))}

≥ λ(ϕ(y))

= ϕ−1(λ)(y).

Therefore, ϕ−1(λ) is a fuzzy Γ-hyperideal of R.
(2) Suppose that x′, y′ ∈ R′ and γ′ ∈ Γ′. Then there exist x, y ∈ R and γ ∈ Γ such

that ϕ(x) = x′, ϕ(y) = y′ and f(γ) = γ′. Now, we have

inf
z′∈x′γ′y′

{ϕ(µ)(z′)} = inf
z′∈x′γ′y′

{
sup

c∈ϕ−1(z′)
{µ(c)}

}
≥ inf

z′∈x′γ′y′
{µ(z)} (if we let ϕ(z) = z′)

= inf
ϕ(z)∈ϕ(x)f(γ)ϕ(y)

{µ(z)}

= inf
ϕ(z)∈ϕ(xγy)

{µ(z)}

= inf
z∈xγy

{µ(z)}

≥ µ(y).

So, for every y ∈ ϕ−1(ẏ), we have

inf
z′∈x′γ′y′

{ϕ(µ)(z′)} ≥ µ(y)

which implies that
inf

z′∈x′γ′y′
{ϕ(µ)(z′)} ≥ sup

y∈ϕ−1(y′)
{µ(y)}

and so
inf

z′∈x′γ′y′
{ϕ(µ)(z′)} ≥ ϕ(µ)(y).

Similarly, we have

inf
z′∈x′+y′

{ϕ(µ)(z′)} ≥ min{ϕ(µ)(x′), ϕ(µ)(y′)}.

Therefore, ϕ(µ) is a fuzzy Γ-hyperideal of R′.

Proposition 5.3. Let R be a Γ-semihyperring and R′ be a Γ′-semihyperring. Let (ϕ, f)
be a strong (Γ,Γ′)-homomorphism from R onto R′. If λ is a fuzzy prime Γ-hyperideal
of R′, then ϕ−1(λ) is a fuzzy prime Γ-hyperideal of R, too.

Proof. The proof is similar to the proof of Proposition 5.2.
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