ABOUT THE EQUIVARIANT K – THEORY

Cristian N Costinescu *

Abstract

The purpose of this paper is to set down the basic results about Atiyah-Hirzebruch spectral sequence in equivariant K-theory (most of them can be found also in [3], [5] and [7]). One application of this spectral sequence is the finiteness theorem of Segal (see [8]) and we present here a complete new proof of this result.

Mathematics Subject Classification: 19L47, 19L99

Keywords: *G*-space, equivariant *K*-theory, spectral sequence.

1. Introduction

We shall have to start with a collection of definitions and simple results concerning the equivariant K – theory.

Let G be a topological group, then a G – **space** is a topological space X together with a continuous action $G \times X \to X$ satisfying the usual conditions. A G – **vector bundle** (or an **equivariant bundle**) on X is a G – space E together with a G – map $p: E \to X$ such that:

- a) (E, p, X) is a complex (real) vector bundle on E;
- b) for any $g \in G$ and any $x \in X$ the group action on fibres $E_x \to E_{gx}$ is a homomorphism of vector spaces.

One can construct a general cohomology theory by using the equivariant vector bundles on G-spaces: the set of isomorphism classes of G-vector bundles on X forms an abelian semigroup under the direct sum. The associated abelian group is noted by $K_G(X)$: its elements are formal differences E_1-E_2 of G-vector bundles on X, modulo the familiar equivalence relation (see $[8\]$). The tensor product of G-vector bundles induces a structure of commutative ring in $K_G(X)$.

In the rest of this paper I shall assume that G is a compact Lie group; let $U = (U_{\alpha})_{\alpha \in S}$ a finite covering of the compact G – space X, by G – stable closed sets and one

^{*} Department of Mathematics and Computer Science, Technical University of Civil Engineering of Bucharest, Romania, E-mail: cncostinescu@yahoo.com

denotes by N_U the nerve of U: the finite simplicial complex whose simplexes are the finite subsets $A \subset S$ such that

$$U_A = \bigcap_{\alpha \in A} U_{\alpha}$$
 is non-empty.

Then

$$W_U = W(X, U) = \bigcup_A (U_A \times |A|)$$

is a subspace of the product $X \times |N_U|$, where by $|N_U|$ one denotes the geometrical realization of the nerve N_U . Because W_U is closed in $X \times |N_U|$ then it is a compact G – space.

If $(f, \theta): (X, U) \to (Y, V = (V_{\beta})_{\beta \in T})$ is a morphism (i.e. $f: X \to Y$ is a G-map and $\theta: S \to T$ such that $f(U_{\alpha}) \subset V_{\theta(\alpha)}$ for any $\alpha \in S$) it is obviously to see that the product map $f \times |\theta|$ applies W(X, U) into W(Y, V). We have the following two simple results (see [2]):

Lemma 1. Let (f, θ_0) , (f, θ_1) : $(X, U) \rightarrow (Y, V)$ be two morphisms; then the induced maps $W(X, U) \rightarrow W(Y, V)$ are G-homotopic.

Proof. Using the above definition we can define the homotopy

$$h: |N_U| \times [0,1] \rightarrow |N_V|$$

by the formula: $h(\alpha, t) = (1 - t) \theta_0 + t \theta_1$ for any $\alpha \in |N_U|$ and $t \in [0, 1]$; one finds that the induced applications $f \times |\theta_0|$ and $f \times |\theta_1|$ are G – homotopic by the map

$$(f,h):W(X,U)\times [0,1]\to W(Y,V)$$

Using the universal property of the direct product and the fact that K_G is a contravariant functor we obtain:

Lemma 2. Let Y be a compact G – space, $(V_{\alpha})_{\alpha \in S}$ a finite covering of Y by G – stable closed sets, and one considers the following notations:

$$Y_{\alpha\beta} = Y_{\alpha} \cap Y_{\beta}$$
, $Y_{\alpha}' = \bigcup_{\beta \neq \alpha} Y_{\alpha\beta}$, $Y' = \bigcup_{\alpha} Y_{\alpha}'$.

Then there exists the relative homeomorphism

$$\coprod_{\alpha \in S} (Y_{\alpha}, Y_{\alpha}^{'}) \rightarrow (Y, Y')$$

which induces the isomorphism in equivariant K – theory:

$$K_G^*(Y,Y') \cong \prod_{\alpha \in S} K_G^*(Y_\alpha,Y_\alpha')$$

Using Lemma 1 and fixing the pair (X, U) one can omit the index U for the spaces W_U and N_U because the map $K_G^*(W(Y, V)) \to K_G^*(W(X, U))$ does not depends at the choice of the morphism $(f, \theta): (X, U) \to (Y, V)$.

Proposition 1. The projection onto the first factor $p:W \to X$ induces the isomorphism

$$K_G^*(X) \to K_G^*(W)$$

Proof. Let a filtration of the space X by G – stable closed sets

$$X = X_0 \supset X_1 \supset ... \supset X_r \supset ...$$

where X_r is the subset of points of X which are contained in at least r+1 of the sets U_{α} . Define also

$$W_r = p^{-1}(X_r) = \bigcup_{\dim A \ge r} (U_A \times |A|) \subset W$$

and one considers the following diagram:

$$\begin{split} \coprod_{\dim A \,\geq\, r} (U_{\scriptscriptstyle A} \,\backslash U_{\scriptscriptstyle A}^{'}) \times \big|A\big| &\,\to\, W_r \,\backslash W_{r+1} \\ \downarrow &\, \downarrow \\ \coprod_{\dim A \,\geq\, r} (U_{\scriptscriptstyle A} \,\backslash U_{\scriptscriptstyle A}^{'}) &\,\to\, X_r \,\backslash X_{r+1} \end{split}$$

where $U_A' = U_A \cap X_{r+1}$. The horizontal arrows are homeomorphisms (using Lemma 2) and the vertical arrow on the left is a homotopy – equivalence because |A| is contractible. This implies that the induced morphism

$$p^*: K_G^*(X_r \setminus X_{r+1}) \rightarrow K_G^*(W_r \setminus W_{r+1})$$

is an isomorphism - i.e. $K_G^*(X_r, X_{r+1}) \cong K_G^*(W_r, W_{r+1})$.

Using now the exact sequences associated to the triples (X_{r-1}, X_r, X_{r+1}) , respectively (W_{r-1}, W_r, W_{r+1}) it follows that

$$K_G^*(X, X_r) \rightarrow K_G^*(W, W_r)$$

is an isomorphism for all r; after a little manipulation (for a great number r the spaces X_r and W_r are empty) one obtains the desired result

$$p^*: K_G^*(X) \xrightarrow{\simeq} K_G^*(W)$$

2. The spectral sequence

We shall associate to the space W_U a filtration by G – subspaces:

$$W_U \supset \ldots \supset W^1 \supset W^0$$

such that $K_G^*(X) \to K_G^*(W_U)$ is an isomorphism (see Proposition 1) and when V is a refinement of the covering U there exists a G – map $W_V \to W_U$, respecting the filtrations and the projections on to X.

If $q:W\to |N|$ is the projection onto the second factor we define W^p as his inverse image of the p-skeleton of |N|, i.e.

$$W^p = \bigcup_{\dim A \le p} (U_A \times |A|) .$$

Using the method of Cartan – Eilenberg (see [4]) to the above filtration of W there corresponds the Atiyah – Hirzebruch spectral sequence:

Theorem 1. To the finite covering $U=(U_{\alpha})_{\alpha\in S}$ of the compact G – space X by G – stable closed sets there exists a spectral sequence terminating in $K_G^*(X)\cong K_G^*(W_U)$:

$$E_2^{p,q} = H^p(N, K_G^q(U)) \Rightarrow K_G^*(X)$$

where $K_G^*(U)$ denotes the coefficient system: $A \mapsto K_G^q(U_A)$.

Proof. Firstly we define a filtration of $K_G^*(W)$ by:

$$(K_G^*(W))_p = Ker(K_G^*(W) \rightarrow K_G^*(W^{p-1})) = Im(K_G^*(W, W^{p-1}) \rightarrow K_G^*(W));$$

thus $K_G^*(W)$ is a filtered ring in the sense that $(K_G^*(W))_p \cdot (K_G^*(W))_q \subset (K_G^*(W))_{p+q}$ (see [8] pag. 145-146) We are going to construct the spectral sequence by setting:

$$Z_r^p = Im(K_G^*(W^{p-1+r}, W^{p-1}) \rightarrow K_G^*(W^p, W^{p-1}))$$

$$B_r^p = Im \left(K_G^* \left(W^{p-1}, W^{p-r} \right) \xrightarrow{\delta} K_G^* \left(W^p, W^{p-1} \right) \right)$$

and $E_r^p(W) = Z_r^p / B_r^p$, where δ is the differential from the exact sequence associated to a triple.

Because the graduation of $K_G^*(W)$ is compatible with the above filtration one can introduce on the terms E_r a bigraduation by setting:

$$Z_r^{p,q} = Z_r^p \cap K_G^{p+q}$$
, $B_r^{p,q} = B_r^p \cap K_G^{p+q}$ and $E_r^{p,q} = Z_r^{p,q} / B_r^{p,q}$.

Then the differential is

$$d_r: E_r^{p,q} \rightarrow E_r^{p+r,q-r+1}$$

with $E_1^{p,q} = K_G^{p+q}(W^p, W^{p-1})$. But the covering U has finite dimension, so there exists an integer p such that $W^p = W$ and then we obtain the infinite term of the spectral sequence:

$$E_{\infty}^{p,q} = \left(K_{G}^{p+q}(W)\right)_{p} / \left(K_{G}^{p+q}(W)\right)_{p+1}$$

(analogous with [4], lemma 1.1, pag. 316)

Using now the Proposition 1 it follows that the above spectral sequence is convergent to $K_G^*(W) \cong K_G^*(X)$ and the terms $E_2^{p,q}$ are just the p – cohomology of the complex

$$K_G^q(W^0) \to K_G^{q+1}(W^1, W^0) \to \dots \to K_G^{p+q}(W^p, W^{p-1}) \to \dots$$

On the other hand there exist the isomorphisms:

$$K_{G}^{p+q}\left(W^{p},W^{p-1}\right) \cong \prod_{\dim A=p} K_{G}^{p+q}\left(U_{A} \times \mathring{A}\right) \cong \prod_{\dim A=p} K_{G}^{q}\left(U_{A}\right) = C^{p}\left(N;K_{G}^{q}\left(U\right)\right)$$

where one denotes by A the interior of the simplex |A| and by $C^p(N, K_G^q(U))$ the complex of p – cochains of the nerve N with coefficients in the system $K_G^q(U)$. The first isomorphism is induced by the relative homeomorphism

$$\coprod_{\dim A=p}(U_{\scriptscriptstyle{A}}\times \overset{\circ}{A}){\to} W^{p}\setminus W^{p-1}$$

(using Lemma 2) and for the second one we just use the definition of the group $K_G^q(U)$ (see [2]).

It remains to show that the differential

$$d_1: E_1^{p,q} = K_G^{p+q} (W^p, W^{p-1}) \rightarrow E_1^{p+1,q} = K_G^{p+q+1} (W^{p+1}, W^p)$$

associated to the triple (W^{p+1}, W^p, W^{p-1}) is corresponding to the differential of the above complex of cochains of the nerve N.

Using Lemma 2 we obtain the following isomorphisms:

$$K_G^{p+q}(W^p, W^{p-1}) \cong \prod_{\dim A=p} K_G^{p+q}(U_A \times |A|, U_A \times |\overline{A}|)$$

and

$$K_G^{p+q}(U_A \times |A|, U_A \times |\overline{A}|) \cong K_G^{p+q}(U_A \times |\overline{B}|, U_A \times (|\overline{B}| \setminus A))$$

where B is a (p+1) – simplex of the nerve N and by $|\overline{A}|$ one denotes the boundary of the simplex A which is a face of B. We shall also use the differential associated to the triple $(U_B \times |B|, U_B \times |\overline{B}|, U_B \times (|\overline{B}| \setminus A))$:

$$K_G^{p+q}(U_B \times |\overline{B}|, U_B \times (|\overline{B}| \setminus \mathring{A})) \to K_G^{p+q+1}(U_B \times |B|, U_B \times |\overline{B}|).$$

Then the desired compatibility of differentials follows from the diagram:

where one denotes $C = K_G^q(U_A)$, $D = K_G^{p+q}(U_A \times |A|, U_A \times |\overline{A}|)$,

 $E = K_G^{p+q} (U_B \times |\overline{B}|, U_B \times (|\overline{B}| \setminus A))$. All the rectangles of the above diagram commute, except the right bottom rectangle: this one commutes, anticommutes or is degenerated if the orientation of the p-simplex A is the same with the orientation of the (p+1)-simplex B of the nerve N, respectively the orientations are different or A is not a face of the simplex B. Thus we have that the map d_1 is just the differential of the complex of cochains of the nerve N.

More generally we have:

Theorem 2. If $f: X \to Y$ is a G-map between two compact G-spaces and the group G acts trivially on Y, then there is a spectral sequence

$$E_2^{p,q} = H^p(Y; K_G^q f) \Rightarrow K_G^*(X)$$

where $K_G^q f$ is a sheaf whose stalk at $y \in Y$ is $K_G^q (f^{-1}(y))$. For a proof of Theorem 2 I refer again to [5].

3. A finiteness theorem

The Atiyah – Hirzebruch spectral sequence has many interesting applications and one of them is the following finiteness theorem.

Definition. A G – space X is *locally* G – *contractible* if each point $x \in X$ has an arbitrarily G_x - stable neighbourhood which is G_x - contractible to x (where by G_x one denotes the isotropy or stabilizer group of x).

For example, a differential manifold X on which a compact Lie group acts smoothly, is locally G – contractible.

Now one can prove the following useful result:

Theorem 3. (see [8]). If X is a locally G – contractible compact G – space such that the orbit space X/G has finite Lebesgue dimension (see [1]), then $K_G^*(X)$ is a finite R(G) – module (where R(G) is the representation ring of the compact Lie group G).

Proof. Let $\pi: X \to X/G$ be the projection on the orbit space; using the Theorem 2 for Y = X/G one obtains a spectral sequence terminating in $K_G^*(X)$:

$$E_{2}^{p,q} = H^{p}(X/G; K_{G}^{q}\pi) \Rightarrow K_{G}^{*}(X)$$

where $K_G^q \pi$ is a sheaf on X/G whose stalk at an orbit xG is $R(G_x)$ if q is even and $K_G^q \pi = 0$ if q is odd (for details see [8] and [5]).

Firstly one shows that $H^p(X/G; K_G^q \pi)$ are finite R(G) – modules and so it suffices to prove the theorem.

Because X is locally G – contractible, for each orbit xG there is a small neighbourhood V such that $K_G^*\pi(V)\cong R(G_x)$, which is finite over R(G) if q is even (see Proposition 3.2 in [9]). Now we choose a finite covering Ω of the orbit space by small open sets V such the above isomorphisms are satisfied; but there exists the isomorphism: $H^*(\Omega; K_G^*\pi) \stackrel{\cong}{\longrightarrow} H^*(X/G; K_G^*\pi)$ (see for example [6]) and

because the space of orbits has finite Lebesgue dimension that means $H^p(X/G; K_G^*\pi)$ are finite R(G) – modules.

Using the same assumption about the dimension of X/G one can prove that the associated spectral sequence is convergent:

$$H^p(X/G; K_G^q \pi) \Rightarrow K_G^*(X)$$

On the other hand $E_2^{p,q} = 0$ if p < 0 or if q is odd and this implies that $E_r^{p,q} = E_{\infty}^{p,q} = 0$ for all $r \ge 2$ if p < 0 or if q is odd. Then we have:

$$\operatorname{Im} \left(\ E_r^{-r,q+r-1} \to E_r^{0,q} \ \right) = \operatorname{Im} \left(\ E_{r+p}^{1-r,q+r+p-1} \to E_{r+p}^{p+1,q} \ \right) = 0 \ \text{ for all } \ r \geq 2 \ \text{ and } \ p \geq 0;$$

this implies that $B_0^{p,q} = B_1^{p,q} = \dots = B_{\infty}^{p,q}$ for all $p, q \in \mathbb{Z}$ and so we obtain the monomorphism $E_{\infty}^{p,q} \subset E_2^{p,q}$ using the following sequence of inclusions and equalities:

$$E_2^{p,q} = E_3^{p,q} \supset E_4^{p,q} = E_5^{p,q} \supset \dots \supset E_{\infty}^{p,q}$$
.

But the ring R(G) is noetherian (see [9]) and because $E_2^{p,q} = H^p(X/G; K_G^q \pi)$ are finite R(G) – modules it follows that the infinite terms are also finite modules.

On the other hand, in the filtration of $K_G^q(X)$:

$$K_G^q(X) = (K_G^q(X))_0 \supset (K_G^q(X))_1 \supset \ldots \supset (K_G^q(X))_p \supset \ldots$$

there exists a natural number k such that $(K_G^q(X))_p = 0$ for any p > k and using now the definition of the infinite term $E_{\infty}^{p,q} \cong (K_G^{p+q}(X))_p / (K_G^{p+q}(X))_{p+1}$ we have the following exact sequences:

$$0 \to (K_G^q(X))_1 \to K_G^q(X) \to E_{\infty}^{0,q} \to 0$$

$$0 \to (K_G^q(X))_2 \to (K_G^q(X))_1 \to E_{\infty}^{1,q-1} \to 0$$

$$0 \to (K_G^q(X))_k \to (K_G^q(X))_{k-1} \to E_{\infty}^{k-1,q-k+1} \to 0$$

$$0 \to (K_G^q(X))_k \to E_{\infty}^{k,q-k} \to 0$$

Because the finite R(G) – modules are noetherians and they form a Serre class it follows that $K_G^q(X)$ are also finite R(G) – modules.

Remark. The hypothesis that the space of orbits X/G has finite Lebesgue dimension is satisfied in the case of a smooth G – manifold because X/G is then a finite union of open manifolds.

References

- 1 C. Andreian Cazacu, A. Deleanu and M. Jurchescu, *Topologie, categorii şi suprafete riemanniene*. Editura Academiei R.S.R., Bucureşti, 1966.
- 2 M. F. Atiyah, K theory. W. A. Benjamin, New York, 1967.
- 3. M. F. Atiyah and G. B. Segal, *Equivariant K theory*. Lecture notes, Oxford, 1965.
- 4 H. Cartan and S. Eilenberg, *Homological algebra*. Princeton University Press, 1956.
- 5 C. N. Costinescu, *Şirul spectral Atiyah Hirzebruch în* K_G *teorie și aplicații*. St. Cerc. Mat. **27** (1975), No. 4, 425 442.
- 6 R. Godement, *Topologie algébrique et théorie des faisceaux*. Hermann, Paris, 1958.
- 7 G. B. Segal, *Classifyng spaces, spectral sequences*. Publ. Math. IHES Paris, **34** (1968), 105 112.
- 8 G. B. Segal, *Equivariant K theory*. Publ. Math. IHES Paris, **34** (1968), 129 151.
- 9 G. B. Segal, *The representation ring of a compact Lie group*. Publ. Math. IHES Paris, **34** (1968), 113 128.