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Abstract. Topological indices are the numerical descriptors of a molecular structure
obtained via molecular graph G. Topological indices are used in structure-property rela-
tionship, structure-activity relations and nanotechnology. Also, they hold us to predict
certain physicochemical properties such as boiling point, enthalpy of vaporization, sta-
bility, and so on. In this study, it was considered the Mostar index and was introduced
the edge Mostar index. It was computed mostar index (Mo) and edge Mo index for
some cycle related graphs which are wheel graph, gear graph, helm graph, flower graph
and friendship graph. Finally, it was compared these results.
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1. INTRODUCTION

Graph theory, which is a branch of discrete mathematics started by solving the problem of the bridges
of Königsberg by Leonhard Euler in 1736. Graph theory has attracted attention and gained popularity
by the publication of the first book on graph theory (1936). Graph theory has been studied in engineering
and science such as physics, biology, computer sciences, chemistry, civil engineering, management, and
control.

It takes time and money to find the properties of molecules. To predict the properties of the molecules
is achieved by chemical graph theory. The chemical graph theory is focused on finding topological indices.
Topological indices are a real number of a molecular structure obtained via molecular graph G whose
vertices and edges represent the atoms and the bonds, respectively. They hold us to predict certain
physicochemical properties such as boiling point, enthalpy of vaporization, stability, and also are used for
studying the properties of molecules such as the structure-property relationship, the structure-activity
relationship, and the structural design in chemistry, nanotechnology, and pharmacology.

The first molecular descriptor is the Wiener index, which was introduced by H. Wiener in 1947 in order
to calculate the boiling points of paraffin [10]. Over the course of the last seventy years, many topological
indices have been defined. These indices can be classified according to the structural characteristics of
the graph such as the degree of vertices, the distances between vertices, the matching, and the spectrum
and so on. The best-known topological indices are the Wiener index which is based on the distance,
the Zagreb and the Randic indices which are based on degree, the Estrada index which is based on
the spectrum of a graph, the Hosaya index which is based on thematching. Apart from these, it is a
bond-additive index, which is a measure of peripherality in graphs.

Doslic et al. defined a new bond-additive topological index which is named Mostar index in 2019. In the
same paper, they gave explicit formulas for benzenoid graph, Cartesian product, extremal and unicyclic
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graphs. Also, they stated several conjectures and open problems [3]. Tepeh proved their conjecture
related with bicyclic graph [8].

In this study, the Mostar index which is the bond-additive index is studied. The edge Mostar index
is defined. It is presented exact expressions for the Mostar index and edge Mostar index of wheel graph,
gear graph, helm graph, friendship graph, and flower graph. These results are compared.

2. Preliminaries

Let G be a simple connected graph with a vertex set V (G) and edge set E(G) where V (G) =
{v1, v2, .., vn}. The number of a vertex set and edge set are defined by n and m, respectively. An
edge of G connects the vertices u and v and it writes e = uv. The degree of a vertex u is defined by d(u).
The distance between vertices u and v is defined by d(u, v). For standard terminology and notations we
follow Buckley and Harary [2].

Mostar index is defined as

(2.1) Mo(G) =
∑

uv∈E(G)

|nu − nv|

where nu is the number of vertices of G lying closer to vertex u than to vertex v of the edge uv [3].
Namely,

(2.2) nu = |Nu = {x ∈ V (G) : d(x, u) < d(x, v)}| .
Note that vertices equidistant to u and v not counted. Doslic et. al. presented following results [3]:

Corollary 2.1. Let Kn be complete graph, Cn be cycle graph and Kn,n be complete bipartite graph. Then,
Mo(Kn) = Mo(Cn) = Mo(Kn,n) = 0.

Corollary 2.2. Let Tn be tree with n vertices and Sn be star graph with n vertices. Then, Mo(Tn) ≤
Mo(Sn) = (n− 1) (n− 2) with equality if only if Tn = Sn.

Corollary 2.3. Let Pn be path graph. Then, Mo(Pn) =
⌊
(n−1)2

2

⌋
.

The cycle graph related graphs are wheel graph, gear graph, helm graph, flower graph, and friendship
graph.

Definition 2.4. The wheel Wn for n ≥ 3 is obtained by joining n-cycle and central vertex vc. The wheel
graph has n + 1 vertices and 2n edges. The wheel graph consist of vertex set

V (Wn) = V1 ∪ V2

where
V1 = {vi ∈ V (Wn)

∣∣ dvi = 3, i = 1, n}
V2 = {vc ∈ V (Wn) | dvc

= n}
and edge set

(2.3) E(Wn) = E1 ∪ E2

where
E1 =

{
vivi+1 ∈ E(Wn)

∣∣vi ∈ V1, subscripts modula n, i = 1, n
}
,

E2 =
{
vivc ∈ E(Wn)

∣∣vi ∈ V1, i = 1, n
}
,

Definition 2.5. Gear graph, Gn, is a wheel graph with a vertex added between each pair adjacent vertices
of the outer cycle [4], [1]. The gear graph has 2n + 1 vertices and 3n edges. Obviously,

V (Gn) = V1 ∪ V2 ∪ V3

where
V1 = {vi ∈ V (Gn)

∣∣ dvi = 3, i = 1, n},
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V2 = {ui ∈ V (Gn)
∣∣ dui

= 2, i = 1, n},
V3 = {vc ∈ V (Gn) | dvc = n}

where vc vertex is the center vertex of gear graph, V1 vertex set is vertices of the outer cycle of wheel
graph and V2 is set of added vertices to the outer cycle. And edge set of Gn is

(2.4) E(Gn) = E1 ∪ E2 ∪ E3,

where

E1 =
{
viui ∈ E(Gn)

∣∣vi ∈ V1, ui ∈ V2, i = 1, n
}
,

E2 =
{
uivi+1 ∈ E(Gn)

∣∣ subscripts modula n, vi+1 ∈ V1, ui ∈ V2, i = 1, n
}
,

E3 =
{
vivc ∈ E(Gn)

∣∣vi ∈ V1, i = 1, n
}

and |E1| = n, |E2| = n, |E3| = n.

Definition 2.6. Helm graph Hn, is obtained from a wheel Wn with cycle Cn having a pendant edge
attached to each vertex of cycle [4]. The helm graph has 2n + 1 vertices and 3n edges. Helm graph
consists of

V (Hn) = V1 ∪ V2 ∪ V3

where

V1 = {vi ∈ V (Hn)
∣∣ dvi = 4, i = 1, n}

V2 = {ui ∈ V (Hn)
∣∣ dui

= 1, i = 1, n}
V3 = {vc ∈ V (Hn) | dvc = n}

where vc vertex is the center vertex of helm graph, V1 vertex set is vertices of the outer cycle of wheel
graph and V2 is set of added vertices to the wheel graph. Obviously,

(2.5) E(Hn) = E1 ∪ E2 ∪ E3,

where

E1 =
{
vivi+1 ∈ E(Hn)

∣∣vi ∈ V1, subscripts modula n, i = 1, n
}
,

E2 =
{
viui ∈ E(Hn)

∣∣ vi ∈ V1 , ui ∈ V2, i = 1, n
}
,

E3 =
{
vivc ∈ E(Hn)

∣∣vi ∈ V1, i = 1, n
}

and |E1| = n, |E2| = n, |E3| = n.

Definition 2.7. Friendship graph Fn, is obtained from a wheel W2n with cycle C2n by deleting alternate
edges of the cycle [4]. The Friendship graph has 2n + 1 vertices and 3n edges. Friendship graph consists
of

V (Fn) = V1 ∪ V2 ∪ V3

where

V1 = {vi ∈ V (Fn)
∣∣ dvi = 2, i = 1, n},

V2 = {ui ∈ V (Fn)
∣∣ dui = 2, i = 1, n},

V3 = {vc ∈ V (Fn) | dvc
= 2n}

where vc vertex is the center vertex of friendship graph. Also, Friendship graph consists of

(2.6) E(Fn) = E1 ∪ E2 ∪ E3

where

E1 =
{
viui ∈ E(Fn)

∣∣vi ∈ V1, ui ∈ V2, i = 1, n
}
,

E2 =
{
vivc ∈ E(Fn)

∣∣vi ∈ V1, i = 1, n
}
,

E3 =
{
uivc ∈ E(Fn)

∣∣ui ∈ V2, i = 1, n
}

and |E1| = n, |E2| = n, |E3| = n.
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Definition 2.8. Flower graph Fln, is obtained from a wheel Wn by joining each pendant vertex to the
central vertex and with cycle Cn having a pendant edge attached to each vertex of the outer cycle .The
Flower graph has 2n + 1 vertices and 4n edges. Flower graph consists of

V (Fln) = V1 ∪ V2 ∪ V3

where
V1 = {vi ∈ V (Fln)

∣∣ dvi = 4, i = 1, n},
V2 = {ui ∈ V (Fln)

∣∣ dui
= 2, i = 1, n},

V3 = {vc ∈ V (Fln) | dvc = 2n}
where vc vertex is the center vertex of the flower graph, V1 vertex set is vertices of the outer cycle of wheel
graph and V2 is set of added vertices to the wheel graph. Obviously,

(2.7) E(Fln) = E1 ∪ E2 ∪ E3 ∪ E4,

where
E1 =

{
vivi+1 ∈ E(Fln)

∣∣vi ∈ V1, subscripts modula n, i = 1, n
}
,

E2 =
{
vivc ∈ E(Fln)

∣∣vi ∈ V1, i = 1, n
}
,

E3 =
{
uivc ∈ E(Fln)

∣∣ui ∈ V2, i = 1, n
}
,

E4 =
{
viui ∈ E(Fln)

∣∣ vi ∈ V1 , ui ∈ V2, i = 1, n
}
,

and |E1| = n, |E2| = n, |E3| = n, |E4| = n.

3. Mostar Index of Some Cycle Related Graphs

In this section, it is given formulas for the mostar indices of gear, helm, flower and friendship graphs.
Note that d(vi, vi) = d(ui, ui) = 0.

Theorem 3.1. Mostar index of Wn wheel graph is

Mo(Wn) = n (n− 4) .

Proof. From Equations (2.1) and (2.3), we get

Mo(Wn) =
∑

uv∈E1

|nu − nv|+
∑

uv∈E2

|nu − nv| .

From the Definition 2.4, we can write following equalities for i, j = 1, n and i 6= j :

(3.1) d(vi, x) =

 2, if i, i− 1, i + 1 6= j x = vj
1, if i− 1, i + 1 = j x = vj

1, if x = vc.

From Eq. (3.1), we can write the following cases:
Case 1. If vivi+1 ∈ E(Wn), then it is obtained

nvi =
∣∣Nvi

∣∣ = |{{vi−1} , {vi}}| = 2,

nvi+1
=
∣∣∣N

vi+1

∣∣∣ = |{{vi+1} , {vi+2}}| = 2.

Thus, we have:

ε1 =
∑

uv∈E1

|nu − nv| = n |2− 2| = 0.

Case 2. Let vivc ∈ E(Wn). We have

nvi =
∣∣Nvi

∣∣ = |{vi}| = 1,

nvc =
∣∣∣N

vc

∣∣∣ = |{V1 − {vi−1, vi, vi+1} , vc}| = n− 3
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Then, we have

ε2 =
∑

uv∈E2

|nvi − nui
| = n |(n− 3)− 1| = n (n− 4) .

By summing up the Cases 1 and 2, the proof is completed. �

Corollary 3.2. Mostar index of W2n wheel graph is

Mo(W2n) = 4n (n− 2) .

Theorem 3.3. Mostar index of Gn gear graph is

Mo(Gn) = 3n(2n− 5).

Proof. From Equations (2.1) and (2.4), we get

Mo(Gn) =
∑

uv∈E1

|nu − nv|+
∑

uv∈E2

|nu − nv|+
∑

uv∈E3

|nu − nv| .

From the Definition 2.5 , we can write following equalities for i, j = 1, n and i 6= j :

(3.2) d(vi, x) =

{
2, x = vj
1, x = vc

,

(3.3) d(ui, x) =

 3 for i + 1 6= j, x = vj
1 for i + 1 = j, x = vj
2 for x = vc

,

(3.4) d(ui, uj) =

{
4 , Otherwise

2 , i− 1, i + 1 = j
,

Case 1. Let viui ∈ E(Gn). From Equations (2.2), (3.2)- (3.4), we have

(3.5) nvi =
∣∣N

vi

∣∣ = |{V1 − {vi+1} , V2 − {ui, ui+1} , vc}| = (n− 1) + (n− 2) + 1,

(3.6) nui
=
∣∣N

ui

∣∣ = |{vi+1, ui, ui+1}| = 3.

Thus, by Equations (3.5) and (3.6), we get

ε1 =
∑

uv∈E1

|nv − nu| = n |2n− 2− 3| = n (2n− 5) .

Case 2. Let uivi+1 ∈ E(Gn). From Equations (2.2), (3.2)- (3.4), we have

(3.7) nvi+1 =
∣∣∣Nvi+1

∣∣∣ = |{V1 − {vi} , V2 − {ui−1, ui} , vc}| = (n− 1) + (n− 2) + 1,

(3.8) nui =
∣∣Nui

∣∣ = |{vi, ui, ui−1}| = 3.

By Equations (3.7) and (3.8), we get

ε2 =
∑

uv∈E2

∣∣nui − nvi+1

∣∣ = n |3− (2n− 2)| = n (2n− 5) .

Case 3. Let vivc ∈ E(Gn). From Equations (2.2), (3.2)- (3.4), we have

(3.9) nvi =
∣∣Nvi

∣∣ = |{vi, ui−1, ui}| = 3,

(3.10) nvc =
∣∣N

vc

∣∣ = |{V1 − {vi} , V2 − {ui−1, ui} , vc}| = (n− 1) + (n− 2) + 1.

By Equations (3.9) and (3.10), we get

ε3 =
∑

uv∈E3

|nvi − nvc | = n |3− (2n− 2)| = n (2n− 5) .
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By summing up the Cases 1, 2 and 3, it is clear that

Mo(Gn) = n(2n− 5) + n(2n− 5) + n(2n− 5).

�

Theorem 3.4. Mostar index of helm graph Hn with n > 3 is

Mo(Hn) = 4n(n− 2).

Proof. By Equations (2.1) and (2.5), we have:

(3.11) Mo(Hn) =
∑

uv∈E1

|nu − nv|+
∑

uv∈E2

|nu − nv|+
∑

uv∈E3

|nu − nv| .

From the Definition 2.6, the following equations are written for i, j = 1, n

(3.12) d(vi, vj) =

 2 for i− 1, i, i + 1 6= j, x = vj
1 for i− 1, i + 1 = j, x = vj

1 for x = vc

,

(3.13) d(vi, uj) =

 3 , Otherwise
2 , i− 1, i + 1 = j

1 , j = i
,

(3.14) d(ui, uj) =

 4 for i− 1, i, i + 1 6= j, x = uj

3 for i− 1, i + 1 = j, x = uj

2 for x = vc

.

From Equations (3.12)-(3.14), the following cases can be easily written:
Case 1. If vivi+1 ∈ E(Hn), then it is obtained

nvi =
∣∣N

vi

∣∣ = |{{vi−1} , {vi} , {ui−1} , {ui}}| = 4,

nvi+1
=
∣∣∣N

vi+1

∣∣∣ = |{{vi+1} , {vi+2} , {ui+1} , {ui+2}}| = 4.

Thus, we have:

ε1 =
∑

uv∈E1

|nu − nv| = n |4− 4| = 0.

Case 2. Let viui ∈ E(Hn). We have

nvi =
∣∣N

vi

∣∣ = |{V1, {vc} , V2 − {ui}}| = 2n,

nui
=
∣∣∣N

ui

∣∣∣ = |{ui}| = 1.

Then, we have

ε2 =
∑

uv∈E2

|nvi − nui | = n |2n− 1| = n (2n− 1) .

Case 3. Let vivc ∈ E(Hn). We have

nvi =
∣∣N

vi

∣∣ = |{{vi} , {ui}}| = 2,

nvc =
∣∣∣N

vc

∣∣∣ = |{V1 − {vi−1, vi, vi+1} , {vc} , V2 − {ui−1, ui, ui+1}}| = 2n− 5.

Then, we have

ε3 =
∑

uv∈E3

|nvi − nui
| = n |(2n− 5)− 2| = n (2n− 7) .

By summing up the Cases 1, 2 and 3, the proof is completed. �
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Theorem 3.5. Mostar index of friendship graph Fn is

Mo(Fn) = 4n(n− 1).

Proof. By Equations (2.1) and (2.6), we write

(3.15) Mo(Fn) =
∑

uv∈E1

|nu − nv|+
∑

uv∈E2

|nu − nv|+
∑

uv∈E3

|nu − nv| .

From the Definition 2.7, we can write the following equations for i, j = 1, n

(3.16) d(vi, uj) =

{
2, Otherwise

1 , i = j
,

(3.17) d(vi, x) =

{
2 for i 6= j, x = vj
1 for x = vc

,

(3.18) d(ui, x) =

{
2 for i 6= j, x = uj

1 for x = vc
.

From Equations (3.16)-(3.18), the following cases are written
Case 1. Let viui ∈ E(Fn).We easy see that

nvi =
∣∣N

vi

∣∣ = |{vi}| = 1,

nui =
∣∣∣N

ui

∣∣∣ = |{ui}| = 1.

Then, we have

ε1 =
∑

uv∈E1

|nvi − nui | = n |1− 1| = 0.

Case 2. Let vivc ∈ E(Fn). It is clear that

nvi =
∣∣N

vi

∣∣ = |{vi}| = 1,

nvc =
∣∣∣N

vc

∣∣∣ = |{V1 − {vi} , {vc} , V2 − {ui}}| = 2n− 1.

Then, we obtain

ε2 =
∑

uv∈E2

|nvi − nvc | = n |1− (2n− 1)| = n (2n− 2) .

Case 3. Let uivc ∈ E(Fn). We easy see that

nui =
∣∣Nui

∣∣ = |{ui}| = 1,

nvc =
∣∣∣N

vc

∣∣∣ = |{V1 − {vi} , {vc} , V2 − {ui}}| = 2n− 1.

Then, we have

ε3 =
∑

uv∈E3

|nui
− nvc | = n |1− (2n− 1)| = n (2n− 2) .

By summing up the Cases 1, 2 and 3, the proof is completed. �

Theorem 3.6. Mostar index of flower graph Fln is

Mo(Fln) = 4n(n− 1).
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Proof. By Equations 2.1 and 2.7, we write

Mo(Fln) =
∑

uv∈E1

|nu − nv|+
∑

uv∈E2

|nu − nv|+
∑

uv∈E3

|nu − nv|+
∑

uv∈E4

|nu − nv| .

From the Definition 2.8, we can write for i, j = 1, n

(3.19) d(uj , x) =

 2 for i 6= j, x = vi
1 for i = j, x = vi
1 for x = vc

,

(3.20) d(vi, x) =

 2 for i− 1, i + 1 6= j, x = vj
1 for i− 1, i + 1 = j, x = vj
1 for x = vc

.

From Equations (3.19) and (3.20), we can write the following cases
Case 1. For vivi+1 ∈ E(Fln), we have

nvi =
∣∣N

vi

∣∣ = |{{vi−1} , {vi} , {ui}}| = 3,

nvi+1 =
∣∣∣N

vi+1

∣∣∣ = |{{vi+1} , {vi+2} , {ui+1}}| = 3,

Then, we obtain

ε1 =
∑

uv∈E1

|nvi − nui | =
∑

uv∈E1

|3− 3| = 0.

Case 2. For vivc ∈ E(Fln), we have

nvi =
∣∣N

vi

∣∣ = |{vi}| = 1,

nvc =
∣∣∣N

vc

∣∣∣ = |{V1 − {{vi−1} , {vi} , {vi+1}} , V2 − {ui} , {vc}}| = 2n− 3.

Then, it is easy see that

ε2 =
∑

uv∈E2

|nvi − nvc | =
∑

uv∈E2

|1− (2n− 3)| = n (2n− 4) .

Case 3. For uivc ∈ E(Fln), we have

nui = |Nui | = |{ui}| = 1,

nvc =
∣∣∣N

vc

∣∣∣ = |{V1 − {vi} , V2 − {ui} , {vc}}| = 2n− 1.

Then, it is written the following equation

ε3 =
∑

uv∈E3

|nvi − nui
| =

∑
uv∈E3

|1− (2n− 1)| = n (2n− 2) .

Case 4. For viui ∈ E(Fln), we have

nvi = |Nvi | = |{vi−1, vi, vi+1}| = 3,

nui
= |Nui

| = |{ui}| = 1.

Then, it is written the following equation

ε4 =
∑

uv∈E4

|nvi − nui | =
∑

uv∈E4

|3− 1| = 2n.

By summing up the case 1, 2,3 and 4, the poof is completed. �
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4. Edge Mostar Index of Some Cycle Related Graphs

In this section, the edge Mostar index is introduced. Then, the exact expressions for edge Mostar
indices of gear, helm, flower and friendship graphs are given.

Motivated by the success results of [5], [6] the edge Mostar index is defined as

(4.1) Moe(G) =
∑

uv∈E(G)

|mu −mv| ,

where mu is the edge variants of the numbers nu. That is, mu is the number of edge of G lying closer
to vertex u than to vertex v of the edge uv. That is, if the edges e = uv and f = xy of G, then

(4.2) mu = |d (u, f) < d (v, f)| ,

where

d (u, f) = min {d (u, x) , d (u, y)} .
The edges e = uv and f = xy of G are said to be equidistant edges if min {d (u, x) , d (u, y)} =
min {d (v, x) , d (v, y)} . The equidistant edges are not counted.

Theorem 4.1. mu = 0 if and only if u is pendent vertex of G [5].

Theorem 4.2. In the case of trees, it is always the case that mu +mv = n−2 = m−1 and mu = nu−1
[5].

Theorem 4.3. [7] Let G be unicyclic graph and e = uv ∈ E(C), where E(C) is edge set of cycle.

i: For a unicyclic graphs with even girth, nu+nv = n, mu = nu−1,mv = nv−1 and mu+mv = n−2.

ii: Let ai be the number of vertices of the component that contains the vertex ci in G − E(C).
Then for a unicyclic graphs with odd girth, there exists a number ai such that nu +nv = n− ai,
mu = nu, mv = nv and mu + mv = n− ai.

It is easily seen that the following theorem from Theorem 4.2, Corrollary 2.2 and Corrollary 2.3 :

Theorem 4.4. If Sn is a star graph with order n, then

Moe(Sn) = Mo(Sn) = m(m− 1) = (n− 1)(n− 2)

and

Moe(Pn) = Mo(Pn) =

⌊
(n− 1)

2

2

⌋
.

From Theorem 4.3 and Corrollary 2.1 , it is easy to obtain the following theorem:

Theorem 4.5. If Cn is a cycle graph with n vertices, then Moe(Cn) = Mo(Cn) = 0.

Theorem 4.6. Mostar index of wheel graph Wn with n > 3 is

Moe(Wn) = n (2n− 7) .

Proof. From Equations (4.1) and (2.3), we get

Mo(Wn) =
∑

uv∈E1

|mu −mv|+
∑

uv∈E2

|mu −mv| .

From Eq. (3.1), we can write the following cases
Case 1 Let e = vivi+1 ∈ E(Wn).

i. If f = vivi+1 ∈ E(Wn) then

mvi = |{{vivi−1} , {vi−1vi−2}}| = 2,
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mvi+1
= |{{vi+1vi+2} , {vi+2vi+3}}| = 2.

ii. If f = vivc ∈ E(Wn) then

mvi = |{vivc}| = 1 and mvi+1
= |{vi+1vc}| = 1.

Thus, for e = vivi+1 ∈ E(Wn) we have
∑

uv∈E1

|(2 + 1)− (2 + 1)| = 0.

Case 2. Let e = vivc ∈ E(Wn).
i. If f = vivi+1 ∈ E(Wn) then

mvi = |{{vivi−1} , {vivi+1}}| = 2,

mvc = |{E1 − {vivi−1} , {vivi+1} , {vi+1vi+2} , {vi−1vi−2}}| = n− 4.
ii. If f = vivc ∈ E(Wn) then

mvi = 0 and mvc = |E2 − {vivc}| = n− 1.

Thus, for e = vivc ∈ E(Wn) we have
∑

uv∈E2

|2− (2n− 5)| = n (2n− 7) .

By summiting up the cases 1 and 2, the proof is completed. �

Corollary 4.7. Moe(W2n) = 2n (4n− 7) .

Theorem 4.8. The edge Mostar index of gear graph is

Moe(Gn) = 3n(3n− 7).

Proof. From Eq. (4.1) and Eq. (2.4), we get

Mo(Gn) =
∑

uv∈E1

|mu −mv|+
∑

uv∈E2

|mu −mv|+
∑

uv∈E3

|mu −mv| .

By Equations (3.2)-(3.4) and (4.2), we easy can write the following cases:
Case 1. For e = viui ∈ E(Gn).
i. If f = vjuj ∈ E(Gn) then we obtain m′vi = |E1 − {viui, vi+1ui+1}| and m′ui

= |{vi+1ui+1}| .
ii. If f = ujvj+1 ∈ E(Gn) then m′′vi = |E2 − {vi+1ui, vi+2ui+1}| and m′′ui

= |{vi+1ui}| .
iii. If f = vivc ∈ E(Gn) then m′′′vi

= |E3 − {vi+1vc}| and m
′′′

ui
= 0.

By summiting up m′vi ,m
′′
vi , m

′′′
vi and m′ui

, m′′ui
, m′′′ui

for viui ∈ E(Gn),we obtain

mvi
= |E1 + E2 + E3 − {viui, vi+1ui+1, vi+2ui+1, vi+1ui, vi+1vc}| = 3n− 5

mui
= |{vi+1ui, vi+1ui+1}| = 2.

Thus, we have:

ε1 =
∑

uv∈E1

|3n− 5− 2| = n(3n− 7)

Case 2. For e = uivi+1 ∈ E(Gn). We can write similarly way to Case 1:
i. If f = vjuj ∈ E(Gn) then m′ui

= |{viui}| and m′vi+1
= |E1 − {viui, vi−1ui−1}| .

ii. If f = ujvj+1 ∈ E(Gn) then m′′ui
= |{viui−1}| and m′′vi+1

= |E2 − {viui−1, vi+1ui}| .
iii. If f = vivc ∈ E(Gn) then m′′′ui

= 0 and m′′′vi+1
= |E3 − {vivc}| .

By summiting up m′vi+1
,m′′vi+1

, m′′′vi+1
and m′ui

, m′′ui
, m′′′ui

for uivi+1 ∈ E(Gn),we obtain

mvi+1
= n− 2 + n− 2 + n− 1 = 3n− 5,

mui
= 1 + 1 = 2.

Thus, we have:

ε2 =
∑

uv∈E2

|3n− 5− 2| = n(3n− 7).

Case 3. For e = vivc ∈ E(Gn).
i. If f = vjuj ∈ E(Gn) then m′vi = |{viui}| and m′vc = |E1 − {viui, vi−1ui−1}| .
ii. If f = ujvj+1 ∈ E(Gn) then m′′vi = |{viui−1}| and m′′vc

= |E2 − {viui−1, vi+1ui}| .
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iii. If f = vivc ∈ E(Gn) then m′′′vi
= 0 and m′′′vc

= |E3 − {vivc}| .
By summiting up m′vi ,m

′′
vi
, m′′′vi and m′vc , m

′′
vc , m

′′′
vc for vivc ∈ E(Gn),we obtain

mvi = n− 2 + n− 2 + n− 1 = 3n− 5,

mvc = 1 + 1 = 2.

Thus, we have:

ε3 =
∑

uv∈E3

|3n− 5− 2| = n(3n− 7).

By summiting up ε1, ε2 and ε3, it is clear that Moe(Gn) = n(3n− 7) + n(3n− 7) + n(3n− 7). �

Theorem 4.9. The edge mostar index of helm graph with n > 3 is

Moe(Hn) = 6n(n− 2).

Proof. From Eq. (4.1) and Eq. (2.5), we get

Moe(Hn) =
∑

uv∈E1

|mu −mv|+
∑

uv∈E2

|mu −mv|+
∑

uv∈E3

|mu −mv| .

By Equations (3.12)-(3.14) and (4.2), we easy can write the following cases:
Case 1. For e = vivi+1 ∈ E(Hn).
i. If f = vjuj ∈ E(Hn) then we have m′vi = |{viui, vi−1ui−1}| and m′vi+1

= |{vi+1ui+1, vi+2ui+2}| .
ii. If f = vjvj+1 ∈ E(Hn) then we have m′′vi = |{vivi−1, vi−1vi−2}| and m′′vi+1

= |{vi+1vi+2, vi+2vi+3}| .
iii. If f = vjvc ∈ E(Hn) then we have m′′′vi = |{vivc}| and m′′′vi+1

= |{vi+1vc}| .
From i, ii and iii,

mvi = |{viui, vi−1ui−1, vivi−1, vi−1vi−2, vivc}| and
mvi+1

= |{vi+1ui+1, vi+2ui+2, vi+1vi+2, vi+2vi+3, vi+1vc}| for e = vivi+1 ∈ E(Hn). Thus,

ε1 =
∑

uv∈E1

|5− 5| = 0.

Case 2. For e = viui ∈ E(Hn). From Theorem 4.1, we known that mui
= 0. And by Eq. (4.2), we have

mvi = |E1 − {viui} , E2, E3| = 3n− 1. Then, we have

ε2 =
∑

uv∈E2

|mu −mv| = n(3n− 1).

Case 3. For e = vivc ∈ E(Hn).
i. If f = vjuj ∈ E(Hn) then we have m′vi

= |{viui}| = 1 and m′vc = |E1 − {vi−1ui−1, viui, vi+1ui+1}| .
ii. If f = vjvj+1 ∈ E(Hn) then we have m′′vi = |{vivi−1, vivi+1}| and

m′′vc = |E2 − {vivi−1, vivi+1, vi+1vi+2, vi−1vi−2}| = n− 4.
iii. Let f = vjvc ∈ E(Hn). we have m′′′vi = 0 and m′′′vc = |E3 − {vivc}| .
Thus, for e = vivc ∈ E(Hn),we have:

ε3 =
∑

uv∈E3

|(1 + 2)− ((n− 3) + (n− 4) + (n− 1))| = n(3n− 11).

From summing up ε1, ε2 and ε3, it is obtained that Moe(Hn) = n(3n−1)+n(3n−11) = n(6n−12). �

Theorem 4.10. The edge mostar index of flower graph is

Moe(Fn) = 2n(4n− 5).

Proof. From Eq. (4.1) and Eq. (2.7), we write

Moe(Fn) =
∑

uv∈E1

|mu −mv|+
∑

uv∈E2

|mu −mv|+
∑

uv∈E3

|mu −mv|+
∑

uv∈E4

|mu −mv| .

By Equations (3.19)-(3.20) and (4.2), we easy can write the following cases:
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Case 1. For e = vivi+1 ∈ E(Fn).
i. If f = vjuj ∈ E(Fn) then we have m′vi = |{ui−1vi−1, uivi}| = 2 and

m′vi+1
= |{ui+1vi+1, ui+2vi+2}| = 2.

ii. If f = vjvj+1 ∈ E(Fn) then we easy see that m′′vi = |{vi−1vi−2, vi−1vi}| = 2 and
m′′vi+1

= |{vi+1vi+2, vi+2vi+3}| = 2.

iii. If f = vjvc ∈ E(Fn), then we have m′′′vi = |{vivc}| = 1 and m′′′vi+1
= |{vi+1vc}| = 1.

iv. Let f = ujvc ∈ E(Fn).we have m′′′′vi = 0 and m′′′′vi+1
= 0.

Thus, from i,ii,iii and iv for vivi+1 ∈ E(Fn), we have

ε1 =
∑

uv∈E1

|(2 + 2 + 1)− (2 + 2 + 1)| = 0.

Case 2. For e = vivc ∈ E(Fn).
i. If f = vjuj ∈ E(Fn) then we have m′vi = |{uivi}| = 1 and m′vc = |E1 − {ui−1vi−1, uivi, ui+1vi+1}| .
ii. If f = vjvj+1 ∈ E(Fn) then we easy see that m′′vi = |{vivi+1, vi−1vi}| = 2 and

m′′vc = |E2 − {vi−1vi−2, vi−1vi, vivi+1, vi+1vi+2}| .
iii. If f = vjvc ∈ E(Fn) then we have m′′′vi = 0 and m′′′vc = |E3 − {vivc}| because of equidistant edges.
iv. If f = ujvc ∈ E(Fn) then m′′′′vi = 0 and m′′′′vc = n.
Thus, we have for vivc ∈ E(Fn),

ε2 =
∑

uv∈E2

|(1 + 2)− ((n− 3) + (n− 4) + (n− 1) + n)| = n (4n− 11) .

Case 3. For e = uivc ∈ E(Fn).
i. If f = vjuj ∈ E(Fn) then we have m′ui

= |{uivi}| = 1 and m′vc = |E1 − {uivi}| .
ii. If f = vjvj+1 ∈ E(Fn) then we easy see that m′′ui

= 0 and m′′vc = |E2 − {vi−1vi, vivi+1}| .
iii. If f = vjvc ∈ E(Fn) then because of equidistant edges, we have m′′′ui

= 0 and m′′′vc = |E3| .
iv. If f = ujvc ∈ E(Fn) then we have m′′′′ui

= 0 and m′′′′vc = |E4 − {uivc}| .
Thus, for uivc ∈ E(Fn), we have

ε3 =
∑

uv∈E3

|1− ((n− 1) + (n− 2) + n + (n− 1))| = n (4n− 5) .

By summing up ε1, ε2, ε3 and ε4, the proof is completed.
Case 4. For e = viui ∈ E(Fn).
i. If f = vjuj ∈ E(Fn) then we have m′vi = |{ui−1vi−1, ui+1vi+1}| = 2 and m′ui

= 0.
ii. If f = vjvj+1 ∈ E(Fn) then we easy see that m′′vi = |{vi−1vi−2, vi−1vi, vi+1vi+2, vivi+1}| = 4 and

m′′ui
= 0.

iii. If f = vjvc ∈ E(Fn) then we have m′′′vi = |{vivc}| and m′′′ui
= 0 because of the equidistant edges.

iv. If f = ujvc ∈ E(Fn) then we have m′′′′vi = 0 and m′′′′ui
= |{uivc}| = 1.

Thus we have from i, ii, iii, iv for viui ∈ E(Fn)

ε4 =
∑

uv∈E4

|(2 + 4 + 1)− 1| = 6n.

�

Theorem 4.11. The edge mostar index of friendship graph is

Moe(Fln) = 6n(n− 1).

Proof. From Eq. (4.1) and Eq. (2.6), we get

Moe(Fln) =
∑

uv∈E1

|mu −mv|+
∑

uv∈E2

|mu −mv|+
∑

uv∈E3

|mu −mv| .

By Equations (3.16)-(3.18) and (4.2), we easy can write the following cases:
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Case1. For e = viui ∈ E(Fln).
i. Let f = vjuj ∈ E(Fln).We have mvi = 0 and mui = 0 because all edges are equidistant edges.
ii. Let f = vjvc ∈ E(Fln). We have mvi = |{vivc}| = 1 and mui = 0.
iii. Let f = ujvc ∈ E(Fln). We have mvi = 0 and mui

= |{uivc}| = 1.
Thus, we obtain from i, ii, iii for viui ∈ E(Fln):

ε1 =
∑

uv∈E1

|1− 1| = 0.

Case2. For e = vivc ∈ E(Fln).
i. Let f = vjuj ∈ E(Fln).We have mvi = |{uivi}| = 1 and mvc = |E1 − {uivi}|
ii. Let f = vjvc ∈ E(Fln). We have mvi = 0 and mvc = |E2 − {vivc}|
iii. Let f = ujvc ∈ E(Fln). We have mvi = 0 and mvc = |E3| .
Thus, we obtain from i, ii, iii for vivc ∈ E(Fln):

ε2 =
∑

uv∈E2

|1− ((n− 1) + (n− 1) + n)| = n (3n− 3) .

Case3. For e = uivc ∈ E(Fln).
i. Let f = vjuj ∈ E(Fln).We have mui

= |{uivi}| and mvc = |E1 − {uivi}| .
ii. Let f = vjvc ∈ E(Fln). We have mui = 0 and mvc = |E2| .
iii. Let f = ujvc ∈ E(Fln). We have mui = 0 and mvc = |E3 − {uivc}| .
Thus, we obtain from i, ii, iii for uivc ∈ E(Fln):

ε3 =
∑

uv∈E3

|1− ((n− 1) + n + (n− 1))| = n (3n− 3) .

From summing up ε1, ε2 and ε3, the proof is completed. �

5. Compare of Mostar index (Mo) and Edge Mo index for Some Cycle Related Graphs

In this section, we compare of the Mostar index (Mo) and the edge Mo index for some cycle related
graphs which are the wheel graph, the gear graph, the helm graph, the friendship graph, and the flower
graph. These considered graphs have the same order and have the same size without Fln and W2n. Thus,
we can make these comparisons. Figure 1 shows the Mo index value of considered graphs and also the
edge Mo index theirs is depicted in Figure 2. The Mo index values of Fn ile Fln and also Hn ile W2n

are same but the edge Mostar index values of considered graphs are not the same.
From Figure 1, we see that Mo index of Gn is better than Mo indices of Hn(W2n) and Fn(Fln) and

also Mo index value of Fn is better than Hn but these are very close.
From Figure 2, we see that Moe index values of considered graphs are nearly the same. The edge

Mostar index is based on edge distance. So, the same number of edges making comparisons would be
more correct to compare with each other. The size of Fln with W2n are the same and from figure 2, we
can say Fln is better than W2n. And Gn is better than Hn and Fn.
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