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Abstract 

 

In this paper we will estimate the parameters of the cumulative distribution functions for 

marginals for bi-variates and, at the same time, those of the copula that connects them, using a 

sample of a uniform random variable that depends on these parameters. We will also use the  

6349.92

99.0;1 =χ   test for the validation of the model. 

In fact, the proposed method is a generalization of the PWM (Probability Weighted 

Moments) method used in literature. For the PWM method there are also used some moments 

of a uniform random variable, but only for a marginal. In our method we use the uniform 

random variable for both the marginal and the copula. 

As an application, we will consider the maximum discharges and the volumes of the 

floods on the Danube River, connected by a copula in a given gauge station. In this case study, 

we will estimate the parameters for both the marginal distributions and the copula using the 

method presented in this paper. 
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1. Introduction 
 

A copula ''couples'' the marginal distribution functions to form multivariate 

distribution functions. Sklar (see [16]) first used this word in his paper in 1959. 

Initially the study of copulas was involved in the development of the theory of 

probabilistic metric spaces (see [12]). Later, more attention was paid to the study of 

the dependence structure and the construction of families of multivariate distribution 

(see [8]). 

Copulas are now widely applied to a number of fields as econometrics, 

economics and finance (see [2]), political science (see [4]), biostatistics (see [14]), 

medical research (see [9]), hydrology (see [11]) etc.  

The hydraulic structures, such as dams and dykes, are designed, among other 

conditions, as geological or geotechnical characteristics on the hydrologic 

characteristics of rivers. For the design of these structures a synthetic flood, named 

also the design flood, is defined based on the characteristics of the registered floods.  
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The parameters of the design floods are: the maximum discharge characterized 

by a standard PE (probability of exceedance PE), e.g. 10%; 1% and 0.1%, the flood 

volume, the duration of the increasing limb of the flood hydrograph and the total 

duration of the flood. Usually, these parameters are independently considered, while in 

fact there is a very strong correlation between some of them, for example between the 

maximum discharge and the flood volume. This means that, in current practice, both 

the maximum discharge having the PE P% and the volume for the same value of PE 

are used for different purposes, for example to design the reservoir volume for flood 

protection, the spillways of the dams or the crest level of the dykes. Yet, a flood 

having the same PE P% both for the maximum discharge and the volume actually 

corresponds to a flood characterized by a lower PE. It seems necessary to derive for 

each PE isolines defined by the couple of values maximum discharge-volume. An 

infinite number of combinations of maximum discharge- flood volume results for each 

PE. According to the purpose of mathematical modeling (hydraulic simulation of the 

flood wave propagation, seepage computation or stability of the dykes) two 

remarkable floods can be defined: the flood characterized by the maximum discharge 

and the corresponding volume and the flood characterized by the maximum volume 

and the corresponding discharge. 

The purpose of this paper is to investigate the copula as an instrument to create 

the isolines P%, as a basic step for defining the design floods. 

In [18, 19] the methods to simulate Archimedean copulas are described, and in 

[3] there is a presentation of the algorithms to simulate queuing systems with one 

channel with arrivals and services depending on copulas. 

This paper presents some copula functions as a method to derive bivariate 

distributions used in hydrology. The copula functions allow the construction of 

unknown multivariate distributions based on known marginals. We consider some 

cumulative distribution functions for marginals (of the discharges and the volumes of 

the Danube River) and some copula families to obtain bivariate cumulative 

distribution functions for modeling the river behavior. 

The paper is organized as follows: in the next section we give some basic 

results on copulas. In Section 3 we design a method to estimate the parameters of the 

cumulative distribution functions for marginals and of the copula in the Archimedean 

case using the moments of the random variable uniformly distributed on ( )10, . For 

this reason, we also use a well-known result (see [5]) on Archimedean copulas 

(theorem 2). In Section 4 we apply the above described method to estimate the 

involved parameters in the case of the maximum values of the discharges and volumes 

of the Danube River at the gauging station in Budapest. Some appropriate conclusions 

are given in the last section of the paper. 
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2. Theoretical background 

 
In the following part, we emphasize some definitions and theoretical results 

about copulas. 

Definition 1 [6, 7, 4]  A copula is a function [ ] [ ]1,01,0: →
n

C  so that 

1) If there is i  so that 0=ix   then  ( ) 0,...,1 =nxxC  . 

2) If  1=jx   for all  ij ≠   then  ( ) in xxxC =,...,1  . 

3)  C   is increasing in each argument. 

The following theorem is well known (see [17, 7, 13]). 

Theorem 1 (Sklar) Let  1X  ,  2X  ,...,  nX   be random variables with the cumulative 

distribution functions (cdfs)  1F  ,  2F  ,...,  nF  , and the common cdf  

( ) ( )nnn xXxXPxxH ≤≤= ,...,,..., 111  . In this case there is a copula  ( )nuuC ,...,1   so 

that ( ) ( ) ( )( )nnn xFxFCxxH ,...,,..., 111 = . The copula  C   is well defined on the 

Cartesian product of the images of the marginals  1F  ,  2F  ,...,  nF . 

Definition 2 [17,18,19]  If  2=n   the copula  C   is Archimedean if  ( ) uuuC <,   for 

any  ( )1,0∈u   and  ( )( ) ( )( )wvCuCwvuCC ,,,, =   for any  [ ]1,0,, ∈wvu  . If  2>n   the 

copula  C   is Archimedean if there are a ( 1−n )  Archimedean copula  1C   and a  2   

Archimedean copula  2C   so that  ( ) ( )( )nnn uuuCCuuC ,,...,,..., 11121 −=  . 

Consider a function [ ] R→1,0:ϕ  decreasing and convex with  ( ) 01 =ϕ   and its 

pseudo-inverse  g   ( ( ) { ( ) yzzxyg ≤== ϕsup  : see [10,1]). It is known (see [5, 

17,6]) that a copula  C   is Archimedean if and only if there is a function  ϕ  as the 

one above, so that for any  [ ]1,0, ∈yx   there is 

( ) ( ) ( )( )yxgyxC ϕϕ +=, . (1) 

Definition 3 The above mentioned function  ϕ   is called the generating function of the 

copula  C  . 

In this paper we will use the Monte Carlo method to solve the non-linear system 

involved in the determination of the parameters of marginals and copula, namely the 

system ( )4 . To obtain the non-linear system of equations whose solution consists in 

the unknown parameters of the marginals and of the copula we use the following 

theorem (see [5]). 

Theorem 2  If  `X   and  Y   are uniform random variables connected by the 

Archimedean copula  C   given by  ϕ , like in  ( )1 , the random variables  

)()(

)(
1

YX

X
Z

ϕϕ

ϕ

+
=   and  ( )YXCZ ,2 =   are independent.  1Z   is a uniform random 
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variable on  [ ]1,0   and  2Z   has the cdf  K , where  ( ) ( )vvvK λ−=   and  ( )
)(

)(

v

v
v

ϕ

ϕ
λ

′
=   

for any  [ ]1,0∈v  . 

In [15] the PWM (Probability Weighted Moments) method is presented, in 

order to estimate the parameters of a generalized Pareto distribution. The following 

equations are obtained: 

( )( )( )
( )
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r

. (2’) 

Remark 1 According to the lemma of Khintchine, if  X   is a continuous random 

variable having the cdf  F , then  ( )XF   is a continuous uniform random variable on 

[ ]1,0 . In fact, in the equations  ( )2   and  ( )'2   we use the uniform random variable  

( )XF−1   (also used in [20] to generate the exponential random variable by the 

inverse method). The value  rW  can be computed if we know the parameters and the 

moments of the orders r  . 

 

3. The proposed method 
 

Suppose that the random variables  X   and  Y   have the cdfs  ( )
paaxF ,...,; 1   

depending on the p   parameters and  ( )qbbyG ,...,; 1   depending on the q   parameters 

respectively. Also consider the case of an Archimedean copula  C   with known  

( )ru θθϕ ,...,; 1   depending on the  r   parameters. Using Theorem 2 we compute for the 

observed data  ( )
niii YX

,1
,

=
  

( )

( )( )
( )( ) ( )( )rqirpi

rpi

rqpi

bbYGaaXF

aaXF

bbaaU

θθϕθθϕ

θθϕ

θθ

,...,;,...,;,...,;,...,;

,...,;,...,;

,...,;,...,;,...,

1111

11

111

+

=

. 
(3) 

Galaxy
Text Box
30



 

 

Using the moments of the uniform random variable, we obtain the nonlinear 

system 

( ) rqpk
k

bbaaU rqp

k

i ++≤≤
+

= 1,
1

1
,...,;,...,;,..., 111 θθ . (4) 

We denote in the above system for  rqpk ++= ,1   

( ) ( )

1

1

,...,;,...,;,...,,...,;,...,;,..., 111111

+
−

=Ψ

k

bbaaUbbaa rqp

k

irqpk θθθθ
. 

Remark 2 The above random variables  iU  , depending on the parameters  1a  ,..., 

pa  ,  1b  ,..., qb  ,  1θ  ,..., rθ   are independent uniform random variables. This is 

because  ( )pi aaXF ,...,; 1   and  ( )qi bbYG ,...,; 1   are uniform due to the lemma of 

Khintchine, hence the random variables  iU   are uniform due to Theorem 2. 

Therefore, the method to estimate the parameters of the marginal and of the copula at 

the same time using the non-linear system  ( )4   is analogue to the above mentioned 

PWM method. Both methods use the moments of the uniform random variable. The 

differences between the two methods are that in the former we use the moments of the 

uniform random variable, not combinations of two moments, whereas in the latter we 

use equations for all the involved parameters (for the two marginals and for the 

copula). 

The system ( )4  is solved by the Monte Carlo method. We first generate 1000 

sets of parameters in the following way. For the parameters for which we know a 

bounded interval (such as the third parameter of a Pareto distribution  





∈

=
i

ni
Xc

,1
min,0  

) we generate a uniform on this interval. If the parameter is greater than 0  (as λ  for 

the exponential distribution) we generate the U  uniform on ( )1,0 , and the generated 

parameter is 1
1

−
U

. For a parameter that can take any real value (as  µ   for the log-

normal distribution) we first generate a positive parameter and next a random sign. 

For a copula with unbounded parameter we first generate the Kendall τ  (see [5, 

1, 7]) and we compute the parameter to be generated as a function of  τ  . In the case 

of the Frank copula, when we do not know an analytical formula  ( )τθθ =   we first 

generate the parameter as for the Clayton family  ( )0>θ  , and then a random sign. 

After we generate a set of parameters we compute the left sides of the equations  

( ) 0,...,;,...,;,..., 111 =Ψ rqpk bbaa θθ , with rqpk ++= ,1  in ( )4 , 







=
i

ni
XF

,1
min ,  







−

=
i

ni
XF

,1
max1 , 








=
i

ni
YG

,1
min  and 






−

=
i

ni
YG

,1
max1 . The estimated parameters are in such 
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a way that the sum of squares of the values above is minimum. 
In the hydrological literature the most common cdfs for the statistical processing 

of the maximum discharges and flood volumes are:  

a) For the partial series of maximum annual discharges: Generalized Extreme 

Values (GEV), LogPearson3, Gamma2, Generalized Gamma, Lognormal etc 

b) For the partial series of maximum discharges over a threshold: Generalized 

Pareto Distribution, Weibull, LogPearson3, Gamma2, Generalized Gamma. 

At the same time, the next copulas are used in hydrology for modeling the 
connection between the maximum discharges and the floods volume [4]: Frank, 

Gumbel-Hougaard, Gumbel-Barnett, Ali-Mikhail-Haq and Nelsen Ten. 

Based on the partial series of maximum discharges and volumes, a number of p+q+r 

coefficients is determined, where p, q are the numbers of the parameters for the first 
and the second marginal respectively, while r is the number of the parameters of the 

copula. In the considered cases,  r= 1.  
Next we will present some types of marginals and of Archimedean copula that 

we consider in the following. As marginal cdfs we consider the exponential 

distribution, the translated exponential distribution, the generalized Pareto distribution 

and the log-normal distribution. 

The one-parameter exponential cdf is for  0>λ  and 0≥x   

( ) xexF ⋅−−= λ1 . (5) 

The two-parameter exponential cdf is for  0b >   and  cx ≥   

( ) b

cx

exF

−
−

−=1 . (6) 

The generalized Pareto cdf (with the above particular case for 0=a ) is for  

R∈a ,  0>b  and cx ≥  (see [15]) 

( ) ( ) a

b

cxa
xF

1

11 






 −
−−= . (7) 

The log-normal cdf is for R∈γµ, , 0>σ  and γ>x  

( ) ( )







 −−
Φ=

σ

µγx
xF

ln
, (8) 

where  Φ   is the cdf of the standard normal random variable. 
In the following part, we will determine the generating copula functions for 

some copula families. Then we use these generating functions to obtain the 

corresponding system  ( )4 . Those solutions represent the copula's parameters and the 

parameters of the marginal cdfs. 

In the case of the Clayton family, for  0>θ   there is (see [5,4]) 
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( ) ( ) θθθ
1

1,
−−− −+= vuvuC . (9) 

For 0→θ  we obtain the copula Prod  (independence case), and for ∞→θ  we 

obtain the upper Fréchet bound min . 

To determine the generating function ϕ  for this type of copula we compute  

( )
( )v

u

v

C
u

C

ϕ

ϕ

′

′
=

∂

∂
∂

∂

. It results that ( ) 1−−−=′ θϕ uu , and from here 

( )
θ

ϕ
θ

1−
=

−
u

u . (9’) 

In the same way we have obtained the generating functions for some copulas, 

the results being presented in the Table 1. 

 

4. Application 
 

The above mentioned method is applied in the following, to determine the 

suitable copulas to model the dependence between the maximum discharges and the 

volumes of the Danube River at the gauging station in Budapest (85  data of the time 

series). The results are in table 2 in the appendix B. The first column is for the 

connecting copula, the second column for the discharges' marginal, the third column 

for the volumes' marginal, and the next seven columns are for the values of the 

estimated parameters (seven is the maximum number of parameters: for instance, if 

both marginals are Pareto, we have 7133 =++  parameters). The last column contains 

the minimum sum of squares for the left sides of the equation  

( ) 0,...,;,...,;,..., 111 =Ψ rqpi bbaa θθ  with rqpi ++= ,1  in ( )4 , for 







=
i

ni
XF

,1
min  and 









=
i

ni
YG

,1
min , and finally for 






−

=
i

ni

XF
,1

max1  and 





−

=
i

ni

YG
,1

max1  as measure of errors. 

The selected cases are so that the above minimum sums of squares are less than 25.0 . 

The order of parameters is cba ,,  in the case of the generalized Pareto distribution 

(hence cb,  in the particular case of the translated exponential, i.e. the generalized 

Pareto distribution with 0=a ), whereas in the case of the log-normal distribution the 

order is γσµ ,, . 

The best combination between marginal distributions and copula is for the 

generalized Pareto distribution of the discharges, the generalized Pareto distribution of 

the volumes and the Frank copula having the minimum sum of squares  00097.0 . The 

above mentioned combination of marginal distributions (the generalized Pareto 

distribution of the discharges, the generalized Pareto distribution of the volumes) is 
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also the best in the case of the Clayton copula having the error 08492.0 . 

We will represent the isoline of exceedance probabilities for %1  in the best 

case (generalized Pareto discharges, generalized Pareto volumes and the Frank copula) 

in Figure 1, Appendix A. In the mentioned graphics the first point (the bottom-right 

corner) is ( )201,8756 21 == cQ , and the last point is ( )4526,5130 21 == Qc . 

To apply the 2χ  test for the model's validation we first divide the interval ( )1,0 , 

which contains the obtained uniform random variables, in 20  sub-intervals having the 

same length. For having 5  values in each interval, we link some neighboring intervals 

and we finally obtain only 13  intervals. Since we have estimated 7  parameters, the 

number of freedom degrees is 57113 =−− . We obtain the statistics value 

60784.122 =calcχ , an inferior value to 4753.182

99.0;7 =χ . This means that the model 

above can be accepted with the first degree error 01.0=ε . 

If we consider the exponential discharges, the sum of squares is between 

45216.0  (exponential volumes and Frank copula) and 66189.0  (log-normal volumes 

and Gumbel-Hougaard copula). We conclude that the discharges are not exponential. 

If we are not convinced that one of these models is wrong, we can check it using the 
2χ  test. As an exemplification, we test the model with the minimum of the above 

mentioned sum of squares ( 45216.0   for exponential discharges, exponential volumes 

and Frank copula). If the number of the initial interval with the same length in which 

we divide the interval  ( )1,0   is between  20   and  35  inclusively, we obtain at most 

4  intervals by joining neighboring intervals. In this case the number of degrees of 

freedom is at most 0314 =−− . For 36 initial intervals, in the end we obtain 5  

intervals. There is 97861.9562 =calcχ , a much greater value than 6349.92

99.0;1 =χ , 

hence we reject the model. The results of the 2χ  test for the considered cases in  

Table 2  (appendix B) are contained in Table 3 , appendix C. 

According to the obtained results for the analyzed case study, we can conclude 

that the best combination between marginal distributions and copula is for the 

generalized Pareto distribution of the discharges, the generalized Pareto distribution of 

the volumes and the Frank copula.  

The above mentioned combination of marginal distributions (the generalized 

Pareto distribution of the discharges, the generalized Pareto distribution of the 

volumes) is also the best in the case of the Clayton copula. 

The resulted bi-variates cdf allow us to obtain two major characteristics of the 

synthetic floods (maximum discharge and volume). The other two parameters 

(increasing time of the flood hydrograph and the total duration) are obtained 

processing the registered floods.  

Having these parameters, the synthetic floods can be drawn. As mentioned 

before, the synthetic floods are used for the design of the hydraulic structures: dykes, 

reservoirs, spillways etc.  
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A synthetic flood obtained on the derived hydrological characteristics is presented in 

the following Figure 2: 
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Figure 2: 

red curve – 10% excedence flood (T= 10 years return period) 

blue curve – 1% exceedance flood (T=100 years return period) 

  

5. Conclusions 
 

The method of the uniform random variable moments that we have proposed in 

this paper to estimate the parameters of the cdfs for marginals and the copula is 

equivalent to minimize the sum of squares except 







=
i

ni
XF

,1
min , 








=
i

ni
YG

,1
min , 







−

=
i

ni

XF
,1

max1  and 





−

=
i

ni

YG
,1

max1  (in the case of fulfilling the  rqp ++   equations 

the sum of squares is zero). But to the sum of squares we add the four terms from the 
expressions above, in order to obtain good marginal distributions: even if the 

minimum sum of squares (without the four added terms) is for instance 01.0 , if we 

have 4.0min
,1

=







=
i

ni
XF  and 5.0max

,1
=








=
i

ni

XF  something is wrong. 

The method is general enough, because the marginals are not necessary of the 

same form (for instance the Pareto distribution for discharges and the exponential 

distribution for volumes). In our paper we have considered only copulas with only one 

parameter, but we can generalize to a copula with two or more parameters (for each 

parameter we have to add a new equation). 

An open problem is to build a uniform random variable if we do not know the 

analytical form of ϕ , to apply for it a method similar to ours (for example the Farlie-
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Gumbel-Morgestern copula). 

The synthetic flood obtained using the proposed approach in the case of the 

Danube River is mainly used for hydraulic simulations, having as purpose the 

delineation of the flooded areas for different probabilities of exceedance. These hazard 

maps are necessary for the zonation of the flooded areas and for the future land use 

and planning. The local authorities will use these maps for territorial organization, not 

allowing future developments in areas frequently subjected to floods. 
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Appendix A 
The isoline of exceedance probabilities for %1  in the case of generalized Pareto  

discharges, generalized Pareto volumes and the Frank copula 

 

 
 

Figure 1: Graphical representation of the excendance probabilities 
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Appendix B 

Generating functions and the estimated parameters for some families of copulas 

 
Table 1: Some families of Archimedean copula and their generating functions 

 

Copula family and limits Formula for  ( )v,uC  Generating function ( )uϕ  

Frank  ( )∗∈Rθ   

Prod for 0→θ ; min  for 

∞→θ ; W  for ∞→θ . 

( )
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+−−
⋅−

−

−−−+−

1
ln1

θ

θθθθ

θ
e

eeee vuvu

 
ue

e
⋅−

−

−

−
θ

θ

1

1
ln  

Gumbel-Hougaard  ( )1≥θ   

Prod for 1=θ ; min  for  

∞→θ  

( ) ( )( ) θθθ
1
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Table 2: The estimated parameters for the marginals and copula 

 

Copula 
Discharges’ 

marginal 

Volumes’ 

marginal 
Values of the parameters 

Minimum 
sum  

of 
squares 

Translated 

exponential 
(b2,c2) 

b1 =2237 C1=5018 b2=5681 c2=187 θ=0.37   0.2129 Translated 
exponential 

(b1,c1) Pareto 
(a2, b2,c2) 

b1 =937.54 C1=5130 a2=-0.16294 b2=2226.76 c2=42 θ=0.55663  0.12591 
Clayton 

Pareto 

(a1, b1,c1) 

Pareto 

(a2, b2,c2) 
a1=-0.08 b1=2009.65643 c1=5130 

a2=-

0.71707 
b2=2308.55758 c2=184 θ=0.91614 0.08492 

exp(λ2) b1 =2533.04 C1=5114 λ2=0.00014 θ=-19.003    0.14583 

Translated 

exponential 
(b2,c2) 

b1 =1885 C1=5041 b2=5990 c2=42 θ=-0.81   0.17579 
Translated 
exponential 

(b1,c1) 
Pareto 

(a2, b2,c2) 
b1=1935.76 C1=5130 a2=-0.03965 b2=2865.02 c2=75 θ=17.1394  0.03652 

exp(λ2) a1=-0.0233 b1=1792.45 c1=5130 λ2=0.00024 θ=17.225   0.03406 

Translated 

exponential 
(b2,c2) 

a1=-0.05997 b1=2602.08 c1=5130 b2=7863.28 c2=63 
θ=-

18.4917 
 0.1884 

Frank 

Pareto 
(a1, b1,c1) 

Pareto 

(a2, b2,c2) 
a1=-0.03288 b1=729.34 c1=5130 

a2=-

0.05245 
b2=830.31 c2=201 θ=6.04409 0.00097 

Translated 

exponential 
(b1,c1) 

Pareto 
(a2, b2,c2) 

b1=1236.25 C1=5029 a2=-0.56648 b2=895.24 c2=215 θ=3.28626  0.01075 
Gumbel-

Hougaard 
Pareto 

(a1, b1,c1) 

Pareto 

(a2, b2,c2) 
a1=-0.03739 b1=1615.99545 c1=4942 

a2=-

0.07185 
B2=9761.63763 c2=196 θ=1 0.0449 

exp(λ2) b1=2557.16 C1=5130 λ2=0.00013 θ=1    0.15998 Gumbel-

Barnett 

Translated 

exponential 

(b1,c1) 
Translated 

exponential 
(b2,c2) 

b1=2006.83767 C1=4990 b2=6131.0087 c2=71 θ=0.50993   0.17904 

Galaxy
Text Box
12

Galaxy
Text Box
40



 

 

Pareto 

(a2, b2,c2) 
b1=1933.57 C1=5129 a2=-0.0062 b2=2820.89 c2=50 θ=0.15506  0.08514 

Translated 
exponential 

(b2,c2) 

a1=-0.04183 B1=2769 c1=5130 b2=2151.87 c2=24 θ=1  0.11985 
Pareto 

(a1, b1,c1) 
Pareto 

(a2, b2,c2) 
a1=-0.16634 B1=2219 c1=5130 

a2=-

0.82754 
b2=2847.24 c2=148 θ=0.71675 0.17465 

exp(λ2) b1=1776.2 c1=5130 λ2=0.00026 θ=-1    0.07805 

Translated 

exponential 
(b2,c2) 

b1=2073 c1=4882 b2=6449 c2=44 θ=-0.92596   0.21086 
Translated 
exponential 

(b1,c1) 
Pareto 

(a2, b2,c2) 
b1=2096 c1=5130 a2=-0.85041 b2=2529 c2=193 θ=1  0.08601 

Ali-

Mikhail-
Haq 

Pareto 
(a1, b1,c1) 

Pareto 
(a2, b2,c2) 

a1=-0.00482 b1=2313.77 c1=5130 
a2=-

0.78039 
b2=2202.63 c2=198 

θ=-
0.76231 

0.13355 

Translated 
exponential 

(b2,c2) 

b1=1809.13 c1=5130 b2=5334.7 c2=95 θ=0.60894   0.13356 Translated 

exponential 

(b1,c1) Pareto 
(a2, b2,c2) 

b1=2236 c1=5130 a2=-0.65872 b2=2552.32 c2=150 θ=0.77198  0.11788 

Translated 

exponential 
(b2,c2) 

a1=-0.0247 b1=1548.67 c1=5130 b2=1455.06 c2=56 θ=1  0.04136 
Pareto 

(a1, b1,c1) 
Pareto 

(a2, b2,c2) 
a1=-0.19496 b1=2025.53 c1=5130 

a2=-
0.91357 

b2=2151.2 c2=187 θ=0.34721 0.14512 

Nelsen 
Ten 

Log-normal 

(µ1,σ1,γ1) 

Pareto 

(a2, b2,c2) 
µ1=7.05 σ1=0.3 γ1=5039 

a2=-

0.68605 
b2=2476.21 c2=153 θ=0.31176 0.01046 
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Appendix C 

Testing the models 

 
Table 3: The results of the 2χ  test 

 

Copula 
Discharg

es’ 

marginal 

Volumes

’ 

marginal 

2

calcχ  
2

99.0deg;χ  
Accepti

ng the 

model 

Translate
d 

exponent
ial 

(b2,c2) 

150.4358
29 

21034.92

99.0;2 =χ  No 

Translate

d 
exponenti

al 
(b1,c1) Pareto 

(a2, b2,c2) 
53.19608 0863.152

99.0;5 =χ  No 

Clayton 

Pareto 
(a1, b1,c1) 

Pareto 
(a2, b2,c2) 

55.3431 3449.112

99.0;3 =χ  No 

exp(λ2) 
322.9159

7 
6349.62

99.0;1 =χ  No 

Translate
d 

exponent
ial 

(b2,c2) 

149.8470
6 

6349.62

99.0;1 =χ  No 

Translate
d 

exponenti

al 

(b1,c1) 

Pareto 
(a2, b2,c2) 

40.4902 0863.152

99.0;5 =χ  No 

exp(λ2) 
153.7058

8 
0863.15

2

99.0;5 =χ  No 

Translate

d 
exponent

ial 
(b2,c2) 

388.2613

9 
6349.62

99.0;1 =χ  No* 

Frank 

Pareto 
(a1, b1,c1) 

Pareto 
(a2, b2,c2) 

13.6667 
0863.152

99.0;5 =χ
 

Yes 

Translate

d 
exponenti

al (b1,c1) 

Pareto 
(a2, b2,c2) 

15.29412 0863.15
2

99.0;5 =χ  No 
Gumbel

-

Hougaa

rd Pareto 
(a1, b1,c1) 

Pareto 
(a2, b2,c2) 

71.23519 6349.6
2

99.0;1 =χ  No 

exp(λ2) 
214.2978

5 
6349.62

99.0;1 =χ  No 

Translate

d 
exponent

ial 

(b2,c2) 

209.9176

5 
6349.62

99.0;1 =χ  No 

Translate

d 
exponenti

al 

(b1,c1) 

Pareto 

(a2, b2,c2) 

125.3865

5 
6349.62

99.0;1 =χ  No 

Translate

d 

exponent
ial 

(b2,c2) 

263.8392

2 
21034.92

99.0;2 =χ  No* 

Gumbel

-Barnett 

Pareto 

(a1, b1,c1) 

Pareto 
(a2, b2,c2) 

209.0802
1 

6349.6
2

99.0;1 =χ  No 
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exp(λ2) 
146.1148

5 
3449.112

99.0;3 =χ  No 

Translate
d 

exponent

ial 

(b2,c2) 

246.6764

7 
21034.92

99.0;2 =χ  No 

Translate

d 
exponenti

al 

(b1,c1) 

Pareto 
(a2, b2,c2) 

51.90196 6349.62

99.0;1 =χ  No 

Ali-
Mikhail

-Haq 

Pareto 
(a1, b1,c1) 

Pareto 
(a2, b2,c2) 

178.9470
6 

6349.6
2

99.0;1 =χ  No** 

Translate

d 
exponent

ial 
(b2,c2) 

138.8588

2 
6349.62

99.0;1 =χ  No 
Translate

d 

exponenti
al 

(b1,c1) Pareto 

(a2, b2,c2) 

168.3445

4 
6349.62

99.0;1 =χ  No 

Translate
d 

exponent
ial 

(b2,c2) 

121.1647

1 
6349.62

99.0;1 =χ  No 
Pareto 

(a1, b1,c1) 

Pareto 
(a2, b2,c2) 

171.9251
3 

21034.92

99.0;2 =χ  No** 

Nelsen 
Ten 

Log-
normal 

(µ1,σ1,γ1) 

Pareto 

(a2, b2,c2) 
58.23529 6349.62

99.0;1 =χ  No 

* we need 40 initial intervals with the same length 

** we need 30 initial intervals with the same length 
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