A ZETA-BARNES FUNCTION ASSOCIATED TO GRADED MODULES

MIRCEA CIMPOEAS

Abstract

Let K be a field and let $S=\bigoplus_{n \geq 0} S_{n}$ be a positively graded K-algebra. Given $M=\bigoplus_{n \geq 0} M_{n}$, a finitely generated graded S-module, and $w>0$, we introduce the function $\zeta_{M}(z, w):=\sum_{n=0}^{\infty} \frac{H(M, n)}{(n+w)^{z}}$, where $H(M, n):=\operatorname{dim}_{K} M_{n}, n \geq 0$, is the Hilbert function of M, and we study the relations between the algebraic properties of M and the analytic properties of $\zeta_{M}(z, w)$. In particular, in the standard graded case, we prove that the multiplicity of M is $e(M)=(m-1)!\lim _{w \searrow 0} \operatorname{Res}_{z=m} \zeta_{M}(z, w)$.

Mathematics Subject Classification (2010): 13D40, 11M41, 11P81
Key words: Graded modules, quasi-polynomials, Zeta-Barnes function

Article history:

Received 11 April 2018
Accepted 9 April 2019

Introduction

Let K be a field and let S be a positively graded K-algebra. Let M be a finitely generated S-module of dimension $m \geq 0$. Given a real number $w>0$, we consider the zeta-Barnes type (see [3]) function

$$
\zeta_{M}(z, w):=\sum_{n=0}^{\infty} \frac{H(M, n)}{(n+w)^{z}},
$$

where $H(M, n):=\operatorname{dim}_{K} M_{n}, n \geq 0$, is the Hilbert function of M. According to a Theorem of Serre, see for instance [5, Theorem 4.4.3], there exists a positive integer D such that

$$
H(M, n)=d_{M, m-1}(n) n^{m}+\cdots+d_{M, 1}(n) n+d_{M, 0}(n),(\forall) n \gg 0,
$$

where $d_{M, j}(n+D)=d_{M, j}(n),(\forall) n \geq 0$. In Theorem 1.1 we show that

$$
\zeta_{M}(z, w)=\theta_{M}(z, w)+D^{-z} \sum_{k=0}^{m-1} \sum_{j=0}^{D-1} d_{M, k}(j+\alpha(M)) \sum_{\ell=0}^{k}\binom{k}{\ell}(-w)^{\ell} D^{k-\ell} \zeta\left(z-k+\ell, \frac{j+\alpha(M)+w}{D}\right)
$$

where $\alpha(M):=\min \left\{n_{0}: H(M, n)=q_{M}(n),(\forall) n \geq n_{0}\right\}, \theta_{M}(z, w):=\sum_{n=0}^{\alpha(M)-1} \frac{H(M, n)}{(n+w)^{z}}$ and $\zeta(z, w)=$ $\sum_{n=0}^{\infty} \frac{1}{(n+w)^{z}}$ is the Hurwitz-zeta function. Consequently, $\zeta_{M}(z, w)$ is a meromorphic function on the complex plane with the poles in the set $\{1,2, \ldots, m\}$ which are simple with residues

$$
\operatorname{Res}_{z=k+1} \zeta_{M}(z, w)=\frac{1}{D} \sum_{\ell=k}^{m-1}\binom{\ell}{k}(-w)^{\ell-k} \sum_{j=0}^{D-1} d_{M, k}(j), 0 \leq k \leq m-1
$$

Other properties of $\zeta_{M}(z, w)$ are given in Proposition 1.1, 1.2 and Corollary 1.3, 1.4.
We also consider the function $\zeta_{M}(z):=\lim _{w \searrow 0}\left(\zeta_{M}(z, w)-H(M, 0) w^{-z}\right)$. In Proposition 1.5 we compute $\zeta_{M}(z)$ and its residues. In Proposition 1.6 we prove that S is Gorenstein if and only if $\zeta_{\omega_{S}}(z, w)=\zeta_{S}(z, w-a(S))$, where S is Cohen-Macaulay with the canonical module ω_{S}.

In the second section, we apply the results obtained in the first section in the case when $S=$ $K\left[x_{1}, \ldots, x_{r}\right]$ is the ring of polynomials with $\operatorname{deg}\left(x_{i}\right)=a_{i}, 1 \leq i \leq r$. Given a graded S-module M, we compute the residues of $\zeta_{M}(z, w)$ and $\zeta_{M}(z)$ in terms of the graded Betti numbers of M and the Bernoulli-Barnes polynomial associated to $\left(a_{1}, \ldots, a_{r}\right)$, see Corollary 2.2.

In the third section, we consider the standard graded case and we prove that the multiplicity of M, is

$$
e(M)=(m-1)!\lim _{w \searrow 0} \operatorname{Res}_{z=m} \zeta_{M}(z, w)
$$

see Corollary 3.3. In the fourth section, we outline the non-graded case and we give a formula for the multiplicity of the module with respect to an ideal, see Proposition 4.1.

1. Graded modules over positively graded K-algebras

Let K be a field and let S be a positively graded K-algebra, that is

$$
S:=\bigoplus_{n \geq 0} S_{n}, S_{0}=K
$$

and S is finitely generated over K. Assume $S=K\left[u_{1}, \ldots, u_{r}\right]$, where $u_{i} \in S$ are homogeneous elements of $\operatorname{deg}\left(u_{i}\right)=a_{i}$. Let

$$
M=\bigoplus_{n \in \mathbb{N}} M_{n}
$$

be a finitely generated graded S-module with the Krull dimension $m:=\operatorname{dim}(M)$. The Hilbert function of M is

$$
H(M,-): \mathbb{N} \rightarrow \mathbb{N}, H(M, n):=\operatorname{dim}_{K}\left(M_{n}\right), n \in \mathbb{N} .
$$

The Hilbert series of M is

$$
H_{M}(t):=\sum_{n=0}^{\infty} H(M, n) t^{n} \in \mathbb{Z}[[t]]
$$

According to the Hibert-Serre's Theorem [1, Theorem 11.1] and [5, Exercise 4.4.11]

$$
H_{M}(t)=\frac{h_{M}(t)}{\left(1-t^{a_{1}}\right) \cdots\left(1-t^{a_{r}}\right)},
$$

where $h_{M}(t) \in \mathbb{Z}[t]$. According to Serre's Theorem [5, Theorem 4.4.3] and [5, Exercise 4.4.11] there exists a quasi-polynomial $q_{M}(n)$ of degree $m-1$ with the period $D:=\operatorname{lcm}\left(a_{1}, \ldots, a_{r}\right)$ such that

$$
\begin{equation*}
H(M, n)=q_{M}(n)=d_{M, m-1}(n) n^{m-1}+\cdots+d_{M, 1}(n) n+d_{M, 0}(n),(\forall) n \gg 0 \tag{1.1}
\end{equation*}
$$

where $d_{M, k}(n+D)=d_{M, k}(n)$ for any $n \geq 0$ and $0 \leq k \leq m-1$. We denote

$$
\begin{equation*}
\alpha(M):=\min \left\{n_{0}: H(M, n)=q_{M}(n),(\forall) n \geq n_{0}\right\} . \tag{1.2}
\end{equation*}
$$

Let $w>0$ be a real number. We denote

$$
\begin{equation*}
\zeta_{M}(z, w):=\sum_{n \geq 0} \frac{H(M, n)}{(n+w)^{z}}, z \in \mathbb{C} \tag{1.3}
\end{equation*}
$$

and we call it the Zeta-Barnes type function associated to M and w. We also denote

$$
\begin{equation*}
\theta_{M}(z, w):=\sum_{n=0}^{\alpha(M)-1} \frac{H(M, n)}{(n+w)^{z}}, z \in \mathbb{C} . \tag{1.4}
\end{equation*}
$$

The function $\theta_{M}(z, w)$ is entire. Moreover, M is Artinian if and only if $\zeta_{M}(z, w)=\theta_{M}(z, w)$. Also, $\alpha(M)=0$ if and only if $\theta_{M}(z, w)=0$.

Theorem 1.1. We have that
$\zeta_{M}(z, w)=\theta_{M}(z, w)+D^{-z} \sum_{k=0}^{m-1} \sum_{j=0}^{D-1} d_{M, k}(j+\alpha(M)) \sum_{\ell=0}^{k}\binom{k}{\ell}(-w)^{\ell} D^{k-\ell} \zeta\left(z-k+\ell, \frac{j+\alpha(M)+w}{D}\right)$,
where $\zeta(z, w)=\sum_{n=0}^{\infty} \frac{1}{(n+w)^{z}}$ is the Hurwitz-zeta function.
Moreover, $\zeta_{M}(z, w)$ is a meromorphic function on \mathbb{C} with the poles in the set $\{1,2, \ldots, m\}$ which are simple with residues

$$
R_{M}(w, k+1):=\operatorname{Res}_{z=k+1} \zeta_{M}(z, w)=\frac{1}{D} \sum_{\ell=k}^{m-1}\binom{\ell}{k}(-w)^{\ell-k} \sum_{j=0}^{D-1} d_{M, k}(j), 0 \leq k \leq m-1
$$

Proof. The proof follows the line of the proof of [6, Proposition 3.2]. According to (1.1), (1.2), (1.3) and (1.4), we have

$$
\begin{equation*}
\zeta_{M}(z, w)=\theta_{M}(z, w)+\sum_{n=\alpha(M)}^{\infty} \frac{q_{M}(n)}{(n+w)^{z}}=\theta_{M}(z, w)+\sum_{k=0}^{m-1} \sum_{n=\alpha(M)}^{\infty} \frac{d_{M, k}(n) n^{k}}{(n+w)^{z}} \tag{1.5}
\end{equation*}
$$

For any $0 \leq k \leq m-1$, we write

$$
\begin{equation*}
n^{k}=(n+w-w)^{k}=\sum_{\ell=0}^{k}(-1)^{\ell}\binom{k}{\ell}(n+w)^{k-\ell} w^{\ell} \tag{1.6}
\end{equation*}
$$

By (1.5) and (1.6) and the fact that $d_{M, k}(n+D)=d_{M, k}(n),(\forall) n, k$, it follows that

$$
\begin{align*}
& \zeta_{M}(z, w)=\theta_{M}(z, w)+\sum_{k=0}^{m-1} \sum_{n=\alpha(M)}^{\infty} d_{M, k}(n) \sum_{\ell=0}^{k}(-1)^{\ell}\binom{k}{\ell} w^{\ell} \frac{1}{(n+w)^{z-k+\ell}}=\theta_{M}(z, w)+ \\
& \quad+\sum_{k=0}^{m-1} \sum_{j=0}^{D-1} d_{M, k}(j+\alpha(M)) \sum_{\ell=0}^{k}(-1)^{\ell}\binom{k}{\ell} w^{\ell} \sum_{t=0}^{\infty} \frac{1}{(j+t D+\alpha(M)+w)^{z-k+\ell}} . \tag{1.7}
\end{align*}
$$

On the other hand,
(1.8)
$\sum_{t=0}^{\infty} \frac{1}{(j+t D+\alpha(M)+w)^{z-k+\ell}}=\sum_{t=0}^{\infty} \frac{D^{-z+k-\ell}}{\left(t+\frac{j+\alpha(M)+w}{D}\right)^{z-k+\ell}}=D^{-z+k-\ell} \zeta\left(z-k+\ell, \frac{j+\alpha(M)+w}{D}\right)$.
Replacing (1.8) in (1.7) we get the required result.
The last assertion is a consequence of the fact that the Hurwitz-zeta function $\zeta(z-k, w)$ is a meromorphic function and has a simple pole at $k+1$ with the residue 1 and, also, $\theta_{M}(z, w)$ is an entire function.

Proposition 1.1. Let $0 \rightarrow U \rightarrow M \rightarrow N \rightarrow 0$ be a graded short exact sequence of S-modules. Then

$$
\zeta_{M}(z, w)=\zeta_{U}(z, w)+\zeta_{N}(z, w)
$$

Proof. It follows from $H(M, n)=H(U, n)+H(N, n), n \geq 0$, and (1.3).
Proposition 1.2. For any $k \geq 0$, it holds that $\zeta_{M(-k)}(z, w)=\zeta_{M}(z, w+k)$.
Proof. Since $M(-k)_{n}=M_{n-k}$, it follows that $H(M(-k), n)=0$ for all $0 \leq n<k$ and $H(M(-k), n)=$ $H(M, n-k)$, for all $n \geq k$. Consequently, by (1.3), we get

$$
\zeta_{M(-k)}(z, w)=\sum_{n=0}^{\infty} \frac{H(M(-k), n)}{(n+w)^{z}}=\sum_{n=k}^{\infty} \frac{H(M, n-k)}{(n+w)^{z}}=\sum_{n=0}^{\infty} \frac{H(M, n)}{(n+k+w)^{z}}=\zeta_{M}(z, w+k)
$$

Corollary 1.3. If $f \in S_{k}$ is regular on M, then

$$
\zeta_{\frac{M}{f M}}(z, w)=\zeta_{M}(z, w)-\zeta_{M}(z, w+k)
$$

Proof. We consider the short exact sequence

$$
0 \rightarrow M(-k) \xrightarrow{\cdot f} M \rightarrow \frac{M}{f M} \rightarrow 0 .
$$

The conclusion follows from Proposition 1.1 and Proposition 1.2.
Corollary 1.4. If $f_{1}, \ldots, f_{p} \in S$ is a regular sequence on M, consisting of homogeneous elements with $\operatorname{deg}\left(f_{i}\right)=k_{i}$, then

$$
\zeta_{\frac{M}{\left(f_{1}, \ldots, f_{p}\right) M}}(z)=\zeta_{M}(z, w)+\sum_{\ell=1}^{p}(-1)^{\ell} \sum_{1 \leq i_{1}<\cdots<i_{\ell} \leq p} \zeta_{M}\left(z, w+k_{i_{1}}+\ldots+k_{i_{\ell}}\right) .
$$

Proof. It follows from Corollary 1.3, using induction on $k \geq 1$.
Let

$$
\begin{equation*}
\zeta_{M}(z):=\lim _{w \searrow 0}\left(\zeta_{M}(z, w)-H(M, 0) w^{-z}\right)=\sum_{n=1}^{\infty} \frac{H(M, n)}{n^{z}} \tag{1.9}
\end{equation*}
$$

Note that $\zeta_{M}(z)$ codify all the information about the Hilbert function of M with the exception of $H(M, 0)$. Let

$$
\begin{equation*}
\theta_{M}(z):=\sum_{n=1}^{\alpha(M)-1} \frac{H(M, n)}{n^{z}} \tag{1.10}
\end{equation*}
$$

Note that $\theta_{M}(z)$ is an entire function. Also, if $\alpha(M) \leq 1$ then $\theta_{M}(z)$ is identically zero.
Proposition 1.5. We have that

$$
\zeta_{M}(z)=\theta_{M}(z)+\sum_{k=0}^{m-1} \frac{1}{D^{z-k}} \sum_{j=0}^{D-1} d_{M, k}(j+\alpha(M)) \zeta\left(z-k, \frac{j+\alpha(M)+1}{D}\right) .
$$

The function $\zeta_{M}(z)$ is meromorphic with poles at most in the set $\{1, \ldots, m\}$ which are all simple with residues

$$
R_{M}(k+1):=\operatorname{Res}_{z=k+1} \zeta_{M}(z)=\frac{1}{D} \sum_{j=0}^{D} d_{M, k}(j), 0 \leq k \leq m-1
$$

Proof. The proof is similar to the proof of Theorem 1.1, therefore we will omite it. Also, the result could be derived from the proof of [6, Proposition 3.4(i)].

Let $k \geq 1$ be an integer and let

$$
M(k):=\bigoplus_{n=-k}^{\infty} M_{n+k} .
$$

Given a real number $w>k$, we consider the function

$$
\begin{equation*}
\zeta_{M(k)}(z, w):=\sum_{n=-k}^{\infty} \frac{H(M, n+k)}{(n+w)^{z}}=\sum_{n=0}^{\infty} \frac{H(M, n)}{(n+w-k)^{z}}=\zeta_{M}(z, w-k) \tag{1.11}
\end{equation*}
$$

Let $a(S):=\operatorname{deg}\left(H_{S}(t)\right)$ be the a-invariant of S. Assume S is Gorenstein. Then, according to [5, Proposition 3.6.11], the canonical module of S, ω_{S} is isomorphic to $S(a(S))$. Consequently, we get $\zeta_{\omega_{S}}(z, w)=\zeta_{S}(z, w-a(S))$, where $w>\max \{0, a(s)\}$.

Proposition 1.6. Let S be a Cohen-Macaulay domain with the canonical module ω_{S}. Then S is Gorenstein if and only if $\zeta_{\omega_{S}}(z, w)=\zeta_{S}(z, w-a(S))$.

Proof. Note that $\zeta_{\omega_{S}}(z, w)=\zeta_{S}(z, w-a(S))$ is equivalent to $H_{\omega_{S}}(t)=t^{a(S)} H_{S}(t)$. Hence, according to [5, Theorem 4.4.5(2)], this is equivalent to S is Gorenstein.

Remark 1.7. Assume that $S=K\left[x_{1}, \ldots, x_{r}\right]$ is the ring of polynomials with $\operatorname{deg}\left(x_{i}\right)=a_{i}, 1 \leq i \leq r$. The Hilbert series of S is

$$
H_{S}(t)=\frac{1}{\left(1-t^{a_{1}}\right) \cdots\left(1-t^{a_{r}}\right)}
$$

hence $a(S)=-\left(a_{1}+\cdots+a_{r}\right)$. It is well known that S is Gorenstein, therefore

$$
\omega_{S} \cong S(a(S))=S\left(-a_{1}-\cdots-a_{r}\right)
$$

It follows that

$$
\zeta_{\omega_{S}}(z, w)=\zeta_{S}\left(z, w+a_{1}+\cdots+a_{r}\right),(\forall) w>0
$$

In the next section we will discuss the case of graded modules over S.

2. Graded modules over the ring of polynomials.

Let $\mathbf{a}=\left(a_{1}, \ldots, a_{r}\right)$ be a sequence of positive integers. In the following, $S=K\left[x_{1}, \ldots, x_{r}\right]$ is the ring of polynomials in r indeterminates, with $\operatorname{deg}\left(x_{i}\right)=a_{i}, 1 \leq i \leq r$. The restricted partition function associated to \mathbf{a} is $p_{\mathbf{a}}: \mathbb{N} \rightarrow \mathbb{N}$,

$$
p_{\mathbf{a}}(n):=\text { the number of integer solutions }\left(x_{1}, \ldots, x_{r}\right) \text { of } \sum_{i=1}^{r} a_{i} x_{i}=n \text { with } x_{i} \geq 0
$$

For a kindly introduction on the restricted partition function we reffer to [2]. One can easily see that $p_{\mathbf{a}}(n)=H(S, n),(\forall) n \geq 1$, hence

$$
\begin{equation*}
\zeta_{S}(z, w)=\zeta_{\mathbf{a}}(z, w):=\sum_{n=0}^{\infty} \frac{p_{\mathbf{a}}(n)}{(n+w)^{z}} \tag{2.1}
\end{equation*}
$$

is the Zeta-Barnes function associated to the sequence \mathbf{a}. We also have

$$
\begin{equation*}
\zeta_{S}(z)=\zeta_{\mathbf{a}}(z):=\lim _{w \searrow 0}\left(\zeta_{\mathbf{a}}(z, w)-w^{z}\right)=\sum_{n=1}^{\infty} \frac{p_{\mathbf{a}}(n)}{n^{z}} . \tag{2.2}
\end{equation*}
$$

See [6] for further details on the properties of the function $\zeta_{\mathbf{a}}(z)$.
Proposition 2.1. Let M be a finitely generated graded S-module. Then:
(1) $\zeta_{M}(z, w):=\sum_{i=0}^{p}(-1)^{i} \sum_{j \geq i} \beta_{i j}(M) \zeta_{\mathbf{a}}(z, w+j)$, where $\beta_{i j}(M):=\operatorname{dim}_{K}\left(\operatorname{Tor}_{i}(M, K)\right)_{j}$ are the graded Betti numbers of M and p is the projective dimension of M.
(2) $\zeta_{M}(z)=\sum_{i=0}^{p}(-1)^{i} \sum_{j \geq \max \{i, 1\}} \beta_{i j}(M) \zeta_{\mathbf{a}}(z, j)+\beta_{00}(M) \zeta_{\mathbf{a}}(z)$.

Proof. (1) Let

$$
\begin{equation*}
\mathbf{F}: 0 \rightarrow F_{p} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0 \tag{2.3}
\end{equation*}
$$

be the minimal free resolution of M. We have that $F_{i}=\bigoplus_{j \geq 0} S(-j)^{\beta_{i j}}$. By (2.1), Proposition 1.1 and Proposition 1.2, it follows that

$$
\zeta_{F_{i}}(z, w)=\sum_{j \geq 0} \beta_{i j} \zeta_{\mathbf{a}}(z, w+j)
$$

The result follows from Proposition 1.1 applied several times to the exact sequence (2.3). (2) By (2.1), it follows that

$$
\begin{equation*}
\lim _{w \searrow 0} \zeta_{\mathbf{a}}(z, j+w)=\zeta_{\mathbf{a}}(z, j),(\forall) j \geq 1 \tag{2.4}
\end{equation*}
$$

Using (2.2), (2.4) and (1) we get the required result.

The Bernoulli numbers B_{ℓ} are defined by

$$
\frac{z}{e^{z}-1}=\sum_{\ell=0}^{\infty} B_{j} \frac{z^{\ell}}{\ell!}
$$

$B_{0}=1, B_{1}=-\frac{1}{2}, B_{2}=\frac{1}{6}, B_{4}=-\frac{1}{30}$ and $B_{n}=0$ if $n \geq 3$ is odd. For $k>0$ we have the Faulhaber's identity

$$
1^{k}+2^{k}+\cdots+n^{k}=\frac{1}{k+1} \sum_{\ell=0}^{k}\binom{k+1}{\ell} B_{\ell} n^{1+k-\ell} .
$$

The Bernoulli-Barnes polynomials $B_{\ell}\left(x ; a_{1}, \ldots, a_{r}\right)$ are defined by

$$
\frac{z^{r} e^{x z}}{\left(e^{a_{1} z}-1\right) \cdots\left(e^{a_{r} z}-r\right)}=\sum_{\ell=0}^{\infty} B_{\ell}\left(x ; a_{1}, \ldots, a_{r}\right) \frac{z^{\ell}}{\ell!} .
$$

According to formula (3.9) in Ruijsenaars [8],

$$
\begin{equation*}
\operatorname{Res}_{z=\ell} \zeta_{\mathbf{a}}(z, w)=\frac{(-1)^{r-\ell}}{(\ell-1)!(r-\ell)!} B_{r-\ell}\left(w ; a_{1}, \ldots, a_{r}\right), 1 \leq \ell \leq r \tag{2.5}
\end{equation*}
$$

The Bernoulli-Barnes numbers are defined by

$$
B_{\ell}\left(a_{1}, \ldots, a_{r}\right):=B_{\ell}\left(0 ; a_{1}, \ldots, a_{r}\right)
$$

The Bernoulli-Barnes numbers and the Bernoulli numbers are related by

$$
B_{\ell}\left(a_{1}, \ldots, a_{r}\right)=\sum_{i_{1}+\cdots+i_{r}=\ell}\binom{\ell}{i_{1}, \ldots, i_{r}} B_{i_{1}} \cdots B_{i_{r}} a_{1}^{i_{1}-1} \cdots a_{r}^{i_{r}-1}
$$

see Bayad and Beck [4, Page 2] for further details. According to [6, Theorem 3.10],

$$
\begin{equation*}
\operatorname{Res}_{z=\ell} \zeta_{\mathbf{a}}(z)=\frac{(-1)^{r-\ell}}{(\ell-1)!(r-\ell)!} B_{r-\ell}\left(a_{1}, \ldots, a_{r}\right), 1 \leq \ell \leq r . \tag{2.6}
\end{equation*}
$$

Note that (2.6) can be deduced from (2.5).
Corollary 2.2. Let M be a finitely generated graded S-module and $w>0$. Then
(1) $R_{M}(w, \ell)=\sum_{i=0}^{p} \sum_{j \geq 0} \beta_{i j}(M) \frac{(-1)^{i+r-\ell}}{(\ell-1)!(r-\ell)!} B_{r-\ell}\left(w+j ; a_{1}, \ldots, a_{r}\right), 1 \leq \ell \leq r$.
(2) $R_{M}(\ell)=\sum_{i=0}^{p} \sum_{j \geq 0} \beta_{i j}(M) \frac{(-1)^{i+r-\ell}}{(\ell-1)!(r-\ell)!} B_{r-\ell}\left(j ; a_{1}, \ldots, a_{r}\right), 1 \leq \ell \leq r .$.

Proof. The results follow from Proposition 2.1 and the formulas (2.5) and (2.6).
Example 2.3. Let $\mathbf{a}=\left(a_{1}, \ldots, a_{r}\right)$ be a sequence of positive integers, $D=\operatorname{lcm}\left(a_{1}, \ldots, a_{r}\right)$. We consider the ideal $I=\left(x_{1}^{\frac{D}{a_{1}}}, \ldots, x_{r}^{\frac{D}{a_{r}}}\right) \subset S$. Note that I is an Artinian complete intersection monomial ideal generated in degree D, w.r.t. the a-grading. According to (2.2) and Corollary 1.4, we have

$$
\begin{equation*}
\zeta_{S / I}(z, w)=\theta_{S / I}(z, w)=\sum_{j=0}^{r}(-1)^{j}\binom{r}{j} \zeta_{\mathbf{a}}(z, w+D j) . \tag{2.7}
\end{equation*}
$$

On the other hand, one can easily check that

$$
H_{S / I}(t)=\frac{\left(1-t^{D}\right)^{r}}{\left(1-t^{a_{1}}\right) \cdots\left(1-t^{a_{r}}\right)}=\left(1+t^{a_{1}}+\cdots+t^{a_{1}\left(\frac{D}{a_{1}}-1\right)}\right) \cdots\left(1+t^{a_{r}}+\cdots+t^{a_{r}\left(\frac{D}{a_{r}}-1\right)}\right)
$$

is a reciprocal polynomial of degree $D r-a_{1}-\cdots-a_{r}$. The coefficient of t^{n} in $H_{S / I}(t)$ equals to

$$
f_{\mathbf{a}}(n)=\#\left\{\left(x_{1}, \ldots, x_{r}\right) \in \mathbb{Z}^{r}: a_{1} x_{1}+\cdots+a_{r} x_{r}=n, 0 \leq x_{1}<\frac{D}{a_{1}}-1, \ldots, 0 \leq x_{r}<\frac{D}{a_{r}}-1\right\}
$$

By (2.7) it follows that

$$
\sum_{n=0}^{D r-a_{1}-\cdots-a_{r}} f_{\mathbf{a}}(n)(n+w)^{-z}=\sum_{j=0}^{r}(-1)^{j}\binom{r}{j} \zeta_{\mathbf{a}}(z, w+D j) .
$$

See Rødseth and Sellers [7] for further details on the coefficients $f_{\mathbf{a}}(n)$.
Example 2.4. Let $S=K\left[x_{1}, x_{2}\right]$ with $\operatorname{deg}\left(x_{1}\right)=2$, $\operatorname{deg}\left(x_{2}\right)=3$. Let a $=(2,3)$. The polynomial

$$
\begin{equation*}
0 \rightarrow S(-6) \xrightarrow{\cdot f} S \rightarrow R \rightarrow 0 \tag{2.8}
\end{equation*}
$$

It follows that the non-zero Betti numbers of R are $\beta_{00}(R)=1$ and $\beta_{16}(R)=1$. Let $w>0$. According to (2.1) and Corollary 1.3 (or (2.8) and Proposition 2.1(1)) we have

$$
\begin{gathered}
\zeta_{R}(z, w)=\zeta_{\mathbf{a}}(z, w)-\zeta_{\mathbf{a}}(z, w+6)=\sum_{n=0}^{\infty} \frac{p_{\mathbf{a}}(n)}{(n+w)^{z}}-\sum_{n=0}^{\infty} \frac{p_{\mathbf{a}}(n)}{(n+w+6)^{z}}= \\
=\sum_{n=0}^{5} \frac{p_{\mathbf{a}}(n)}{(n+w)^{z}}+\sum_{n=6}^{\infty} \frac{p_{\mathbf{a}}(n)-p_{\mathbf{a}}(n-6)}{(n+w)^{z}}=\frac{1}{w^{z}}+\sum_{n=2}^{\infty} \frac{1}{(n+w)^{z}}=\frac{1}{w^{z}}+\zeta(z, w+2) .
\end{gathered}
$$

In particular, the Hilbert series of R is

$$
H_{R}(t)=1+\sum_{n=2}^{\infty} t^{n}=1+\frac{t^{2}}{1-t}=\frac{t^{2}-t+1}{1-t}
$$

hence $\alpha(R)=a(R)=1$. It follows that $\theta_{R}(z, w)=\frac{1}{w^{z}}$. Also,

$$
\zeta_{R}(z)=\lim _{w \searrow 0}\left(\zeta_{R}(z, w)-\frac{1}{w^{z}}\right)=\zeta(z, 2) \text { and } \theta_{R}(z)=0 .
$$

3. The standard graded case

Let S be a standard graded K-algebra, that is $S=\bigoplus_{n \geq 0} S_{n}, S_{0}=K$ and $S=K\left[S_{1}\right]$. Let M be a finitely generated graded S-module. According to the Hilbert-Serre's Theorem, it holds that

$$
\begin{equation*}
H_{M}(t)=\frac{h_{M}(t)}{(t-1)^{m}} \tag{3.1}
\end{equation*}
$$

where $h_{M} \in \mathbb{Z}[t], m=\operatorname{dim}(M)$ and $h_{M}(1) \neq 0$. Also, there exists a polynomial $P_{M}(t) \in \mathbb{Z}[t]$ of degree $m-1$, such that

$$
H(M, n)=P_{M}(n),(\forall) n \gg 0
$$

which is called the Hilbert polynomial of M.
The number $e(M):=h_{M}(1)$ is called the multiplicity of the module M.
Proposition 3.1. If $P_{M}(t)=d_{M, m-1} t^{m-1}+\cdots+d_{M, 1} t+d_{M, 0}$ is the Hilbert polynomial of M, then

$$
\zeta_{M}(z, w)=\theta_{M}(z, w)+\sum_{k=0}^{m-1} d_{M, k} \sum_{\ell=0}^{k}\binom{k}{\ell}(-w)^{\ell} \zeta(z-k+\ell, \alpha(M)+w)
$$

is a meromorphic function on \mathbb{C} with the poles in the set $\{1,2, \ldots, m\}$ which are simple with residues

$$
R_{M}(w, k+1):=\operatorname{Res}_{z=k+1} \zeta_{M}(z, w)=\sum_{\ell=k}^{m-1}\binom{\ell}{k}(-w)^{\ell-k} d_{M, \ell}, 0 \leq k \leq m-1
$$

Proof. It is the particular case of Theorem 1.1 for $\mathbf{a}=(1, \ldots, 1)$.

Proposition 3.2. We have that

$$
\zeta_{M}(z)=\theta_{M}(z)+\sum_{k=0}^{m-1} d_{M, k} \zeta(z-k+\ell, \alpha(M)+1)
$$

is a meromorphic function on \mathbb{C} with the poles in the set $\{1,2, \ldots, m\}$ which are simple with residues

$$
R_{M}(\ell+1):=\operatorname{Res}_{z=\ell+1} \zeta_{M}(z)=d_{M, \ell}
$$

Proof. It is the particular case of Proposition 1.5 for $\mathbf{a}=(1, \ldots, 1)$.
If $\operatorname{dim} M \geq 1$, then we can write

$$
\begin{equation*}
P_{M}(t)=\sum_{k=0}^{m-1}(-1)^{k} e_{k}(M)\binom{t+m-1-k}{m-1-k} \tag{3.2}
\end{equation*}
$$

According to [5, Proposition 4.1.9], we have

$$
\begin{equation*}
e_{k}(M)=\frac{h_{M}^{(k)}(t)}{k!},(\forall) 0 \leq k \leq m-1 \tag{3.3}
\end{equation*}
$$

Corollary 3.3. If $m=\operatorname{dim} M \geq 1$, then

$$
e(M)=e_{0}(M)=(m-1)!d_{M, m-1}=(m-1)!R_{M}(m) .
$$

Proof. It follows from (3.2), (3.3) and Proposition 3.2.
The higher iterated Hilbert functions $H_{i}(M, n), i \in \mathbb{N}$, of a finitely generated S-module M are defined recursively as follows:

$$
\begin{equation*}
H_{0}(M, n):=H(M, n), \text { and } H_{i}(M, n)=\sum_{j=0}^{n} H_{i-1}(M, n), i \geq 1 \tag{3.4}
\end{equation*}
$$

The functions $H_{i}(M, n)$ are of polynomial type of degree $m+i-1$, hence

$$
\begin{equation*}
H_{i}(M, n)=P_{i}(M, n):=d_{M, m+i-1}^{i} n^{m+i-1}+\cdots+d_{M, 1}^{i} n+d_{M, 0}^{i},(\forall) n \gg 0 . \tag{3.5}
\end{equation*}
$$

We define the higher Zeta-Barnes type functions associated to M as follows:

$$
\begin{equation*}
\zeta_{M}^{i}(z, w):=\sum_{n=0}^{\infty} \frac{H_{i}(M, n)}{(n+w)^{z}}, i \geq 0 . \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\zeta_{M}^{i}(z)=\lim _{w \searrow 0}\left(\zeta_{M}^{i}(z, w)-H(M, 0) w^{-z}\right), i \geq 0 \tag{3.7}
\end{equation*}
$$

Let

$$
\alpha^{i}(M):=\min \left\{n_{0} \in \mathbb{N}: H_{i}(M, n)=P_{i}(M, n),(\forall) n \geq n_{0}\right\}
$$

We define

$$
\theta_{M}^{i}(z, w)=\sum_{n=0}^{\alpha^{i}(M)-1} \frac{H_{i}(M, n)}{(n+w)^{z}} \text { and } \theta_{M}^{i}(z)=\sum_{n=1}^{\alpha^{i}(M)-1} \frac{H_{i}(M, n)}{n^{z}} .
$$

Proposition 3.4. With the above notations:
(1) $\zeta_{M}^{i}(z, w)=\theta_{M}^{i}(z, w)+\sum_{k=0}^{m+i-1} d_{M, k}^{i} \sum_{\ell=0}^{k}\binom{k}{\ell}(-w)^{\ell} \zeta\left(z-k+\ell, \alpha^{i}(M)+w\right)$ is a meromorphic function on \mathbb{C} with the poles in the set $\{1,2, \ldots, m+i\}$ which are simple with residues

$$
R_{M}^{i}(w, k+1):=\operatorname{Res}_{z=k+1} \zeta_{M}(z, w)=\sum_{\ell=k}^{m+i-1}\binom{\ell}{k}(-w)^{\ell-k} d_{M, \ell}^{i}, 0 \leq k \leq m+i-1
$$

(2) $\zeta_{M}^{i}(z)=\theta_{M}^{i}(z)+\sum_{k=0}^{m+i-1} d_{M, k}^{i} \zeta\left(z-k+\ell, \alpha^{i}(M)+1\right)$ is a meromorphic function on \mathbb{C} with the poles in the set $\{1,2, \ldots, m+i\}$ which are simple with residues

$$
R_{M}^{i}(k+1):=\operatorname{Res}_{z=k+1} \zeta_{M}(z)=d_{M, k}^{i}, 0 \leq k \leq m+i-1 .
$$

Proof. Is similar to Proposition 3.1 and Proposition 3.2.
Corollary 3.5. We have that $e(M)=m!R_{M}^{1}(m+1)$.
Proof. According to [5, Remark 4.1.6], $H_{1}(M, n)=d_{M, m}^{1} n^{m}+\cdots+d_{M, 1}^{1} n+d_{M, 0}^{1},(\forall) n \gg 0$, and $e(M)=m!d_{M, m}^{1}$. Now, apply Proposition 3.4(2).

Remark 3.6. Let $S=K\left[x_{1}, \ldots, x_{r}\right]$ and $I \subset S$ a graded ideal. We say that S / I has a pure resolution of type $\left(d_{1}, \ldots, d_{p}\right)$ if its minimal resolution is

$$
0 \rightarrow S\left(-d_{p}\right)^{\beta_{p}} \rightarrow \cdots \rightarrow S\left(-d_{1}\right)^{\beta_{1}} \rightarrow S \rightarrow S / I \rightarrow 0
$$

where p is the projective dimension of $S / I, d_{1}<d_{2}<\cdots<d_{p}$ and $\beta_{i}=\sum_{j \geq 0} \beta_{i j}(S / I), 1 \leq i \leq p$, are the Betti numbers of S / I. According to Corollary 3.3, $e(S / I)=R_{S / I}(m)$, where $m=\operatorname{dim}(S / I)$. On the other hand, according to Corollary 2.2(2), we have

$$
\begin{equation*}
R_{S / I}(m)=\sum_{i=0}^{p} \beta_{i} \frac{(-1)^{r-m}}{(m-1)!(r-m)!} B_{r-m}\left(d_{i} ; 1,1, \ldots, 1\right) \tag{3.8}
\end{equation*}
$$

Suppose S / I is Cohen-Macaulay and has a pure resolution of type $\left(d_{1}, \ldots, d_{p}\right)$. According to [5, Theorem 4.1.15],

$$
\begin{equation*}
\beta_{i}=(-1)^{i+1} \prod_{j \neq i} \frac{d_{j}}{d_{j}-d_{i}} \text { and } e(S / I)=\frac{d_{1} d_{2} \cdots d_{p}}{p!} \tag{3.9}
\end{equation*}
$$

The Ausländer-Buchsbaum formula [5, Theorem 1.3.3] implies $p=r-m$, hence (3.8) and (3.9) give the identity:

$$
\sum_{i=0}^{p}(-1)^{i+1} \prod_{j \neq i} \frac{d_{j}}{d_{j}-d_{i}} B_{p}\left(d_{i} ; 1,1, \ldots, 1\right)=(m-1)!(-1)^{p} d_{1} d_{2} \cdots d_{p}
$$

4. The non-graded case

Let (S, \mathfrak{m}, K) be a Noetherian local ring, where \mathfrak{m} is the maximal ideal of S and $K=S / \mathfrak{m}$ is the residue field. Let M be a finitely generated S-module, with $m=\operatorname{dim}(M)$, and let $I \subset S$ be an ideal such that $\mathfrak{m}^{n} M \subset I M$ for some $n \geq 1$. The associated graded ring is

$$
\operatorname{gr}_{I}(S)=\bigoplus_{n \geq 0} \frac{I^{n}}{I^{n+1}}=\frac{S}{I} \oplus \frac{I}{I^{2}} \oplus \cdots
$$

The associated graded module of M, with respect to I, is

$$
\operatorname{gr}_{I}(M):=\bigoplus_{n \geq 0} \frac{I^{n} M}{I^{n+1} M}
$$

which has a structure of $\arg _{I}(S)$-module. According to [5, Theorem 4.5.6], it holds that

$$
\operatorname{dim}\left(\operatorname{gr}_{I}(M)\right)=\operatorname{dim}(M)=m
$$

The Hilbert-Samuel function of M, w.r.t. I, is

$$
\chi_{M}(n):=H_{1}\left(\operatorname{gr}_{I}(M), n\right)=\sum_{i=0}^{n} H\left(\operatorname{gr}_{I}(M), i\right)=\operatorname{dim}_{K} \frac{M}{I^{n+1} M},(\forall) n \geq 0
$$

The multiplicity of M with respect to I is $e(M, I):=e\left(\operatorname{gr}_{I}(M)\right)$. For $n \gg 0$, according to [5, Remark 4.1.6], we have that

$$
\begin{equation*}
\chi_{M}(n)=\frac{e(M, I)}{m!} n^{m}+\text { terms in lower powers of } n . \tag{4.1}
\end{equation*}
$$

We consider the functions

$$
\begin{equation*}
\zeta_{M, I}^{i}(z, w):=\zeta_{\operatorname{gr}_{I}(M)}^{i}(z, w) \text { and } \zeta_{M, I}^{i}(z):=\zeta_{\operatorname{gr}_{I}(M)}^{i}(z), i \geq 0 . \tag{4.2}
\end{equation*}
$$

Proposition 4.1. It holds that

$$
e(M, I)=m!\operatorname{Res}_{z=m+1} \zeta_{M, I}^{1}(z)
$$

Proof. This follows from (4.1), (4.2) and Corollary 3.5.

References

[1] M. F. Atiyah, I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley, Reading, MA, (1969).
[2] J. L. Ramirez Alfonsin, The Diophantine Frobenius Problem, Oxford Lecture Series in Mathematics and its Applications 30, (2005).
[3] E. W. Barnes, On the theory of the multiple gamma function, Trans. Camb. Philos. Soc. 19 (1904), 374-425.
[4] A. Bayad, M. Beck, Relations for Bernoulli-Barnes Numbers and Barnes Zeta Functions, International Journal of Number Theory 10, (2014), 1321-1335.
[5] W. Bruns, J. Herzog, Cohen-Macaulay rings, Cambridge studies in advanced mathematics 39, revised edition (1998).
[6] M. Cimpoeas, F. Nicolae, On the restricted partition function, Ramanujan J. 47, no. 3 (2018), 565588.
[7] Ø. J. Rødseth, J. A. Sellers, Partitions with parts in a finite set, International Journal of Number Theory, Vol. 02, No. 03, (2006), 455-468.
[8] S. N. M. Ruijsenaars, On Barnes Multiple Zeta and Gamma Functions, Advances in Mathematics 156, (2000), 107-132.

Simion Stoilow Institute of Mathematics, Research unit 5, P.O.Box 1-764, Bucharest 014700, Romania and University Politehnica of Bucharest, Faculty of Applied Sciences, Department of Mathematical Methods and Models, Bucharest, 060042, Romania.

Email address: mircea.cimpoeas@imar.ro

