Several inequalities regarding Stanley depth

Mircea Cimpoeas

Abstract

We give several bounds for $\operatorname{sdepth}_{S}(I+J)$, $\operatorname{sdepth}_{S}(I \cap J)$, $\operatorname{sdepth}_{S}(S /(I+J))$, $\operatorname{sdepth}_{S}(S /(I \cap J))$, $\operatorname{sdepth}_{S}(I: J)$ and $\operatorname{sdepth}_{S}(S /(I: J))$ where $I, J \subset S=$ $K\left[x_{1}, \ldots, x_{n}\right]$ are monomial ideals. Also, we give some equivalent forms of Stanley Conjecture for I and S / I, where $I \subset S$ is a monomial ideal.

Keywords: Stanley depth, Stanley conjecture, monomial ideal.
2000 Mathematics Subject Classification:Primary: 13P10.

Introduction

Let K be a field and $S=K\left[x_{1}, \ldots, x_{n}\right]$ the polynomial ring over K. Let M be a \mathbb{Z}^{n}-graded S-module. A Stanley decomposition of M is a direct sum $\mathcal{D}: M=\bigoplus_{i=1}^{r} m_{i} K\left[Z_{i}\right]$ as a \mathbb{Z}^{n}-graded K-vector space, where $m_{i} \in M$ is homogeneous with respect to \mathbb{Z}^{n}-grading, $Z_{i} \subset\left\{x_{1}, \ldots, x_{n}\right\}$ such that $m_{i} K\left[Z_{i}\right]=\left\{u m_{i}: u \in K\left[Z_{i}\right]\right\} \subset M$ is a free $K\left[Z_{i}\right]$-submodule of M. We define $\operatorname{sdepth}(\mathcal{D})=\min _{i=1, \ldots, r}\left|Z_{i}\right|$ and $\operatorname{sdepth}_{S}(M)=\max \{\operatorname{sdepth}(\mathcal{D}) \mid \mathcal{D}$ is a Stanley decomposition of $M\}$. The number $\operatorname{sdepth}_{S}(M)$ is called the Stanley depth of M. Stanley [13] conjectured that $\operatorname{sdepth}_{S}(M) \geq \operatorname{depth}_{S}(M)$ for any \mathbb{Z}^{n}-graded S-module M. Herzog, Vladoiu and Zheng show in [4] that $\operatorname{sdepth}_{S}(M)$ can be computed in a finite number of steps if $M=I / J$, where $J \subset I \subset S$ are monomial ideals.

Let $I \subset S^{\prime}=K\left[x_{1}, \ldots, x_{r}\right], J \subset S^{\prime \prime}=K\left[x_{r+1}, \ldots, x_{n}\right]$ two monomial ideals, and consider $S=K\left[x_{1}, \ldots, x_{n}\right]$. In Theorem 1.3, we give some lower and upper bounds for $\operatorname{sdepth}_{S}(I S+J S)$ and $\operatorname{sdepth}_{S}(S /(I S \cap J S))$. Some lower bounds for $\operatorname{sdepth}_{S}(I S \cap J S)$ and $\operatorname{sdepth}_{S}(S /(I S+J S))$ were given in [7], respective in [10]. An important fact, which will be used implicitly in our paper, is that sdepth $S_{S}(I S)=\operatorname{sdepth}_{S^{\prime}}(I)+n-r$, see [4]. Also, obviously, $\operatorname{depth}_{S}(I S)=\operatorname{depth}_{S^{\prime}}(I)+n-r$. In [10], A. Rauf conjectured that $\operatorname{sdepth}_{S}(I) \geq$ $\operatorname{sdepth}_{S}(S / I)+1$. We prove that this inequality holds, if $\operatorname{sdepth}_{S}(I)=\operatorname{sdepth}_{S\left[y_{1}\right]}\left(I, y_{1}\right)$, see Remark 1.7. In the first section we also give some corollaries of Theorem 1.3.

In section 2 , we consider the general case, when $I, J \subset S$ are two arbitrary monomial ideals. In Theorem 2.2, we give lower bounds for $\operatorname{sdepth}_{S}(I+J), \operatorname{sdepth}_{S}(I \cap J), \operatorname{sdepth}_{S}(S /(I+$ $J)$) and $\operatorname{sdepth}_{S}(S /(I \cap J))$. Also, we prove that if $I \subset S$ is a monomial ideal, and $v \in S$ a monomial, then $\operatorname{sdepth}_{S}(S /(I: v)) \geq \operatorname{sdepth}_{S}(S / I)$, see Proposition 2.7. As a consequence, we give lower bounds for $\operatorname{sdepth}_{S}(I: J)$ and $\operatorname{sdepth}_{S}(S /(I: J))$, where $I, J \subset S$ are monomial ideals, see Corollary 2.12. Also, if $I \subset S$ is a monomial ideal, we give some bounds for $\operatorname{sdepth}_{S}(I)$ and $\operatorname{sdepth}_{S}(S / I)$, in terms of the irreducible irredundant decomposition of I, see Corollary 2.13, and in terms of the primary irredundant decomposition of I, see Corollary 2.14.

In section 3, we give several equivalent forms of Stanley Conjecture for I and S / I, where $I \subset S$ is a monomial ideal. See Propositions 3.1, 3.3, 3.4 and 3.7.

[^0]
1 The case of ideals with disjoint support

We denote $S=K\left[x_{1}, \ldots, x_{n}\right]$ the ring of polynomials in n variables, where $n \geq 2$. For a monomial $u \in S$, we denote $\operatorname{supp}(u)=\left\{x_{i}: x_{i} \mid u\right\}$. We begin this section by recalling the following results.

Proposition 1.1. Let $I \subset S^{\prime}=K\left[x_{1}, \ldots, x_{r}\right], J \subset S^{\prime \prime}=K\left[x_{r+1}, \ldots, x_{n}\right]$ be monomial ideals, where $1 \leq r<n$. Then, we have the following inequalities:
(1) $\operatorname{sdepth}_{S}(I S \cap J S) \geq \operatorname{sdepth}_{S^{\prime}}(I)+\operatorname{sdepth}_{S^{\prime \prime}}(J)$. ([7, Lemma 1.1])
(2) $\operatorname{sdepth}_{S}(S /(I S+J S)) \geq \operatorname{sdepth}_{S^{\prime}}\left(S^{\prime} / I\right)+\operatorname{sdepth}_{S^{\prime \prime}}\left(S^{\prime \prime} / J\right)$. ([10, Theorem 3.1])
(3) $\operatorname{depth}_{S}(S /(I S \cap J S))-1=\operatorname{depth}_{S}(S /(I S+J S))=\operatorname{depth}_{S^{\prime}}\left(S^{\prime} / I\right)+\operatorname{depth}_{S^{\prime \prime}}\left(S^{\prime \prime} / J\right)$. ([7, Lemma 1.1])

Lemma 1.2. Let $u, v \in S$ be two monomials and $Z, W \subset\left\{x_{1}, \ldots, x_{n}\right\}$. Then $u K[Z] \cap$ $v K[W]=\operatorname{lcm}(u, v) K[Z \cap W]$ or $u K[Z] \cap v K[W]=(0)$.

Proof. Assume $u K[Z] \cap v K[W] \neq(0)$ and consider $0 \neq w \in u K[Z] \cap v K[W]$ a monomial. It follows that $w=u \cdot \alpha$ and $w=v \cdot \beta$, where $\alpha \in K[Z]$ and $\beta \in K[W]$ are two monomials. Since $u \mid w$ and $v \mid w$, it follows that $\operatorname{lcm}(u, v) \mid w$ and therefore $w=\operatorname{lcm}(u, v) \gamma$ where $\gamma \in K[Z] \cap K[W]=K[Z \cap W]$. In particular, $\operatorname{lcm}(u, v)=v / \gamma \in u K[Z] \cap v K[W]$ and thus $\operatorname{lcm}(u, v) K[Z \cap W] \subset u K[Z] \cap v K[W]$. On the other hand, since w was arbitrarily chose, it follows that $u K[Z] \cap v K[W] \subset \operatorname{lcm}(u, v) K[Z \cap W]$.

Theorem 1.3. Let $I \subset S^{\prime}=K\left[x_{1}, \ldots, x_{r}\right], J \subset S^{\prime \prime}=K\left[x_{r+1}, \ldots, x_{n}\right]$ be monomial ideals, where $1 \leq r<n$. Then, we have the following inequalities:
(1) $\operatorname{sdepth}_{S}(I S) \geq \operatorname{sdepth}_{S}(I S+J S) \geq \min \left\{\operatorname{sdepth}_{S}(I S), \operatorname{sdepth}_{S^{\prime \prime}}(J)+\operatorname{sdepth}_{S^{\prime}}\left(S^{\prime} / I\right)\right\}$.
(2) $\operatorname{sdepth}_{S}(S / I S) \geq \operatorname{sdepth}_{S}(S /(I S \cap J S)) \geq \min \left\{\operatorname{sdepth}_{S}(S / I S), \operatorname{sdepth}_{S^{\prime \prime}}\left(S^{\prime \prime} / J\right)+\right.$ $\left.\operatorname{sdepth}_{S^{\prime}}(I)\right\}$.

Proof. (1) For the first inequality, let $I S+J S=\bigoplus_{i=1}^{r} w_{i} K\left[W_{i}\right]$ be a Stanley decomposition of the ideal $I S+J S \subset S$. Note that $(I S+J S) \cap S^{\prime}=I S \cap S^{\prime}=I$, since $J S \cap S^{\prime}=(0)$. Therefore, $I=\bigoplus_{i=1}^{r}\left(w_{i} K\left[W_{i}\right] \cap S^{\prime}\right)$. If $w_{i} \in S^{\prime}$, we have $w_{i} K\left[W_{i}\right] \cap S^{\prime}=w_{i} K\left[W_{i} \cap\right.$ $\left.\left\{x_{1}, \ldots, x_{r}\right\}\right]$, by Lemma 1.2. On the other hand, if $w_{i} \notin S^{\prime}$, we have $w_{i} K\left[W_{i}\right] \cap S^{\prime}=$ (0). Thus, $I=\bigoplus_{w_{i} \in S^{\prime}} w_{i} K\left[W_{i} \cap\left\{x_{1}, \ldots, x_{r}\right\}\right]$. It follows that $I S=\bigoplus_{w_{i} \in S^{\prime}} w_{i} K\left[W_{i} \cup\right.$ $\left.\left\{x_{r+1}, \ldots, x_{n}\right\}\right]$. Therefore, $\operatorname{sdepth}_{S}(I S+J S) \leq \operatorname{sdepth}_{S}(I S)$.

In order to prove the second inequality, we consider the Stanley decompositions $S^{\prime} / I=$ $\bigoplus_{i=1}^{r} u_{i} K\left[U_{i}\right]$ and $J=\bigoplus_{j=1}^{s} v_{j} K\left[V_{j}\right]$. It follows that $S / I S=\bigoplus_{i=1}^{r} u_{i} K\left[U_{i} \cup\left\{x_{r+1}, \ldots, x_{n}\right\}\right]$ and $J S=\bigoplus_{j=1}^{s} v_{j} K\left[V_{j} \cup\left\{x_{1}, \ldots, x_{r}\right\}\right]$ are Stanley decompositions for $S / I S$, respectively for $J S$. We consider the decomposition of K-vector spaces:
$(*) \quad I S+J S=((I S+J S) \cap I S) \oplus((I S+J S) \cap S / I S)=I S \oplus(J S \cap S / I S)$.
Note that $J S \cap(S / I S) \cong(J S+I S) / I S$, as \mathbb{Z}^{n}-graded K-vector spaces, and therefore $J S \cap(S / I S)$ has a natural structure of \mathbb{Z}^{n}-graded S-module.

We have $J S \cap S / I S=\bigoplus_{i=1}^{r} \bigoplus_{j=1}^{s} u_{i} K\left[U_{i} \cup\left\{x_{r+1}, \ldots, x_{n}\right\}\right] \cap v_{j} K\left[V_{j} \cup\left\{x_{r+1}, \ldots, x_{n}\right\}\right]$. Since $u_{i} \in S^{\prime}$ and $v_{j} \in S^{\prime \prime}$ for all $(i, j)^{\prime} s$, by Lemma 1.2, it follows that $J S \cap S / I S=$
$\bigoplus_{i=1}^{r} \bigoplus_{j=1}^{s} u_{i} v_{j} K\left[U_{i} \cup V_{j}\right]$ and therefore $\operatorname{sdepth}_{S}(J S \cap S / I S) \geq \operatorname{sdepth}_{S}^{\prime \prime}(J)$. Thus, by $(*)$, we get the required conclusion.
(2) For the first inequality, let $S /(I S+J S)=\bigoplus_{i=1}^{r} w_{i} K\left[W_{i}\right]$ be a Stanley decomposition of $S /(I S+J S)$. As in the proof of (1), we get $S / I S=\bigoplus_{w_{i} \in S^{\prime}} w_{i} K\left[W_{i} \cup\left\{x_{r+1}, \ldots x_{n}\right\}\right]$ and thus we get $\operatorname{sdepth}_{S}(S / I S) \geq \operatorname{sdepth}_{S}(S /(I S \cap J S))$. In order to prove the second inequality, we consider the decomposition:

$$
S /(I S \cap J S)=(S /(I S \cap J S) \cap S / I S) \oplus(S /(I S \cap J S) \cap I S)=S / I S \oplus((S / J S) \cap I S)
$$

and, as in the proof of (1), we get $\operatorname{sdepth}_{S}((S / J S) \cap I S) \geq \operatorname{sdepth}_{S^{\prime}}(I)+\operatorname{sdepth}_{S^{\prime \prime}}\left(S^{\prime \prime} / J\right)$ and thus we obtain the required conclusion.
Lemma 1.4. Let $I \subset S^{\prime}=K\left[x_{1}, \ldots, x_{r}\right], J \subset S^{\prime \prime}=K\left[x_{r+1}, \ldots, x_{n}\right]$ be monomial ideals, where $1 \leq r<n$. Then, $\operatorname{depth}_{S}(I S \cap J S)=\operatorname{depth}_{S}(I S+J S)+1=\operatorname{depth}_{S^{\prime}}(I)+\operatorname{depth}_{S^{\prime \prime}}(J)$ and $\operatorname{depth}_{S}((I S+J S) / I S)=\operatorname{depth}_{S}(I S+J S)$.

Proof. The first equality is a direct consequence of Proposition 1.1(3). The second follows by Depth Lemma for the short exact sequence $0 \rightarrow I \rightarrow I+J \rightarrow(I+J) / I \rightarrow 0$.
Remark 1.5. If $I \subset S$ is a monomial ideal, we define the support of I to be the set $\operatorname{supp}(I)=\bigcup_{u \in G(I)} \operatorname{supp}(u)$, where $G(I)$ is the set on minimal monomial generators of I. With this notation, we can reformulate Proposition 1.1 and Theorem 1.3 in terms of two monomial ideals $I, J \subset S$ with $\operatorname{supp}(I) \cap \operatorname{supp}(J)=\emptyset$. The conclusions should be also modified, as follows. If $I, J \subset S$ are two monomial ideals with disjoint supports, then $\operatorname{sdepth}_{S}(I \cap J) \geq \operatorname{sdepth}_{S}(I)+\operatorname{sdepth}_{S}(J)-n$ etc.

With the above notations, we may consider the short exact sequences $0 \rightarrow I \rightarrow I+$ $J \rightarrow(I+J) / I \rightarrow 0$ and $0 \rightarrow I /(I \cap J) \cong(I+J) / J \rightarrow S /(I \cap J) \rightarrow S / J \rightarrow 0$. It follows that $\operatorname{sdepth}_{S}(I+J) \geq \min \left\{\operatorname{sdepth}_{S}(I), \operatorname{sdepth}_{S}((I+J) / I)\right\}$ and $\operatorname{sdepth}_{S}(S /(I \cap$ $J)) \geq \min \left\{\operatorname{sdepth}_{S}(S / I), \operatorname{sdepth}_{S}((I+J) / J)\right\}$. Note that $(I+J) / I=J \cap(S / I)$ and $(I+J) / J=I \cap(S / J)$. From the proof of Theorem 1.3(1), we get $\operatorname{sdepth}_{S}((I+J) / I) \geq$ $\operatorname{sdepth}_{S}(J)+\operatorname{sdepth}_{S}(S / I)-n$, if $\operatorname{supp}(I) \cap \operatorname{supp}(J)=\emptyset$.

We recall the facts that if $I=\left(u_{1}, \ldots, u_{m}\right) \subset S$ is a monomial complete intersection, then $\operatorname{sdepth}_{S}(I)=n-\lfloor m / 2\rfloor$, see $[3$, Theorem 2.4] and [12, Theorem 2.4] and $\operatorname{sdepth}_{S}(S / I)=n-m$, see [11, Theorem 1.1]. On the other hand, if $I=\left(u_{1}, \ldots, u_{m}\right) \subset S$ is an arbitrary monomial ideal, then, according to [6, Theorem 2.3], $\operatorname{sdepth}_{S}(I) \geq n-\lfloor m / 2\rfloor$ and according to [2, Proposition 1.2], $\operatorname{sdepth}_{S}(S / I) \geq n-m$. Using these results, we proved the following:

Corollary 1.6. Let $I \subset S^{\prime}=K\left[x_{1}, \ldots, x_{r}\right]$ be a monomial ideal and $J=\left(u_{1}, \ldots, u_{m}\right) \subset$ $S^{\prime \prime}=K\left[x_{r+1}, \ldots, x_{n}\right]$ be a monomial ideal. Then:
(1) $\left.\operatorname{sdepth}_{S}(I S) \geq \operatorname{sdepth}_{S}(I S+J S) \geq \min ^{2} \operatorname{sdepth}_{S}(I S), \operatorname{sdepth}_{S}(S / S I)-\lfloor m / 2\rfloor\right\}$.
(2) $\operatorname{sdepth}_{S}(I S \cap J S) \geq \operatorname{sdepth}_{S}(I S)-\lfloor m / 2\rfloor$.
(3) $\operatorname{sdepth}_{S}(S / I S) \geq \operatorname{sdepth}_{S}(S /(I S \cap J S)) \geq \min \left\{\operatorname{sdepth}_{S}(S / I S), \operatorname{sdepth}_{S}(I S)-m\right\}$.
(4) $\operatorname{sdepth}_{S}(S /(I S+J S)) \geq \operatorname{sdepth}_{S}(S / I S)-m$.
(5) If J is complete intersection, then:
$\operatorname{depth}_{S}(S /(I S \cap J S))-1=\operatorname{depth}_{S}(S /(I S+J S))=\operatorname{depth}_{S}(S / I S)-m$.

Remark 1.7. Let $I \subset S=K\left[x_{1}, \ldots, x_{n}\right]$ be a monomial ideal. If we denote $\bar{S}=$ $S\left[y_{1}, \ldots, y_{m}\right]$, then, by Corollary 1.6(1), we have
$\operatorname{sdepth}_{S}(I)+m \geq \operatorname{sdepth}_{\bar{S}}\left(I, y_{1}, \ldots, y_{m}\right) \geq \min \left\{\operatorname{sdepth}_{S}(I)+m, \operatorname{sdepth}_{S}(S / I)+\lceil m / 2\rceil\right\}$.
 $\operatorname{sdepth}_{S}(S / I)+\lceil m / 2\rceil$ and therefore $\operatorname{sdepth}_{S}(I) \geq \operatorname{sdepth}_{S}(S / I)+\lfloor m / 2\rfloor+1$. In particular, if $m=1$ and $\operatorname{sdepth}_{\bar{S}}\left(I, y_{1}\right)=\operatorname{sdepth}_{S}(I)$, then $\operatorname{sdepth}_{S}(I) \geq \operatorname{sdepth}_{S}(S / I)+1$ and thus we get a positive answer to the problem put by Asia in [10].

Corollary 1.8. With the notations of Theorem 1.3, we have the followings:
(1) If the Stanley conjecture hold for I and J, then the Stanley conjecture holds for $I S \cap J S$.
(2) If the Stanley conjecture hold for S^{\prime} / I and $S^{\prime \prime} / J$, then the Stanley conjecture holds for $S /(I S+J S)$.
(3) If the Stanley conjecture hold for I, J and S^{\prime} / I or for I, J and $S^{\prime \prime} / J$, then the Stanley conjecture holds for $(I S+J S)$.
(4) If the Stanley conjecture hold for $S^{\prime} / I, S^{\prime \prime} / J$ and I or $S^{\prime} / I, S^{\prime \prime} / J$ and I and J, then the Stanley conjecture holds for $S /(I S \cap J S)$.

Proof. (1) It is a direct consequence of Proposition 1.1(1) and Lemma 1.4. (2) It is a direct consequence of Proposition 1.1(2) and 1.1(3).
(3) Assume the Stanley conjecture hold for J and S^{\prime} / I. According to Theorem 1.3(1), we have $\operatorname{sdepth}_{S}(I S) \geq \operatorname{sdepth}_{S}(I S+J S) \geq \min \left\{\operatorname{sdepth}_{S}(I S), \operatorname{sdepth}_{S^{\prime \prime}}(J)+\operatorname{sdepth}_{S^{\prime}}\left(S^{\prime} / I\right)\right\}$. If $\operatorname{sdepth}_{S}(I S+J S)=\operatorname{sdepth}_{S}(I S)$, then, by 1.4, we get $\operatorname{sdepth}_{S}(I S+J S) \geq \operatorname{depth}_{S}(I S)=$ $\operatorname{depth}_{S^{\prime}}(I)+n-r \geq \operatorname{depth}_{S^{\prime}}(I)+\operatorname{depth}_{S^{\prime \prime}}(J)>\operatorname{depth}_{S}(I S+J S)$.

If sdepth ${ }_{S}(I S+J S)<\operatorname{sdepth}_{S}(I S)$, it follows that $\operatorname{sdepth}_{S}(I S+J S) \geq \operatorname{sdepth}_{S^{\prime \prime}}(J)+$ $\operatorname{sdepth}_{S^{\prime}}\left(S^{\prime} / I\right) \geq \operatorname{depth}_{S^{\prime \prime}}(J)+\operatorname{depth}_{S^{\prime}}\left(S^{\prime} / I\right)=\operatorname{depth}_{S}(I S+J S)$. In the both cases, the ideal $I S+J S$ satisfies the Stanley conjecture. The case when I and $S^{\prime \prime} / J$ satisfy the Stanley conjecture is similar. (4) The proof is similar with the proof of (3), using Theorem 1.3(2) and Proposition 1.1(3).

Note that, by the proof of Corollary 1.8(1), if $\operatorname{sdepth}_{S}(I S+J S)=\operatorname{sdepth}_{S}(I S)$ and if Stanley conjecture holds for I, then $\operatorname{sdepth}_{S}(I S+J S) \geq \operatorname{depth}_{S}(I S+J S)+n-r-$ $\operatorname{depth}_{S^{\prime \prime}}\left(S^{\prime \prime} / J\right)$. Analogously, if $\operatorname{sdepth}_{S}(S /(I S \cap J S))=\operatorname{sdepth}_{S}(I S)$ and if Stanley conjecture holds for S^{\prime} / I, then $\operatorname{sdepth}_{S}(S /(I S \cap J S)) \geq \operatorname{depth}_{S}(S /(I S \cap J S))+n-r-$ $\operatorname{depth}_{S^{\prime \prime}}\left(S^{\prime \prime} / J\right)$.

Corollary 1.9. Let $I_{j} \subset S_{j}:=\left[x_{j 1}, \ldots, x_{n_{j}}\right]$ be some monomial ideals, where $k \geq 2, n_{j} \geq 1$ and $1 \leq j \leq k$. Denote $S=K\left[x_{j i}: 1 \leq j \leq k, 1 \leq i \leq n_{j}\right]$. Then, the following inequalities hold:
(1) $\operatorname{sdepth}_{S}\left(I_{1} S \cap \cdots \cap I_{k} S\right) \geq \operatorname{sdepth}_{S_{1}}\left(I_{1}\right)+\cdots+\operatorname{sdepth}_{S_{k}}\left(I_{k}\right)$.
(2) $\operatorname{sdepth}_{S}\left(I_{1} S+\cdots+I_{k} S\right) \geq \min \left\{\operatorname{sdepth}_{S_{1}}\left(I_{1}\right)+n_{2}+\cdots+n_{k}, \operatorname{sdepth}_{S_{2}}\left(I_{2}\right)+\right.$ $\left.\operatorname{sdepth}_{S_{1}}\left(S_{1} / I_{1}\right)+n_{3}+\cdots+n_{k}, \ldots, \operatorname{sdepth}_{S_{k}}\left(I_{k}\right)+\operatorname{sdepth}_{S_{k-1}}\left(S_{k-1} / I_{k-1}\right)+\cdots+\operatorname{sdepth}_{S_{1}}\left(S_{1} / I_{1}\right)\right\}$.
$\operatorname{sdepth}_{S}\left(I_{1} S+\cdots+I_{k} S\right) \leq \min \left\{\operatorname{sdepth}_{S}\left(I_{j} S\right): j=1, \ldots, k\right\}$.
(3) $\operatorname{sdepth}_{S}\left(S /\left(I_{1} S \cap \cdots \cap I_{k} S\right)\right) \geq \min \left\{\operatorname{sdepth}_{S_{1}}\left(S_{1} / I_{1}\right)+n_{2}+\cdots+n_{k}, \operatorname{sdepth}_{S_{2}}\left(S_{2} / I_{2}\right)+\right.$ $\left.\operatorname{sdepth}_{S_{1}}\left(I_{1}\right)+n_{3}+\cdots+n_{k}, \ldots, \operatorname{sdepth}_{S_{k}}\left(S_{k} / I_{k}\right)+\operatorname{sdepth}_{S_{k-1}}\left(I_{k-1}\right)+\cdots+\operatorname{sdepth}_{S_{1}}\left(I_{1}\right)\right\}$ $\operatorname{sdepth}_{S}\left(S /\left(I_{1} S \cap \cdots \cap I_{k} S\right)\right) \leq \min \left\{\operatorname{sdepth}_{S}\left(S / I_{j} S\right): j=1, \ldots, k\right\}$.
(4) $\operatorname{sdepth}_{S}\left(S /\left(I_{1} S+\cdots+I_{k} S\right)\right) \geq \operatorname{sdepth}_{S_{1}}\left(I_{1} S\right)+\cdots+\operatorname{sdepth}_{S_{k}}\left(I_{k} S\right)$.
(5) $\operatorname{depth}_{S}\left(I_{1} S \cap \cdots \cap I_{k} S\right)=\operatorname{depth}_{S}\left(I_{1} S+\cdots+I_{k} S\right)+(k-1)=\operatorname{depth}_{S_{1}}\left(I_{1}\right)+\cdots+$ $\operatorname{depth}_{S_{k}}\left(I_{k}\right)$.
Proof. We use induction on $k \geq 2$ and we apply Proposition 1.1 and Theorem 1.3.
Corollary 1.10. With the notations of the previous Corollary, we have:
(1) If I_{1}, \ldots, I_{k} satisfy the Stanley Conjecture, then $I_{1} S \cap \cdots \cap I_{k} S$ satisfies the Stanley Conjecture.
(4) If $S / I_{1}, \ldots, S / I_{k}$ satisfy the Stanley Conjecture, then $S /\left(I_{1} S+\cdots+I_{k} S\right)$ satisfies the Stanley Conjecture.
(2) If $1 \leq l \leq n$ is an integer and the Stanley conjecture hold for I_{j} for all $1 \leq j \leq n$ and for S / I_{j} for all $j \neq l$ then, the Stanley Conjecture holds for $I_{1} S+\cdots+I_{k} S$.
(3) If $1 \leq l \leq n$ is an integer and the Stanley conjecture hold for S_{j} / I_{j} for all $1 \leq j \leq n$ and for I_{j} for all $j \neq l$ then, the Stanley Conjecture holds for $S /\left(I_{1} S \cap \cdots \cap I_{k} S\right)$.
Proof. (1) We use induction on k and apply Corollary 1.9(1).
(4) We use induction on k and apply Corollary 1.9(4).
(2) We use induction on $k \geq 2$. If $k=2$, we are done by. Now, suppose $k \geq 2$. We may assume that $l=k$. Denote $S^{\prime}=K\left[x_{j i}: 1 \leq j \leq k-1,1 \leq i \leq n_{j}\right]$ and consider the ideal $I^{\prime}:=I_{1} S^{\prime}+\cdots+I_{k-1} S^{\prime} \subset S$. By (4), it follows that the Stanley Conjecture holds for S^{\prime} / I^{\prime}. Also, by induction hypothesis, the Stanley Conjecture holds for I^{\prime}.We denote $I=I_{1} S+\cdots+I_{k} S$. According to Corollary 1.9(3), since Stanley conjecture hold for S^{\prime} / I^{\prime}, I^{\prime} and I_{k} and since $I=I^{\prime} S+I_{k} S$, it follows that the Stanley Conjecture holds for I.
(3) The proof is similar to the proof of (2).

Corollary 1.11. With the notations of 1.9 , if all $n_{j} \leq 5$ and all I_{j}^{\prime} s are squarefree, then $I_{1} S \cap \cdots \cap I_{k} S, I_{1} S+\cdots+I_{k} S, S /\left(I_{1} S \cap \cdots \cap I_{k} S\right)$ and $S /\left(I_{1} S+\cdots+I_{k} S\right)$ satisfy the Stanley Conjecture.
Proof. Indeed, if $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ is a squarefree monomial ideal with $n \leq 5$, then both I and S / I satisfies the Stanley Conjecture, see [8] and [9]. Therefore, $I_{j}^{\prime} s$ and $S_{j} / I_{j}^{\prime} s$ satisfy the Stanley Conjecture. By Corollary 1.10 we are done.
Example 1.12. Let $I=\left(x_{11}, \ldots, x_{1 n_{1}}\right) \cap\left(x_{21}, \ldots, x_{2 n_{2}}\right) \cap \cdots \cap\left(x_{k 1}, \ldots, x_{k n_{k}}\right) \subset S$, where $k \geq 2, n_{j} \geq 1,1 \leq j \leq k$ and $S=K\left[x_{j i}: 1 \leq j \leq k, 1 \leq i \leq n_{j}\right]$. According to Corollary $1.9(1), \operatorname{sdepth}_{S}(I) \geq\left\lceil n_{1} / 2\right\rceil+\cdots+\left\lceil n_{k} / 2\right\rceil$. Note that $\operatorname{sdepth}_{S}(I) \geq \operatorname{depth}_{S}(I)=k$. Also, according to Corollary 2.8 or [5, Theorem 1.1], $\operatorname{sdepth}_{S}(I) \leq \min \left\{n-\left\lfloor n_{j} / 2\right\rfloor: 1 \leq j \leq k\right\}$.

Now, we want to estimate $\operatorname{sdepth}_{S}(S / I)$. According to Corollary 1.9(3), we have:

$$
\begin{aligned}
& \operatorname{sdepth}_{S}(S / I) \geq \min \left\{n_{2}+\cdots+n_{k},\left\lceil n_{1} / 2\right\rceil+n_{3}+\cdots+n_{k},\left\lceil n_{1} / 2\right\rceil+\right. \\
& \left.\quad+\left\lceil n_{2} / 2\right\rceil+n_{4}+\cdots+n_{k}, \ldots,\left\lceil n_{1} / 2\right\rceil+\cdots+\left\lceil n_{k-1} / 2\right\rceil+n_{k}\right\}
\end{aligned}
$$

Note that $\operatorname{sdepth}_{S}(S / I) \geq \operatorname{depth}_{S}(S / I)=k-1$. Also, according to Corollary 2.8 or Corollary 1.9(3), we have $\operatorname{sdepth}_{S}(S / I) \leq \min \left\{n-n_{j}: 1 \leq j \leq k\right\}$.

2 The general case

In the following, we consider $1 \leq s \leq r+1 \leq n$ three integers, with $n \geq 2$. We denote $S^{\prime \prime}:=K\left[x_{1}, \ldots, x_{r}\right], S^{\prime \prime}:=K\left[x_{s}, \ldots, x_{n}\right]$ and $S:=K\left[x_{1}, \ldots, x_{n}\right]$. Let $p:=r-s+1$.

Lemma 2.1. Let $u \in S^{\prime}$ and $v \in S^{\prime \prime}$ be two monomials, $Z \subset\left\{x_{1}, \ldots, x_{r}\right\}$ and $W \subset$ $\left\{x_{s}, \ldots, x_{n}\right\}$ two subsets of variables. We denote $\bar{Z}:=Z \cup\left\{x_{r+1}, \ldots, x_{n}\right\}$ and $\bar{W}:=W \cup$ $\left\{x_{1}, \ldots, x_{s-1}\right\}$. If $L:=u K[\bar{Z}] \cap v K[\bar{W}]$, then $L=(0)$ or $L=\operatorname{lcm}(u, v) K[(Z \cup W) \backslash Y]$, where $Y \subset\left\{x_{s}, \ldots, x_{r}\right\}$ and $|(Z \cup W) \backslash Y| \geq|Z|+|W|-p$.

Proof. If $L \neq(0)$, according to Lemma $1.2, L=\operatorname{lcm}(u, v) K[\bar{Z} \cap \bar{W}]$. In order to complete the proof, it is enough to notice that $\bar{Z} \cap \bar{W}=(Z \cup W) \backslash Y$, where $Y \subset\left\{x_{s}, \ldots, x_{r}\right\}$ is a subset of variables.

Now, we are able to prove the following theorem, which generalize some results of Proposition 1.1 and Theorem 1.3.

Theorem 2.2. Let $I \subset S^{\prime}$ and $J \subset S^{\prime \prime}$ be two monomial ideals. Then:
(1) $\operatorname{sdepth}_{S}(I S \cap J S) \geq \operatorname{sdepth}_{S^{\prime}}(I)+\operatorname{sdepth}_{S^{\prime \prime}}(J)-p=\operatorname{sdepth}_{S}(I S)+\operatorname{sdepth}_{S}(J S)-n$.
(2) $\operatorname{sdepth}_{S}(S /(I S+J S)) \geq \operatorname{sdepth}_{S^{\prime}}\left(S^{\prime} / I\right)+\operatorname{sdepth}_{S^{\prime \prime}}\left(S^{\prime \prime} / J\right)-p=\operatorname{sdepth}_{S}(S / I S)+$ $\operatorname{sdepth}_{S}(S / J S)-n$.
(3) $\operatorname{sdepth}_{S}(I S+J S) \geq \min \left\{\operatorname{sdepth}_{S}(I S), \operatorname{sdepth}_{S^{\prime \prime}}(J)+\operatorname{sdepth}_{S^{\prime}}\left(S^{\prime} / I\right)-p\right\}=$ $=\min \left\{\operatorname{sdepth}_{S}(I S), \operatorname{sdepth}_{S}(J S)+\operatorname{sdepth}_{S}(S / I S)-n\right\}$.
(4) $\operatorname{sdepth}_{S}(S /(I S \cap J S)) \geq \min \left\{\operatorname{sdepth}_{S}(S / I S), \operatorname{sdepth}_{S^{\prime \prime}}\left(S^{\prime \prime} / J\right)+\operatorname{sdepth}_{S^{\prime}}(I)-p\right\}=$ $=\min \left\{\operatorname{sdepth}_{S}(S / I S), \operatorname{sdepth}_{S}(S / J S)+\operatorname{sdepth}_{S}(I S)-n\right\}$.

Proof. (1) We consider $I=\bigoplus_{i=1}^{a} u_{i} K\left[Z_{i}\right]$ and $J=\bigoplus_{j=1}^{b} v_{j} K\left[W_{j}\right]$ two Stanley decomposition for I, respective for J. Then $I S=\bigoplus_{i=1}^{a} u_{i} K\left[\bar{Z}_{i}\right]$, where $\bar{Z}_{i}=Z_{i} \cup\left\{x_{r+1}, \ldots, x_{n}\right\}$ and $J S=\bigoplus_{j=1}^{b} v_{i} K\left[\bar{W}_{i}\right]$, where $\bar{W}_{j}=W_{j} \cup\left\{x_{1}, \ldots, x_{s-1}\right\}$. We have $I S \cap J S=\bigoplus_{i=1}^{a} \bigoplus_{j=1}^{b} L_{i j}$ a Stanley decomposition for $I S \cap J S$, where $L_{i j}:=u_{i} K\left[\bar{Z}_{i}\right] \cap v_{j}\left[\bar{W}_{j}\right]$. According to Lemma 2.1, $L_{i j}=\{0\}$ or $L_{i j}=\operatorname{lcm}\left(u_{i}, v_{j}\right) K\left[\left(Z_{i} \cup W_{j}\right) \backslash Y_{i j}\right]$, where $Y_{i j} \subset\left\{x_{s}, \ldots, x_{r}\right\}$ and $\left|\left(Z_{i} \cup W_{j}\right) \backslash Y_{i j}\right| \geq\left|Z_{i}\right|+\left|W_{j}\right|-p$. Therefore, we are done.
(2) The proof is similar with the proof of (1).
(3) We consider $S^{\prime} / I=\bigoplus_{i=1}^{a} u_{i} K\left[Z_{i}\right]$ and $J=\bigoplus_{j=1}^{b} v_{j} K\left[W_{j}\right]$ two Stanley decomposition for S^{\prime} / I, respective for J. Then $S / I S=\bigoplus_{i=1}^{a} u_{i} K\left[\bar{Z}_{i}\right]$, where $\bar{Z}_{i}=Z_{i} \cup\left\{x_{r+1}, \ldots, x_{n}\right\}$ and $J S=\bigoplus_{j=1}^{b} v_{i} K\left[\bar{W}_{i}\right]$, where $\bar{W}_{j}=W_{j} \cup\left\{x_{1}, \ldots, x_{s-1}\right\}$. We use the decomposition:

$$
I S+J S=((I S+J S) \cap I S) \oplus((I S+J S) \cap(S / I S))=I S \oplus(J S \cap(S / I S))
$$

If follows, that $\operatorname{sdepth}_{S}(I S+J S) \geq \min \left\{\operatorname{sdepth}_{S}(I S), \operatorname{sdepth}_{S}(J S \cap(S / I S))\right\}$. We have $J S \cap S / I S=\bigoplus_{i=1}^{a} \bigoplus_{j=1}^{b} L_{i j}$ a Stanley decomposition for $I S \cap J S$, where $L_{i j}:=u_{i} K\left[\bar{Z}_{i}\right] \cap$ $v_{j}\left[\bar{W}_{j}\right]$. By Lemma 2.1, it follows that $\operatorname{sdepth}_{S}(J S \cap(S / I S)) \geq \operatorname{sdepth}_{S^{\prime}}\left(S^{\prime} / I\right)+\operatorname{sdepth}_{S^{\prime \prime}}(J)$ and therefore we are done.
(4) The proof is similar with the proof of (3).

Remark 2.3. Note that the results of the previous Theorem do not depend on the numbers r and s. Therefore, we can reformulate the Theorem 2.2 in terms of arbitrary monomial ideals $I, J \subset S$. Also, if $I, J \subset S$ are two monomial ideals, the minimal number p which can be chosen, by a reordering of the variables, is $p=|\operatorname{supp}(I) \cap \operatorname{supp}(J)|$.

Also, as in Remark 1.5, we have $\operatorname{sdepth}_{S}((I+J) / I) \geq \operatorname{sdepth}_{S}(J)+\operatorname{sdepth}_{S}(S / I)-n$. Therefore, in particular, if $I \subset J$, then $\operatorname{sdepth}_{S}(J / I) \geq \operatorname{sdepth}_{S}(J)+\operatorname{sdepth}_{S}(S / I)-n$.

Using the previous remark, we have the following Corollary.
Corollary 2.4. If $I, J \subset S$ are two monomial ideals and $|G(J)|=m$, then:
(1) $\operatorname{sdepth}_{S}(I \cap J) \geq \operatorname{sdepth}_{S}(I)-\lfloor m / 2\rfloor$.
(2) $\operatorname{sdepth}_{S}(I+J) \geq \min \left\{\operatorname{sdepth}_{S}(I), \operatorname{sdepth}_{S}(S / I)-\lfloor m / 2\rfloor\right\}$.
$\operatorname{sdepth}_{S}(I+J) \geq \operatorname{sdepth}_{S}(I)-m$.
(3) $\operatorname{sdepth}_{S}(S /(I+J)) \geq \operatorname{sdepth}_{S}(S / I)-m$.
(4) $\operatorname{sdepth}_{S}(S /(I \cap J)) \geq \min \left\{\operatorname{sdepth}_{S}(S / I), \operatorname{sdepth}_{S}(I)-m\right\}$. $\operatorname{sdepth}_{S}(S /(I \cap J)) \geq \min \left\{n-m, \operatorname{sdepth}_{S}(S / I)-\lfloor m / 2\rfloor\right\}$.
(5) $\operatorname{sdepth}_{S}((I+J) / I) \geq \operatorname{sdepth}_{S}(S / I)-\lfloor m / 2\rfloor$. $\operatorname{sdepth}_{S}((I+J) / J) \geq \operatorname{sdepth}_{S}(I)-m$.

Proof. We apply Theorem 2.2 and use the facts that $\operatorname{sdepth}_{S}(J) \geq n-\lfloor m / 2\rfloor$, see [6, Theorem 2.3] and $\operatorname{sdepth}_{S}(S / J) \geq n-m$, see [2, Proposition 1.2].

Corollary 2.5. If $I \subset S$ is a monomial ideal and $u \in S$ a monomial, then:
(1) $\operatorname{sdepth}_{S}(I \cap(u)) \geq \operatorname{sdepth}_{S}(I)$.
(2) $\operatorname{sdepth}_{S}(I, u) \geq \min \left\{\operatorname{sdepth}_{S}(I), \operatorname{sdepth}_{S}(S / I)\right\}$.
(3) $\operatorname{sdepth}_{S}(S /(I, u)) \geq \operatorname{sdepth}_{S}(S / I)-1$.
(4) $\operatorname{sdepth}_{S}(S /(I \cap(u))) \geq \operatorname{sdepth}_{S}(S / I)$.
A. Rauf [10] proved that $\operatorname{depth}_{S}(S /(I: u)) \geq \operatorname{depth}_{S}(S / I)$, for any monomial ideal $I \subset S$ and any monomial $u \in S \backslash I$, see [10, Corollary 1.3]. We will prove that similar results hold for $\operatorname{sdepth}_{S}(I: u)$ and $\operatorname{sdepth}_{S}(S /(I: u))$. In order to show that, we use Corollary 2.5 and the following result from [2].

Theorem 2.6. [2, Theorem 1.1] Let $I \subset S$ be a monomial ideal such that $I=v(I: v)$, for a monomial $v \in S$. Then $\operatorname{sdepth}_{S}(I)=\operatorname{sdepth}_{S}(I: v)$, $\operatorname{sdepth}_{S}(S / I)=\operatorname{sdepth}_{S}(S /(I: v))$.

Proposition 2.7. If $I \subset S$ is a monomial ideal and $u \in S$ a monomial, then:
(1) $\operatorname{sdepth}_{S}(I: u) \geq \operatorname{sdepth}_{S}(I)$. ([8, Proposition 1.3])
(2) $\operatorname{sdepth}_{S}(S /(I: u)) \geq \operatorname{sdepth}_{S}(S / I)$.

Proof. (1) Note that $I \cap(u)=u(I: u)$. By Theorem 2.6 and Corollary 2.5, it follows that $\operatorname{sdepth}_{S}(I: u)=\operatorname{sdepth}_{S}(I \cap(u)) \geq \operatorname{sdepth}_{S}(I)$. See another proof in [8].
(2) By Theorem 2.6 and Corollary 2.5, $\operatorname{sdepth}_{S}(S /(I: u))=\operatorname{sdepth}_{S}(S /(I \cap(u)) \geq$ $\operatorname{sdepth}_{S}(S / I)$.

Note that if $P \in \operatorname{Ass}(S / I)$ is an associated prime, then there exists a monomial $v \in S$ such that $P=(I: v)$. Using the above Proposition, we obtain again the results of Ishaq [5] and Apel [1].

Corollary 2.8. If $I \subset S$ is a monomial ideal, with $\operatorname{Ass}(S / I)=\left\{P_{1}, \ldots, P_{r}\right\}$. If we denote $d_{i}=h t\left(P_{i}\right)$, we have:
(1) $\operatorname{sdepth}_{S}(I) \leq \min \left\{n-\left\lfloor d_{i} / 2\right\rfloor: i=1, \ldots r\right\}$. (Ishaq)
(2) $\operatorname{sdepth}_{S}(S / I) \leq \min \left\{n-d_{i}: i=1, \ldots r\right\}$. (Apel)

Proof. (1) It is enough to notice that $\operatorname{sdepth}_{S}\left(P_{i}\right)=n-\left\lfloor d_{i} / 2\right\rfloor$. See also [5, Theorem 1.1].
(2) It is enough to notice that $\operatorname{sdepth}_{S}\left(P_{i}\right)=n-d_{i}$. See also [1].

Corollary 2.9. Let $I \subset S$ be a monomial ideal minimally generated by monomials, such that there exists a prime ideal $P \in \operatorname{Ass}(S / I)$ with $h t(P)=m$. Then $\operatorname{sdepth}_{S}(S / I)=n-m$.

Proof. It is a direct consequence of Theorem 2.6 and Corollary 2.8(2).
Remark 2.10. Let $I \subset S$ be a monomial ideal. Then $\operatorname{sdepth}_{S}(S / I)=n-1$ if and only if I is principal. Indeed, I is principal if and only if all the primes in $\operatorname{Ass}(S / I)$ have height 1. Therefore, we are done by Corollary 2.8(2).

Corollary 2.11. Let $k \geq 2$ be an integer, and let $I_{j} \subset S$ be some monomial ideals, where $1 \leq j \leq k$. Then:
(1) $\operatorname{sdepth}_{S}\left(I_{1} \cap \cdots \cap I_{k}\right) \geq \operatorname{sdepth}_{S}\left(I_{1}\right)+\cdots+\operatorname{sdepth}_{S}\left(I_{k}\right)-n(k-1)$.
(2) $\operatorname{sdepth}_{S}\left(I_{1}+\cdots+I_{k}\right) \geq \min \left\{\operatorname{sdepth}_{S}\left(I_{1}\right), \operatorname{sdepth}_{S}\left(I_{2}\right)+\operatorname{sdepth}_{S}\left(S / I_{1}\right)-n, \ldots\right.$, $\left.\operatorname{sdepth}_{S}\left(I_{k}\right)+\operatorname{sdepth}_{S}\left(S / I_{k-1}\right)+\cdots+\operatorname{sdepth}_{S}\left(S / I_{1}\right)-n(k-1)\right\}$.
(3) $\operatorname{sdepth}_{S}\left(S /\left(I_{1} \cap \cdots \cap I_{k}\right)\right) \geq \min \left\{\operatorname{sdepth}_{S}\left(S / I_{1}\right), \operatorname{sdepth}_{S}\left(S / I_{2}\right)+\operatorname{sdepth}_{S}\left(I_{1}\right)-\right.$ $\left.n, \ldots, \operatorname{sdepth}_{S}\left(S / I_{k}\right)+\operatorname{sdepth}_{S}\left(I_{k-1}\right)+\cdots+\operatorname{sdepth}_{S}\left(I_{1}\right)-n(k-1)\right\}$.
(4) $\operatorname{sdepth}_{S}\left(S /\left(I_{1}+\cdots+I_{k}\right)\right) \geq \operatorname{sdepth}_{S}\left(S / I_{1}\right)+\cdots+\operatorname{sdepth}_{S}\left(S / I_{k}\right)-n(k-1)$.

Proof. We use induction on $k \geq 2$ and we apply Theorem 2.2.
Corollary 2.12. Let $I, J \subset S$ be two monomial ideals, such that $G(J)=\left\{u_{1}, \ldots, u_{k}\right\}$ is the set of minimal monomial generators of J. Then:
(1) $\operatorname{sdepth}_{S}(I: J) \geq \operatorname{sdepth}_{S}\left(I: u_{1}\right)+\operatorname{sdepth}_{S}\left(I: u_{2}\right)+\cdots+\operatorname{sdepth}_{S}\left(I: u_{k}\right)-n(k-1) \geq$ $k \operatorname{sdepth}_{S}(I)-n(k-1)$.
(2) $\operatorname{sdepth}_{S}(S /(I: J)) \geq \min \left\{\operatorname{sdepth}_{S}\left(S /\left(I: u_{1}\right)\right), \operatorname{sdepth}_{S}\left(S /\left(I: u_{2}\right)\right)+\operatorname{sdepth}_{S}(I:\right.$ $\left.\left.u_{1}\right)-n, \ldots, \operatorname{sdepth}_{S}\left(S /\left(I: u_{k}\right)\right)+\operatorname{sdepth}_{S}\left(I: u_{k-1}\right)+\cdots+\operatorname{sdepth}_{S}\left(I: u_{1}\right)-n(k-1)\right\} \geq$ $\operatorname{sdepth}_{S}(S / I)+(k-1) \operatorname{sdepth}_{S}(I)-n(k-1)$.

Proof. (1) Note that $(I: J)=\left(I: u_{1}\right) \cap\left(I: u_{2}\right) \cap \cdots \cap\left(I: u_{k}\right)$. Therefore, the first inequality is a direct consequence of $2.11(1)$. The second inequality is a consequence of Proposition 2.7(1).
(2) Similarly to (1), we use Corollary 2.11(3) and Proposition 2.7(2).

Now, let $I \subset S$ be a monomial ideal and let $I=C_{1} \cap \cdots \cap C_{k}$, be the irredundant minimal decomposition of I. If we denote $P_{j}=\sqrt{C_{j}}$ for $1 \leq j \leq k$, we have $\operatorname{Ass}(S / I)=$ $\left\{P_{1}, \ldots, P_{k}\right\}$. In particular, if I is squarefree, $C_{j}=P_{j}$ for all j. Denote $d_{j}=h t\left(P_{j}\right)$, where $1 \leq i \leq k$. We may assume that $d_{1} \geq d_{2} \geq \cdots \geq d_{k}$. Using [3, Theorem 1.3], Proposition 2.8 and Corollary 2.11, we obtain, by straightforward computations, the following bounds for $\operatorname{sdepth}_{S}(I)$ and $\operatorname{sdepth}_{S}(S / I)$.

Corollary 2.13. (1) $n-\left\lfloor d_{1} / 2\right\rfloor \geq \operatorname{sdepth}_{S}(I) \geq n-\left\lfloor d_{1} / 2\right\rfloor-\cdots-\left\lfloor d_{k} / 2\right\rfloor$.
(2) $n-d_{1} \geq \operatorname{sdepth}_{S}(S / I) \geq n-\left\lfloor d_{1} / 2\right\rfloor-\cdots-\left\lfloor d_{k-1} / 2\right\rfloor-d_{k}$.

In a more general case, let $I=Q_{1} \cap \cdots \cap Q_{k}$ be the primary irredundant decomposition of $I, P_{i}=\sqrt{Q_{i}}$ and denote $q_{j}=\operatorname{sdepth}_{S}\left(Q_{j}\right)$ and $d_{j}=h t\left(P_{j}\right)$. We may assume that $d_{1} \geq d_{2} \geq \cdots \geq d_{k}$. Note that $q_{j} \leq n-d_{j} / 2$, since $P_{j}=\left(Q_{j}: u_{j}\right)$, where $u_{j} \in S$ is a monomial, and therefore $\operatorname{sdepth}_{S}\left(Q_{j}\right) \leq \operatorname{sdepth}_{S}\left(P_{j}\right)$, by Proposition 2.7(1). On the other hand, we obviously have $\operatorname{sdepth}_{S}\left(S / Q_{j}\right)=\operatorname{sdepth}_{S}\left(S / P_{j}\right)$. Using Proposition 2.8 and Corollary 2.11, we obtain, by straightforward computations, the following bounds for $\operatorname{sdepth}_{S}(I)$ and $\operatorname{sdepth}_{S}(S / I)$.

Corollary 2.14. (1) $n-\left\lfloor d_{1} / 2\right\rfloor \geq \operatorname{sdepth}_{S}(I) \geq q_{1}+\cdots+q_{k}-n(k-1)$.
(2) $n-d_{1} \geq \operatorname{sdepth}_{S}(S / I) \geq \min \left\{n-d_{1}, q_{1}-d_{2}, q_{1}+q_{2}-d_{3}-n, \ldots\right.$, $\left.q_{1}+\cdots+q_{k-1}-d_{k}-n(k-2)\right\}$.

Example 2.15. Let $I=Q_{1} \cap Q_{2} \cap Q_{3} \subset S:=K\left[x_{1}, \ldots, x_{7}\right]$, where $Q_{1}=\left(x_{1}^{2}, \ldots, x_{5}^{2}\right), Q_{2}=$ $\left(x_{4}^{3}, x_{5}^{3}, x_{6}^{3}\right)$ and $Q_{3}=\left(x_{6}^{3}, x_{6} x_{7}, x_{7}^{2}\right)$. Denote $P_{j}=\sqrt{Q_{j}}$. Note that $q_{3}=\operatorname{sdepth}_{S}\left(Q_{3}\right)=$ $\operatorname{sdepth}_{K\left[x_{6}, x_{7}\right]}\left(Q_{3} \cap K\left[x_{6}, x_{7}\right]\right)+5=1+5=6$. Also, since Q_{1} and Q_{2} are generated by powers of variables, by [3, Theorem 1.3], $q_{1}=7-\lfloor 5 / 2\rfloor=5$ and $q_{2}=7-\lfloor 3 / 2\rfloor=6$. According to Corollary 2.14, we have $5=7-\left\lfloor d_{1} / 2\right\rfloor \geq \operatorname{sdepth}_{S}(I) \geq q_{1}+q_{2}+q_{3}-14=3$ and $2=7-d_{1} \geq$ $\operatorname{sdepth}_{S}(S / I) \geq \min \left\{7-d_{1}, q_{1}-d_{2}, q_{1}+q_{2}-d_{3}-7\right\}=\min \{7-5,5-3,5+6-2-7\}=2$. Thus $\operatorname{sdepth}_{S}(I) \in\{3,4,5\}$ and $\operatorname{sdepth}_{S}(S / I)=2$.

On the other hand, $\operatorname{depth}_{S}(S / I) \leq \min \left\{n-\operatorname{depth}_{S}\left(S / P_{j}\right): j=1,2,3\right\}=2$. In particular, we have $\operatorname{sdepth}_{S}(I) \geq \operatorname{depth}_{S}(I)$ and $\operatorname{sdepth}_{S}(S / I) \geq \operatorname{depth}_{S}(S / I)$. Thus both I and S / I satisfy the Stanley conjecture. In fact, using CoCoA, we get $\operatorname{depth}_{S}(S / I)=2$.

We end this section, with the following Proposition.
Proposition 2.16. Let $I \subset J \subset S=K\left[x_{1}, \ldots, x_{n}\right]$ be two monomial ideals and denote $\bar{S}=S[y]$. Then:

$$
\operatorname{sdepth}_{S}(J / I)+1 \geq \operatorname{sdepth}_{\bar{S}}((J \bar{S}+(y)) / I \bar{S}) \geq \min \left\{\operatorname{sdepth}_{S}(J / I), \operatorname{sdepth}_{S}(S / I)+1\right\}
$$

Proof. In order to prove the first inequality, we consider $\bigoplus_{i=1}^{r} u_{i} K\left[Z_{i}\right]$, a Stanley decomposition of $(J \bar{S}+(y)) / I \bar{S}$. Note that $((J \bar{S}+(y)) / I \bar{S}) \cap S=J / I$ and therefore, $J / I=\bigoplus_{y \nmid u_{i}} u_{i} K\left[Z_{i} \backslash\{y\}\right]$ is a Stanley decomposition.

The second inequality follows from the fact that $(J \bar{S}+(y)) / I \bar{S}=J / I \oplus y(S / I)[y]$.

3 Some equivalent forms of Stanley conjecture

Proposition 3.1. The following assertions are equivalent:
(1) For any integer $n \geq 1$ and any monomial ideal $I \subset S=K\left[x_{1}, \ldots, x_{n}\right]$, Stanley conjecture holds for I, i.e. $\operatorname{sdepth}_{S}(I) \geq \operatorname{depth}_{S}(I)$.
(2) For any integer $n \geq 1$ and any monomial ideals $I, J \subset S$, if $\operatorname{sdepth}_{S}(I+J) \geq$ $\operatorname{depth}_{S}(I+J)$, then $\operatorname{sdepth}_{S}(I) \geq \operatorname{depth}_{S}(I)$.
(3) For any integers $n, m \geq 1$, any monomial ideal $I \subset S=K\left[x_{1}, \ldots, x_{n}\right]$, if $u_{1}, \ldots, u_{m} \in$ S is a regular sequence on S / I and $J=\left(u_{1}, \ldots, u_{m}\right)$, then if:

$$
\operatorname{sdepth}_{S}(I+J) \geq \operatorname{depth}_{S}(I+J) \Rightarrow \operatorname{sdepth}_{S}(I) \geq \operatorname{depth}_{S}(I)
$$

(4) For any integers $n, m \geq 1$, any monomial ideal $I \subset S=K\left[x_{1}, \ldots, x_{n}\right]$, if $u_{1}, \ldots, u_{m} \in$ S is a regular sequence on S / I and $J=\left(u_{1}, \ldots, u_{m}\right)$, then if:

$$
\operatorname{sdepth}_{S}(I+J)=\operatorname{depth}_{S}(I+J) \Rightarrow \operatorname{sdepth}_{S}(I)=\operatorname{depth}_{S}(I)
$$

(5) For any integer $n \geq 1$, any monomial ideal $I \subset S=K\left[x_{1}, \ldots, x_{n}\right]$, if $\bar{S}=S[y]$, then: $\operatorname{sdepth}_{\bar{S}}(I, y)=\operatorname{depth}_{S}(I) \Rightarrow \operatorname{sdepth}_{S}(I)=\operatorname{depth}_{S}(I)$.

Proof. (1) $\Rightarrow(2) \Rightarrow(3)$. Are obvious.
$(3) \Rightarrow(4)$. Assume $\operatorname{sdepth}_{S}(I+J)=\operatorname{depth}_{S}(I+J)$. Note that $\operatorname{depth}_{S}(I+J)=$ $\operatorname{depth}_{S}(I)-m$, since $u_{1}, \ldots, u_{m} \in S$ is a regular sequence on S / I. By Corollary 2.4(2), $\operatorname{sdepth}_{S}(I+J) \geq \operatorname{sdepth}_{S}(I)-m$. Since $\operatorname{sdepth}_{S}(I) \geq \operatorname{depth}_{S}(I)$ by (3), we get $\operatorname{sdepth}_{S}(I)=$ $\operatorname{depth}_{S}(I)$.
(4) \Rightarrow (5). It is obvious, since y is regular on $\bar{S} / I \bar{S}$ and we apply (4) for $I \bar{S}$.
(5) \Rightarrow (1). Let $I \subset S$ be a monomial ideal. If $k \geq 1$ is an integer, we denote $I_{k}=$ $\left(I, y_{1}, \ldots, y_{k}\right) \subset S_{k}:=S\left[y_{1}, \ldots, y_{k}\right]$. Note that y_{1}, \ldots, y_{k} is a regular sequence on S_{k} / I_{k} and therefore $\operatorname{depth}_{S_{k}}\left(I_{k}\right)=\operatorname{depth}_{S}(I)$. According to Corollary 1.6(1), we have:

$$
\operatorname{sdepth}_{S_{k}}\left(I_{k}\right) \geq \min \left\{\operatorname{sdepth}_{S}(I)+k, \operatorname{sdepth}_{S}(S / I)+\lceil k / 2\rceil\right\} .
$$

It follows that there exists $k_{0} \geq 1$, such that $\operatorname{sdepth}_{S_{k}}\left(I_{k}\right) \geq \operatorname{depth}_{S}(I)$ for any $k \geq k_{0}$. If we chose k_{0} minimal with this property, we claim that $\operatorname{sdepth}_{S_{k_{0}}}\left(I_{k_{0}}\right)=\operatorname{depth}_{S}(I)$. Indeed, it is enough to notice that $\operatorname{sdepth}_{S_{k}}\left(I_{k}\right) \leq \operatorname{sdepth}_{S_{k-1}}\left(I_{k-1}\right)+1$. Now, by applying (5) inductively, it follows that $\operatorname{sdepth}_{S}(I)=\operatorname{depth}_{S}(I)$.

Remark 3.2. Let $I \subset S=K\left[x_{1}, \ldots, x_{n}\right]$ be a monomial ideal such that $\operatorname{sdepth}_{S}(I) \geq$ $\operatorname{depth}_{S}(I)$. Let $u_{1}, \ldots, u_{m} \in S$ be a regular sequence on S / I and $J=\left(u_{1}, \ldots, u_{m}\right)$. Note that, by Proposition 1.1(3), $\operatorname{depth}_{S}(I \cap J)=\operatorname{depth}_{S}(I+J)+1=\operatorname{depth}_{S}(I)-m+1$. Also, by Corollary 2.4(1), we have $\operatorname{sdepth}_{S}(I \cap J) \geq \operatorname{sdepth}_{S}(I)-\lfloor m / 2\rfloor$. Assume sdepth $(I \cap J)=$ $\operatorname{depth}_{S}(I \cap J)$. It follows that $\operatorname{depth}_{S}(I)-m+1 \geq \operatorname{sdepth}_{S}(I)-\lfloor m / 2\rfloor \geq \operatorname{depth}_{S}(I)-$ $\lfloor m / 2\rfloor \geq \operatorname{depth}_{S}(I)-m+1$.

Therefore, $\operatorname{sdepth}_{S}(I)=\operatorname{depth}_{S}(I)$ and $\lfloor m / 2\rfloor=m-1$, and thus $m \leq 2$. In particular, if we could find an ideal $I \subset S$ such that, by denoting $\bar{S}=S\left[y_{1}, y_{2}, y_{3}\right]$, if $\operatorname{sdepth}_{\bar{S}}\left(I \bar{S} \cap\left(y_{1}, y_{2}, y_{3}\right)\right)=\operatorname{depth}_{S}(I)$, then we contradict the Stanley conjecture for I.

Proposition 3.3. The following assertions are equivalent:
(1) For any integer $n \geq 1$ and any monomial ideal $I \subset S=K\left[x_{1}, \ldots, x_{n}\right]$, Stanley conjecture holds for I, i.e. $\operatorname{sdepth}_{S}(I) \geq \operatorname{depth}_{S}(I)$.
(2) For any integer $n \geq 1$ and any monomial ideals $I, J \subset S$, if $\operatorname{sdepth}_{S}(I \cap J) \geq$ $\operatorname{depth}_{S}(I \cap J)$ then $\operatorname{sdepth}_{S}(I) \geq \operatorname{depth}_{S}(I)$.
(3) For any integers $n, m \geq 1$, any monomial ideal $I \subset S=K\left[x_{1}, \ldots, x_{n}\right]$, if $u_{1}, \ldots, u_{m} \in$ S is a regular sequence on S / I and $J=\left(u_{1}, \ldots, u_{m}\right)$, then:

$$
\operatorname{sdepth}_{S}(I \cap J) \geq \operatorname{depth}_{S}(I \cap J) \Rightarrow \operatorname{sdepth}_{S}(I) \geq \operatorname{depth}_{S}(I)
$$

Proof. (1) $\Rightarrow(2)$ and $(2) \Rightarrow(3)$. There is nothing to prove.
(3) \Rightarrow (1). Let $I \subset S$ be a monomial ideal. For any integer $k \geq 1$, we define $I_{k}:=$ $I \cap\left(y_{1}, \ldots, y_{k}\right) \subset S_{k}:=S\left[y_{1}, \ldots, y_{k}\right]$. Denote $J=\left(y_{1}, \ldots, y_{k}\right) \subset S_{k}$. Note that y_{1}, \ldots, y_{k} is a regular sequence on $S_{k} / I S_{k}$. By Corollary 2.4(1), we have $\operatorname{sdepth}_{S_{k}}\left(I_{k}\right) \geq \operatorname{sdepth}_{S}(I)+$ $\lceil k / 2\rceil$. On the other hand, by Corollary 1.6(5), $\operatorname{depth}_{S_{k}}\left(I_{k}\right)=\operatorname{depth}_{S}(I)+1$. It follows that there exists a $k_{0} \geq 1$, such that $\operatorname{sdepth}_{S_{k}}\left(I_{k}\right) \geq \operatorname{depth}_{S_{k}}\left(I_{k}\right)$ for any $k \geq k_{0}$, and therefore, by (3), we get sdepth ${ }_{S}(I) \geq \operatorname{depth}_{S}(I)$.

Proposition 3.4. The following assertions are equivalent:
(1) For any integer $n \geq 1$ and any monomial ideal $I \subset S=K\left[x_{1}, \ldots, x_{n}\right]$, Stanley conjecture holds for S / I, i.e. $\operatorname{sdepth}_{S}(S / I) \geq \operatorname{depth}_{S}(S / I)$.
(2) For any integer $n \geq 1$ and any monomial ideals $I, J \subset S$, if $\operatorname{sdepth}_{S}(S /(I \cap J)) \geq$ $\operatorname{depth}_{S}(S /(I \cap J))$ then $\operatorname{sdepth}_{S}(S / I) \geq \operatorname{depth}_{S}(S / I)$.
(3) For any integers $n, m \geq 1$, any monomial ideal $I \subset S=K\left[x_{1}, \ldots, x_{n}\right]$, if $u_{1}, \ldots, u_{m} \in$ S is a regular sequence on S / I and $J=\left(u_{1}, \ldots, u_{m}\right)$, then:

$$
\operatorname{sdepth}_{S}(S /(I \cap J)) \geq \operatorname{depth}_{S}(S /(I \cap J)) \Rightarrow \operatorname{sdepth}_{S}(S / I) \geq \operatorname{depth}_{S}(S / I)
$$

Proof. $(1) \Rightarrow(2)$ and $(2) \Rightarrow(3)$. There is nothing to prove.
$(3) \Rightarrow(1)$. Let $I \subset S$ be a monomial ideal. For any integer $k \geq 1$, we define $I_{k}:=$ $I \cap\left(y_{1}, \ldots, y_{k}\right) \subset S_{k}:=S\left[y_{1}, \ldots, y_{k}\right]$. Note that y_{1}, \ldots, y_{k} is a regular sequence on $S_{k} / I S_{k}$. By Corollary 2.4(4), $\operatorname{sdepth}_{S_{k}}\left(S_{k} / I_{k}\right) \geq \min \left\{n, \operatorname{sdepth}_{S}(S / I)+\lceil k / 2\rceil\right\}$. On the other hand, by Corollary 1.6(5), $\operatorname{depth}_{S_{k}}\left(S_{k} / I_{k}\right)=\operatorname{depth}_{S}(S / I)$. It follows that there exists a $k_{0} \geq 1$, such that $\operatorname{sdepth}_{S_{k}}\left(S_{k} / I_{k}\right) \geq \operatorname{depth}_{S_{k}}\left(S_{k} / I_{k}\right)$ for any $k \geq k_{0}$, and therefore, by (3), we get $\operatorname{sdepth}_{S}(S / I) \geq \operatorname{depth}_{S}(S / I)$.

Remark 3.5. Let $I \subset S=K\left[x_{1}, \ldots, x_{n}\right]$ be a monomial ideal such that $\operatorname{sdepth}_{S}(S / I) \geq$ $\operatorname{depth}_{S}(S / I)$. Let $u_{1}, \ldots, u_{m} \in S$ be a regular sequence on S / I and $J=\left(u_{1}, \ldots, u_{m}\right)$. Note that $\operatorname{depth}_{S}(S /(I \cap J))=\operatorname{depth}_{S}(S /(I+J))+1=\operatorname{depth}_{S}(S / I)-m+1$. Also, by Corollary 2.4(4), we have $\operatorname{sdepth}_{S}(S /(I \cap J)) \geq \min \left\{n-m\right.$, $\left.\operatorname{sdepth}_{S}(S / I)-\lfloor m / 2\rfloor\right\}$ Assume $\operatorname{sdepth}_{S}(S /(I \cap J))=\operatorname{depth}_{S}(S /(I \cap J))$.

It follows that $\operatorname{depth}_{S}(S / I)-m+1 \geq \min \left\{n-m, \operatorname{sdepth}_{S}(S / I)-\lfloor m / 2\rfloor\right\} \geq$ $\min \left\{n-m, \operatorname{depth}_{S}(S / I)-\lfloor m / 2\rfloor\right\} \geq \min \left\{n-m, \operatorname{depth}_{S}(S / I)-m+1\right\}=\operatorname{depth}_{S}(S / I)-$ $m+1$ and therefore, we have equalities.

If I is principal, then $\operatorname{depth}_{S}(S / I)=n-1$ and therefore $\min \left\{n-m, \operatorname{depth}_{S}(S / I)-\right.$ $\lfloor m / 2\rfloor\}=n-m$. It follows that $\operatorname{depth}_{S}(S / I)-\lfloor m / 2\rfloor=n-1-\lfloor m / 2\rfloor \geq n-m$ which is true for all m. If I is not principal, then by Remark 2.10, $\operatorname{depth}_{S}(S / I) \leq n-2$. It follows that $\min \left\{n-m, \operatorname{sdepth}_{S}(S / I)-\lfloor m / 2\rfloor\right\}=\operatorname{sdepth}_{S}(S / I)-\lfloor m / 2\rfloor=\operatorname{depth}_{S}(S / I)-m+1$. Therefore, $\operatorname{sdepth}_{S}(S / I)=\operatorname{depth}_{S}(S / I)$ and $m \leq 2$.

In particular, if we could find an ideal $I \subset S$ which is not principal, such that, denoting $\bar{S}=S\left[y_{1}, y_{2}, y_{3}\right]$, if $\operatorname{sdepth}_{\bar{S}}\left(\bar{S} /\left(I \bar{S} \cap\left(y_{1}, y_{2}, y_{3}\right)\right)\right)=\operatorname{depth}_{S}(S / I)$, we contradict the Stanley conjecture for S / I.

As a particular case of Example 1.12, we consider the following Lemma.
Lemma 3.6. Let $J=\left(x_{1}, \ldots, x_{n}\right) \cap\left(y_{1}, \ldots, y_{m}\right) \subset S^{\prime}=K\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right]$ with $n \geq m$. Then:
(1) $m \geq \operatorname{sdepth}_{S^{\prime}}\left(S^{\prime} / J\right) \geq \min \{m,\lceil n / 2\rceil\}$.
(2) $\operatorname{depth}_{S^{\prime}}\left(S^{\prime} / J\right)=1$.

In particular, if $n \geq 2 m-1$, then $\operatorname{sdepth}_{S^{\prime}}\left(S^{\prime} / J\right)=m$.
Proposition 3.7. The following assertions are equivalent:
(1) For any integer $n \geq 1$ and any monomial ideal $I \subset S=K\left[x_{1}, \ldots, x_{n}\right]$, Stanley conjecture holds for S / I and I.
(2) For any integer $n \geq 1$ and any monomial ideals $I, J \subset S$ with $\operatorname{supp}(I) \cap \operatorname{supp}(J)=\emptyset$, we have: If $\operatorname{sdepth}_{S}((I+J) / I) \geq \operatorname{depth}_{S}((I+J) / I)$, then $\operatorname{sdepth}_{S}(S / I) \geq \operatorname{depth}_{S}(S / I)$ and $\operatorname{sdepth}_{S}(J) \geq \operatorname{depth}_{S}(J)$.

Proof. (1) \Rightarrow (2). Let $I, J \subset S$ be two monomial ideals, with $\operatorname{supp}(I) \cap \operatorname{supp}(J)=\emptyset$. According to Lemma 1.4, we have $\operatorname{depth}_{S}((I+J) / I)=\operatorname{depth}_{S}(I+J)=\operatorname{depth}_{S}(S / I)+$ $\operatorname{depth}_{S}(J)-n$. On the other hand, by Remark 1.5 and $(1), \operatorname{sdepth}_{S}((I+J) / I) \geq \operatorname{sdepth}_{S}(S / I)+$ $\operatorname{sdepth}_{S}(J)-n \geq \operatorname{depth}_{S}(S / I)+\operatorname{depth}_{S}(J)-n=\operatorname{depth}_{S}((I+J) / I)$.
$(2) \Rightarrow(1)$. Let $I \subset S$ be a monomial ideal. For any positive integer k, we denote $S_{k}=$ $S\left[y_{1}, \ldots, y_{k}\right]$ and $I_{k}=\left(I, y_{1}, \ldots, y_{k}\right) \subset S_{k}$. Assume sdepth $(S / I)<\operatorname{depth}_{S}(S / I)$. Since, by Remark 1.5, we have $\operatorname{sdepth}_{S_{k}}\left(I_{k} / I S_{k}\right) \geq \operatorname{sdepth}_{S}(S / I)+\lfloor k / 2\rfloor$ and since depth ${ }_{S_{k}}\left(I_{k} / I S_{k}\right)=$ $\operatorname{depth}_{S}(S / I)+1$ for all k, it follows that there exists a positive integer k_{0} such that $\operatorname{sdepth}_{S_{k}}\left(I_{k} / I S_{k}\right) \geq \operatorname{depth}_{S_{k}}\left(I_{k} / I S_{k}\right), \quad(\forall) k \geq k_{0}(*) .$. By (2), it follows that $\operatorname{sdepth}_{S}(S / I) \geq$ $\operatorname{depth}_{S}(S / I)$, a contradiction.

Now, assume $\operatorname{sdepth}_{S}(I)<\operatorname{depth}_{S}(I)$, and denote $J_{k}=\left(y_{1}, \ldots, y_{2 k-1}\right) \cap\left(y_{2 k}, \ldots, y_{3 k-1}\right) \subset$ $S_{3 k-1}:=S\left[y_{1}, \ldots, y_{3 k-1}\right]$. According to Lemma 3.6, we have $\operatorname{sdepth}_{S_{3 k-1}}\left(S_{3 k-1} / J_{k}\right)=n+k$ and depth $S_{3 k-1}\left(S_{3 k-1} / J_{k}\right)=n+1$. Let $I_{k}:=I S_{3 k-1}+J_{k}$. By Remark 1.5, sdepth $_{S_{3 k-1}}\left(I_{k} / J_{k}\right) \geq$ $\operatorname{sdepth}_{S}(I)+k$. On the other hand depth ${ }_{S_{3 k-1}}\left(I_{k} / J_{k}\right)=\operatorname{depth}_{S}(I)+\operatorname{depth}_{S_{3 k-1}}\left(S_{3 k-1} / J_{k}\right)-$ $n=\operatorname{depth}_{S}(I)+1$. Therefore, there exists a positive integer k_{0}, such that sdepth $S_{S_{k k-1}}\left(I_{k} / J_{k}\right) \geq$ $\operatorname{depth}_{S_{3 k-1}}\left(I_{k} / J_{k}\right)$ for any $k \geq k_{0}$. It follows, by (2), that $\operatorname{sdepth}_{S}(I) \geq \operatorname{depth}_{S}(I)$, a contradiction.

References

[1] J. Apel, On a conjecture of R. P. Stanley; Part II - Quotients Modulo Monomial Ideals, J. of Alg. Comb. 17, (2003), 57-74.
[2] M. Cimpoeas, Stanley depth of monomial ideals with small number of generators, Central European Journal of Mathematics, vol. 7, no. 4, (2009), 629-634.
[3] M. Cimpoeas, Stanley depth for monomial complete intersection, Bull. Math. Soc. Sc. Math. Roumanie 51(99), no.3, (2008), 205-211.
[4] J. Herzog, M. Vladoiu, X. Zheng, How to compute the Stanley depth of a monomial ideal, Journal of Algebra 322(9), (2009), 3151-3169.
[5] M. Ishaq, Values and bounds of sdepth, Preprint 2010
[6] R. Okazaki, A lower bound of Stanley depth of monomial ideals, J. Commut. Algebra vol. 3, no. 1, (2011), 83-88.
[7] A. Popescu, Special Stanley decompositions, Bull. Math. Soc. Sci. Math. Roumanie 53(101) No. 4, 2010, 363-372.
[8] D. Popescu, An inequality between depth and Stanley depth, http://arxiv.org/pdf/0905.4597.pdf, Preprint 2010.
[9] D. Popescu, Stanley depth of multigraded modules, Journal of Algebra, 321 (10), 2009, 2782-2797.
[10] A. Rauf, Depth and sdepth of multigraded module, Communications in Algebra, vol. 38, Issue 2, (2010), 773-784.
[11] A. Rauf, Stanley Decompositions, Pretty Clean Filtrations and Reductions Modulo Regular Elements, Bull. Math. Soc. Sc. Math. Roumanie, 50(98), (2007), 347-354.
[12] Y. Shen, Stanley depth of complete intersection monomial ideals and upper-discrete partitions, Journal of Algebra 321(2009), 1285-1292.
[13] R. P. Stanley, Linear Diophantine equations and local cohomology, Invent. Math. 68, 1982, 175-193.

Mircea Cimpoeaş, Simion Stoilow Institute of Mathematics, Research unit 5, P.O.Box 1-764, Bucharest 014700, Romania
E-mail: mircea.cimpoeas@imar.ro

[^0]: ${ }^{1}$ The support from the UEFISCDI grant $247 / 2011$ of Romanian Ministry of Education, Research and Innovation is gratefully acknowledged.

