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Abstract

In this paper, we show that the regularity of the q-th quasi-symbolic power I((q))

and the regularity of the q-th bracket power I [q] of a monomial ideal of Borel type I,
satisfy the relations reg(I((q))) ≤ q reg(I), respectively reg(I [q]) ≥ q reg(I). Also, we
give an upper bound for reg(I [q]).
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Introduction

Let K be an infinite field, and let S = K[x1, . . . , xn], n ≥ 2 the polynomial ring over
K. Bayer and Stillman [1] note that Borel fixed ideals I ⊂ S satisfy the following property:

(∗) (I : x∞j ) = (I : (x1, . . . , xj)
∞) for all j = 1, . . . , n.

Herzog, Popescu and Vladoiu [8] define a monomial ideal I to be of Borel type if it satisfies
(∗). We mention that this concept appears in [3, Definition 1.3] as the so called weakly
stable ideal. Also, this concept appears in [2, Definition 3.1], as the so called monomial
ideal of nested type. We further studied this class of monomial ideals in [4] and [5].

In the first section, we recall some results regarding ideals of Borel type. Also, we discuss
the relation between the sequential chain of an ideal of Borel type I, defined in [8], and
the primary decomposition of I.

Let I ⊂ S be a monomial ideal and I =
⋂r

i=1Qi the an irreduntant primary decomposi-
tion of I, obtained in a canonical way. We define I((q)) :=

⋂r
i=1Q

q
i , the q-th quasi-symbolic

power of I, see Definition 2.1. We prove that if I is an ideal of Borel type, then I((q)) and
I [q] are also ideals of Borel type, where I [q] = (uq : u ∈ I monomial) is the q-th bracket
power of I.

In [5], we proved that reg(Iq) ≤ q reg(I). We give a similar result for the q-th quasi-
symbolic power. More precisely, we prove that reg(I((q))) ≤ q reg(I), see Theorem 2.4.
Also, we prove that reg(I [q]) ≥ q reg(I), see Theorem 2.6. In Proposition 2.11, we prove
that reg(I [q]) ≤ q reg(I) + (q − 1)(n− 1).

1The support from grant ID-PCE-2011-1023 of Romanian Ministry of Education, Research and Inno-
vation is gratefully acknowledged.
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1 Some basic facts on Borel type ideals.

Firstly, we recall the following equivalent characterizations of ideals of Borel type given
in [8] and in [2].

Proposition 1.1. Let I ⊂ S be a monomial ideal. The following conditions are equivalent:
(a) I is an ideal of Borel type.
(b) For any 1 ≤ j < i ≤ n, we have (I : x∞i ) ⊂ (I : x∞j ).
(c) Each P ∈ Ass(S/I) has the form P = (x1, . . . , xm) for some 1 ≤ m ≤ n.

Let I ⊂ S be a monomial ideal of Borel type. Since each prime ideal P ∈ Ass(S/I) is of
the form P = (x1, . . . , xm) for some 1 ≤ m ≤ n, we can assume that I has an irredundant
primary decomposition:

I =
r⋂

i=1

Qi; such that Pi :=
√
Qi = (x1, . . . , xni−1

), n ≥ n0 > n1 > · · · > nr−1 ≥ 1. (1)

For each 0 ≤ i ≤ r − 1, we define Ii :=
⋂r

j=i+1Qj. We claim that Ii+1 = (Ii : x∞ni
) for

all 0 ≤ i ≤ r − 1. Indeed, since Qi+1 is Pi+1-primary, it follows that there exists a positive
integer k such that xkni

∈ Qi+1. So (Ii : x∞ni
) ⊇ ((Qi+1 · Ii+1) : x∞ni

) ⊇ (xkni
· Ii+1 : x∞ni

) = Ii+1.
For the converse inclusion, note that (Ii : x∞ni

) ⊆ (Qi+1 : x∞ni
)∩(Ii+1 : x∞ni

) = S∩Ii+1 = Ii+1.
Thus, the chain of ideals I = I0 ⊂ I1 ⊂ · · · ⊂ Ir−1 ⊂ Ir := S is the sequential chain of

I, as it was defined in [8]. Note that ni = max{j : xj|u for some u ∈ G(Ii)}, where we
denoted by G(Ii) the set of minimal monomial generators of Ii.

Let Ji be the monomial ideal generated by G(Ii) in Si := K[x1, . . . , xni
], 0 ≤ i ≤ r.

Then, the saturation Jsat
i = (Ji : m∞i ) is generated by the elements of G(Ii+1), where

mi = (x1, . . . , xni
)Si. It follows that Ii+1/Ii ∼= (Jsat

i /Ji)[xni+1, . . . , xn].
It would be appropriate to recall the definition of the Castelnuovo-Mumford regularity.

We refer the reader to [6] for further details on the subject.

Definition 1.2. Let K be an infinite field, and let S = K[x1, . . . , xn], n ≥ 2 the polynomial
ring over K. Let M be a finitely generated graded S-module. The Castelnuovo-Mumford
regularity reg(M) of M is

max
i,j
{j − i : βij(M) 6= 0},

where βij(M) = dimK(Tori(K,M))j denotes the ij-th graded Betti number of M .

If M =
⊕

t≥0Mt is an artinian graded S-module, we denote s(M) = max{t : Mt 6= 0}.
Herzog, Popescu and Vlădoiu proved the following formula for the regularity of a monomial
ideal of Borel type:

Proposition 1.3. [8, Corollary 2.7] If I is a Borel type ideal, with the notations above,
we have

reg(I) = max{s(Jsat
0 /J0), . . . , s(J

sat
r−1/Jr−1)}+ 1.
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Example 1.4. We consider the ideal Q = (xa11 , . . . , x
am
m ) ⊂ S, where 1 ≤ m ≤ n and

a1 ≥ a2 ≥ · · · ≥ am ≥ 1. According to Proposition 1.3, reg(Q) = s(S̄/Q̄) + 1, where
S̄ = K[x1, . . . , xm] and Q̄ = S̄ ∩ Q. Since u = xa1−11 · · · xam−1m ∈ S̄ is the monomial of the
highest degree which is not contain in Q̄, it follows that

reg(Q) =
m∑
i=1

(ai − 1) + 1 = a1 + · · ·+ am −m+ 1.

We consider the ideal Qq = (xqa11 , . . . , xqamm , x
(q−1)a1
1 xa22 , . . .). Note that Qq ∩ S̄ = Q̄q and

therefore reg(Qq) = s(S̄/Q̄q) + 1. One can easily see that u = xqa1−11 xa2−12 · · ·xam−1m is the
monomial of the highest degree which is not contain in Q̄q. Thus:

reg(Qq) = qa1 − 1 +
m∑
i=2

(ai − 1) + 1 = qa1 + a2 + · · ·+ am −m+ 1.

Note that reg(Qq) ≤ q reg(Q), as we already know from [5, Corollary 1.8], and the equality
holds if and only if a2 = · · · = am = 1.

2 Regularity of quasi-symbolic and bracket powers of

Borel type ideals

Now, assume I ⊂ S is an arbitrary monomial ideal. Then I has a unique irreduntant
decomposition I =

⋂s
i=1Ci, where Ci are irreducible monomial ideals. One obtains from this

presentation a canonical presentation of I as an intersection of primary ideals, I =
⋂r

i=1Qi,
where each Qi is Pi-primary and is defined to be the intersection of all Cj’-s with

√
Cj = Pi.

See [7] for further details.

Definition 2.1. Let q be a positive integer. We define the q-th quasi-symbolic power of I
to be the ideal

I((q)) :=
r⋂

i=1

Qq
i .

Note that, I(q) ⊂ I((q)), where I(q) := S ∩
⋂

P∈Ass(S/I) I
qSP is the q-th symbolic power of

I. The equality holds if all Pi’-s are pairwise incomparable, but, in general, this is not the
case. On the other hand, Iq ⊂ I(q).

Now, assume I ⊂ S is of Borel type with the primary decomposition (1). One can
easily see that IqSP1 ∩ S = Iq, since all the minimal monomial generators of I are from
K[x1, . . . , xn0 ] and P1 = (x1, . . . , xn0). Therefore, I(q) = Iq.

In the following, we will assume that the primary decomposition (1), of a Borel type
ideal I ⊂ S, is canonical in the above sense. We have the following lemma.
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Lemma 2.2. If I ⊂ S is an ideal of Borel type and q is a positive integer, then Ass(S/I((q))) ⊂
Ass(S/I). In particular, I((q)) is an ideal of Borel type.

Proof. Assume I =
⋂r

i=1Qi is the primary decomposition of I given in (1). It follows
that I((q)) :=

⋂r
i=1Q

q
i . This primary decomposition of I((q)) is not necessarily irredundant.

However, since
√
Qq

i =
√
Qi, it follows that Ass(S/I((q))) ⊂ Ass(S/I). Therefore, by

Proposition 1.1(c), I((q)) is an ideal of Borel type.

Example 2.3. We consider the following ideals, Q = (x8, x6y2, x2y6, y8) ⊂ S := K[x, y, z],
Q′ = Q + (x4y4) ⊂ S, and I := (Q, z2) ∩ Q′ = (Q, x4y4z2) ⊂ S. Since, Q ( Q′, it follows
that (Q, z2) ∩Q′ is a primary decomposition of I and thus Ass(S/I) = {(x, y), (x, y, z)}.

We have Q = (x8, y2)∩ (x6, y6)∩ (x2, y8) and Q′ = (x8, y2)∩ (x4, y6)∩ (x6, y4)∩ (x2, y8).
Therefore, I = Q′ ∩ (x6, y6, z2) is the canonical primary decomposition of I, and thus
I((2)) = Q2 ∩ (x6, y6, z2)2. On the other hand,

Q′2 = Q2 = (x16, x14y2, x12y4, x10y6, x8y8, x6y10, x4y12, x2y14, y16),

and thus I((2)) = Q2, since Q2 ⊂ (x6, y6, z2)2. We have s(K[x, y]/(Q′ ∩ K[x, y])) = 8
and s(Q′/(Q, z2x4y4)) = 11, and therefore, by Proposition 1.3, we get reg(I) = 12. Also,
s(K[x, y]/(Q ∩K[x, y])2) = 16 and thus reg(I((2))) = 17, according to Proposition 1.3.

Let I ⊂ S be a Borel type ideal with the primary decomposition I :=
⋂r

i=1Qi from
(1). We consider the sequential chain I = I0 ⊂ I1 ⊂ · · · ⊂ Ir = S of I, where Ii :=⋂r

j=i+1Qj. Note that I
((q))
i :=

⋂r
j=i+1Q

q
j , since the previous primary decompositions of

Ii-’s are canonical. We consider the following chain of ideals

I((q)) = I
((q))
0 ⊂ I

((q))
1 ⊂ · · · I((q))r = S.

In the chain above, we may have some equalities. Nevertheless, if we denote Ji be the
monomial ideal generated by G(Ii) in Si := K[x1, . . . , xni

], we have

I
((q))
i+1 /I

((q))
i
∼= ((J

((q))
i )sat/J

((q))
i )[xni+1, . . . , xn].

Also, the sequential chain of I
((q))
i is obtain from the previous chain of ideal, by removing

those ideals Ii with Ii = Ii−1. Thus, by Proposition 1.3,

reg(I((q))) = max{s((J ((q))
i )sat/J

((q))
i ), 0 ≤ i ≤ r − 1}+ 1. (2)

Now, we are able to prove the following Theorem.

Theorem 2.4. With the above notations, we have reg(I((q))) ≤ q · reg(I).

Proof. We fix 0 ≤ i ≤ r − 1. Since Ii :=
⋂r

j=i+1Qj, it follows that Ji =
⋂r

j=i+1 Q̄j, where

Q̄j is the ideal generated by G(Qj) in Si. On the other hand, since Jsat
i is generated by the

elements of G(Ii+1), it follows that Jsat
i =

⋂r
j=i+2 Q̄j. Note that

s(Jsat
i /Ji) + 1 = min{j : mj

iJ
sat
i ⊂ Ji}
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and therefore s(Jsat
i /Ji) + 1 = min{j : mj

i Q̄k ⊂ Q̄i+1 for all k = i + 2, . . . , r }.
Analogously, since I

((q))
i :=

⋂r
j=i+1Q

q
j , it follows that

s((J
((q))
i )sat/J

((q))
i ) + 1 = min{j : mj

i Q̄
q
k ⊂ Q̄q

i+1 for all k = i+ 2, . . . , r }.

Note that if mj
i Q̄k ⊂ Q̄i+1 then mjq

i Q̄
q
k = (mj

i Q̄k)q ⊂ Q̄q
i+1. Therefore, we get

s((J
((q))
i )sat/J

((q))
i ) + 1 ≤ q · (s(Jsat

i /Ji) + 1). (3)

By applying Proposition 1.3 to I and (3) we get the required conclusion.

Let I ⊂ S be a monomial ideal of Borel type. An interesting question is to find a
relation between reg(Iq) and reg(I((q))).

Let I ⊂ S be a monomial ideal and let q be a nonnegative integer. We define the q-th
bracket power of I, to be the ideal I [q], generated by all monomials uq, where u ∈ I is a
monomial. In particular, I [0] = S and I [1] = I. Note that if G(I) = {u1, . . . , um} is the set
of minimal monomial generators of I, then G(I [q]) = {uq1, . . . , uqm}. Note that I [q] ⊂ Iq for
all q. In fact, when q ≥ 2, the equality holds if and only if I is principal. Also, one can
easily see that (I ∩ J)[q] = I [q] ∩ J [q] for any monomial ideals I, J ⊂ S.

Now, assume I =
⋂r

i=1Qi is an irredundant primary decomposition of I. We claim

that I [q] =
⋂r

i=1Q
[q]
i is an irredundant primary decomposition of I [q], where q is a positive

integer. In order to prove this, we fix an integer i with 1 ≤ i ≤ r and we chose a monomial
u ∈ Qi \

⋂
j 6=iQj. Obviously, uq ∈ Q[q]

i . We claim that uq /∈
⋂

j 6=iQj. Assume this is not
the case. It follows that uq = uqjwj for some monomials uj ∈ Qj and wj ∈ S, for all j 6= i.
Therefore, uj|u for all j 6= i. It follows that u ∈

⋂
j 6=iQj, a contradiction.

As a consequence, we get the following Lemma.

Lemma 2.5. If I ⊂ S be a monomial ideal and q a positive integer, then Ass(S/I) =
Ass(S/I [q]). In particular, if I is of Borel type, then I [q] is of Borel type.

Now, we are able to prove the following Theorem.

Theorem 2.6. Let I ⊂ S be a monomial ideal of Borel type. Then:

reg(I [q]) ≥ q · reg(I).

Proof. We consider the primary irredundant decomposition
⋂r

i=1Qi of I from (1) and the
sequential chain I = I0 ⊂ I1 ⊂ · · · ⊂ Ir := S of I, where Ii =

⋂r
j=i+1Qj, for 0 ≤ i ≤ r− 1.

Note that the sequential chain of I [q], is I [q] = I
[q]
0 ⊂ I

[q]
1 ⊂ · · · ⊂ I

[q]
r = S. Indeed, all the

inclusions are stricts.
We fix an integer 0 ≤ i ≤ r − 1. Let Ji be the monomial ideal generated by G(Ii) in

Si := K[x1, . . . , xni
]. We denote Q̄j, the ideal generated by G(Qj) in Si, for all 1 ≤ j ≤ r.

With these notations, we have Ji =
⋂r

j=i+1 Q̄j and J
[q]
i =

⋂r
j=i+1 Q̄

[q]
j . On the other hand,

since Jsat
i is generated by the elements of G(Ii+1), it follows that Jsat

i =
⋂r

j=i+2 Q̄j.
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Let u ∈ Jsat
i \ Ji be a nonzero monomial. We claim that xq−11 uq ∈ (J

[q]
i )sat \ J [q]

i . It is

clear that xq−11 uq ∈ (J
[q]
i )sat. If we assume that xq−11 uq ∈ J [q]

i , it follows that xq−11 uq = vq ·w,
where v ∈ Ji is a monomial and w ∈ S is a monomial. Since vq|xq−11 uq, it follows that v|u
and therefore u ∈ Ji, a contradiction.

As a consequence, we get s((J
[q]
i )sat/J

[q]
i ) ≥ q ·s(Jsat

i /Ji)+q−1. By applying Proposition
1.3, we get the required conclusion.

Remark 2.7. The conclusions of Theorem 2.4 and Theorem 2.6 hold for monomial ideals
I ⊂ S with Ass(S/I) totally ordered by inclusion. Indeed, if I is such an ideal, we can
define a ring isomorphism ϕ : S → S given by a reordering of variables, such that ϕ(I) is
an ideal of Borel type. Since the Castelnuovo-Mumford regularity is an invariant, it follows
that reg(I) = reg(ϕ(I)).

Bermejo and Giemenez give in [2] a formula for the regularity of a Borel type ideal I,
when the irredundant irreducible decomposition is known. More precisely, they proved the
following Proposition.

Proposition 2.8. [2, Corollary 3.17] Let I ⊂ S be a monomial ideal of Borel type. Assume
I =

⋂m
i=1Ci is the irredundant irreducible decomposition of I. Then:

reg(I) = max{reg(Ci) : i = 1, . . . ,m}.

Since Ci-’s are irreducible monomial ideals, they are generated by powers of variables.
Since

√
Ci ∈ Ass(S/I) and I is of Borel type, we may assume that Ci = (xai11 , . . . , x

airi
ri ),

where ri is an integer with 1 ≤ ri ≤ n and aij are some positive integers. Denote Si :=
K[x1, . . . , xri ]. If we denote C̄i the ideal generated by G(Ci) in Si, then, by Proposition
1.3, as in Example 1.5, we have reg(Ci) = s(Si/C̄i) + 1 = ai1 + · · ·+airi− ri + 1. Therefore,
we get the following corollary.

Corollary 2.9. With the notations above,

reg(I) = max{ai1 + · · ·+ airi − ri + 1 : i = 1, . . . ,m}.

Let q be a positive integer and consider the ideal I [q]. Since I =
⋂m

i=1Ci, it follows

that I [q] =
⋂m

i=1C
[q]
i and C

[q]
i = (xqai11 , . . . , x

qairi
ri ). Note that

⋂m
i=1C

[q]
i is the irredundant

irreducible decomposition of I [q]. Indeed, we can argue in the same way as we did for the
irreducible primary decomposition of I [q]. Therefore, by Corollary 2.9, we get the following.

Corollary 2.10. reg(I [q]) = max{qai1 + · · ·+ qairi − ri + 1 : i = 1, . . . ,m}.

The above formula leads us to the following upper bound for reg(I [q]).

Proposition 2.11. Let I ⊂ S be an ideal of Borel type and let q be a positive integer.
Then:

reg(I [q]) ≤ q reg(I) + (q − 1)(n− 1) = αq reg(I)− (n− 1),

where α = 1 + n−1
reg(I)

.
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Proof. With the above notations, we may assume reg(I) = ai1 + · · ·+ airi − ri + 1 for some
1 ≤ i ≤ m. According to Corollary 2.9 and Corollary 2.10, reg(I [q]) = qai1+· · ·+qaiir−ri+1.
Therefore, reg(I [q]) = q reg(I) + (q − 1)(ri − 1). Since ri − 1 ≤ n − 1, we get the required
inequality. The remaining equality is trivial.

We conclude our paper, with the following example.

Example 2.12. Let I = (x)∩ (x2, y) = (x2, xy) ⊂ S = K[x, y]. Let q be a positive integer.
It follows that Iq = (x2q, x2q−1y, . . . , xqyq) = (xq) ∩ (x2q, x2q−1y, . . . , xq+1yq−1, yq).

Also, we obtain I((q)) = (xq) ∩ (x2, y)q = (xq) ∩ (x2q, x2q−2y, . . . , x2yq−1, yq) =

(x2q, x2q−2y, . . . , x2q−2b
q
2cyb

q
2c, xqyb

q
2c+1), where we denoted by bαc the integer part of α.

On the other hand, I [q] = (xq) ∩ (x2q, yq) = (x2q, xqyq).
We consider the sequential chain of I, I =: I0 ⊂ I1 ⊂ I2 := S, where I1 = (x). We have

J0 = I ⊂ S and J1 = (x) ⊂ K[x]. Therefore, Jq
0 = Iq, J

((q))
0 = I((q)) and J

[q]
0 = I [q]. Also,

Jq
1 = J

((q))
1 = J

[q]
1 = (xq) ⊂ K[x]. We get Jsat

0 = (x)S, (Jq
0 )sat = (J

((q))
0 )sat = (J

[q]
0 )sat =

(xq)S and Jsat
1 = (Jq

1 )sat = (J
((q))
1 )sat = (J

[q]
1 )sat = K[x].

We have s(Jsat
1 /J1) = 0 and s((Jq

1 )sat/Jq
1 ) = s((J

((q))
1 )sat/J

((q))
1 ) = s((J

[q]
1 )sat/J

[q]
1 ) =

q − 1.
Also, one can easily compute s(Jsat

0 /J0) = 1, s((Jq
0 )sat/Jq

0 ) = 2q−1, s((J
((q))
0 )sat/J

((q))
0 ) =

2q − 1 and s((J
[q]
0 )sat/J

[q]
0 ) = 3q − 2. By Proposition 1.3, it follows that reg(I) = 2,

reg(Iq) = reg(I((q))) = 2q and reg(I [q]) = 3q − 1.
Since I = (x)∩ (x2, y) is also the irreducible irredundant decomposition of I, by Corol-

lary 2.8 and Corollary 2.9, we can compute directly reg(I) = max{1−1+1, 2+1−2+1} = 2
and, respectively, reg(I [q]) = max{q − 1 + 1, 2q + q − 2 + 1} = 3q − 1.

Note that reg(I [q]) = q reg(I) + (q − 1)(2− 1) and therefore, the upper bound given in
Proposition 2.11 is the best possible.
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