Regularity of quasi-symbolic and bracket powers of Borel type ideals
 Mircea Cimpoeass

Abstract

In this paper, we show that the regularity of the q-th quasi-symbolic power $I^{((q))}$ and the regularity of the q-th bracket power $I^{[q]}$ of a monomial ideal of Borel type I, satisfy the relations $\operatorname{reg}\left(I^{((q))}\right) \leq q \operatorname{reg}(I)$, respectively $\operatorname{reg}\left(I^{[q]}\right) \geq q \operatorname{reg}(I)$. Also, we give an upper bound for $\operatorname{reg}\left(I^{[q]}\right)$.

Keywords: Monomial ideals, Borel type ideals, Mumford-Castelnuovo regularity.
2000 Mathematics Subject Classification:Primary: 13P10, Secondary: 13E10.

Introduction

Let K be an infinite field, and let $S=K\left[x_{1}, \ldots, x_{n}\right], n \geq 2$ the polynomial ring over K. Bayer and Stillman [1] note that Borel fixed ideals $I \subset S$ satisfy the following property:
(*) $\quad\left(I: x_{j}^{\infty}\right)=\left(I:\left(x_{1}, \ldots, x_{j}\right)^{\infty}\right)$ for all $j=1, \ldots, n$.
Herzog, Popescu and Vladoiu [8] define a monomial ideal I to be of Borel type if it satisfies $(*)$. We mention that this concept appears in [3, Definition 1.3] as the so called weakly stable ideal. Also, this concept appears in [2, Definition 3.1], as the so called monomial ideal of nested type. We further studied this class of monomial ideals in [4] and [5].

In the first section, we recall some results regarding ideals of Borel type. Also, we discuss the relation between the sequential chain of an ideal of Borel type I, defined in [8], and the primary decomposition of I.

Let $I \subset S$ be a monomial ideal and $I=\bigcap_{i=1}^{r} Q_{i}$ the an irreduntant primary decomposition of I, obtained in a canonical way. We define $I^{((q))}:=\bigcap_{i=1}^{r} Q_{i}^{q}$, the q-th quasi-symbolic power of I, see Definition 2.1. We prove that if I is an ideal of Borel type, then $I^{((q))}$ and $I^{[q]}$ are also ideals of Borel type, where $I^{[q]}=\left(u^{q}: u \in I\right.$ monomial $)$ is the q-th bracket power of I.

In [5], we proved that $\operatorname{reg}\left(I^{q}\right) \leq q \operatorname{reg}(I)$. We give a similar result for the q-th quasisymbolic power. More precisely, we prove that $\operatorname{reg}\left(I^{((q))}\right) \leq q \operatorname{reg}(I)$, see Theorem 2.4. Also, we prove that $\operatorname{reg}\left(I^{[q]}\right) \geq q \operatorname{reg}(I)$, see Theorem 2.6. In Proposition 2.11, we prove that $\operatorname{reg}\left(I^{[q]}\right) \leq q \operatorname{reg}(I)+(q-1)(n-1)$.

[^0]
1 Some basic facts on Borel type ideals.

Firstly, we recall the following equivalent characterizations of ideals of Borel type given in [8] and in [2].

Proposition 1.1. Let $I \subset S$ be a monomial ideal. The following conditions are equivalent:
(a) I is an ideal of Borel type.
(b) For any $1 \leq j<i \leq n$, we have $\left(I: x_{i}^{\infty}\right) \subset\left(I: x_{j}^{\infty}\right)$.
(c) Each $P \in \operatorname{Ass}(S / I)$ has the form $P=\left(x_{1}, \ldots, x_{m}\right)$ for some $1 \leq m \leq n$.

Let $I \subset S$ be a monomial ideal of Borel type. Since each prime ideal $P \in A s s(S / I)$ is of the form $P=\left(x_{1}, \ldots, x_{m}\right)$ for some $1 \leq m \leq n$, we can assume that I has an irredundant primary decomposition:

$$
\begin{equation*}
I=\bigcap_{i=1}^{r} Q_{i} ; \text { such that } P_{i}:=\sqrt{Q_{i}}=\left(x_{1}, \ldots, x_{n_{i-1}}\right), n \geq n_{0}>n_{1}>\cdots>n_{r-1} \geq 1 \tag{1}
\end{equation*}
$$

For each $0 \leq i \leq r-1$, we define $I_{i}:=\bigcap_{j=i+1}^{r} Q_{j}$. We claim that $I_{i+1}=\left(I_{i}: x_{n_{i}}^{\infty}\right)$ for all $0 \leq i \leq r-1$. Indeed, since Q_{i+1} is P_{i+1}-primary, it follows that there exists a positive integer k such that $x_{n_{i}}^{k} \in Q_{i+1}$. So $\left(I_{i}: x_{n_{i}}^{\infty}\right) \supseteq\left(\left(Q_{i+1} \cdot I_{i+1}\right): x_{n_{i}}^{\infty}\right) \supseteq\left(x_{n_{i}}^{k} \cdot I_{i+1}: x_{n_{i}}^{\infty}\right)=I_{i+1}$. For the converse inclusion, note that $\left(I_{i}: x_{n_{i}}^{\infty}\right) \subseteq\left(Q_{i+1}: x_{n_{i}}^{\infty}\right) \cap\left(I_{i+1}: x_{n_{i}}^{\infty}\right)=S \cap I_{i+1}=I_{i+1}$.

Thus, the chain of ideals $I=I_{0} \subset I_{1} \subset \cdots \subset I_{r-1} \subset I_{r}:=S$ is the sequential chain of I, as it was defined in [8]. Note that $n_{i}=\max \left\{j: x_{j} \mid u\right.$ for some $\left.u \in G\left(I_{i}\right)\right\}$, where we denoted by $G\left(I_{i}\right)$ the set of minimal monomial generators of I_{i}.

Let J_{i} be the monomial ideal generated by $G\left(I_{i}\right)$ in $S_{i}:=K\left[x_{1}, \ldots, x_{n_{i}}\right], 0 \leq i \leq r$. Then, the saturation $J_{i}^{\text {sat }}=\left(J_{i}: \mathbf{m}_{i}^{\infty}\right)$ is generated by the elements of $G\left(I_{i+1}\right)$, where $\mathbf{m}_{i}=\left(x_{1}, \ldots, x_{n_{i}}\right) S_{i}$. It follows that $I_{i+1} / I_{i} \cong\left(J_{i}^{s a t} / J_{i}\right)\left[x_{n_{i}+1}, \ldots, x_{n}\right]$.

It would be appropriate to recall the definition of the Castelnuovo-Mumford regularity. We refer the reader to [6] for further details on the subject.

Definition 1.2. Let K be an infinite field, and let $S=K\left[x_{1}, \ldots, x_{n}\right], n \geq 2$ the polynomial ring over K. Let M be a finitely generated graded S-module. The Castelnuovo-Mumford regularity $\operatorname{reg}(M)$ of M is

$$
\max _{i, j}\left\{j-i: \beta_{i j}(M) \neq 0\right\}
$$

where $\beta_{i j}(M)=\operatorname{dim}_{K}\left(\operatorname{Tor}_{i}(K, M)\right)_{j}$ denotes the $i j$-th graded Betti number of M.
If $M=\bigoplus_{t \geq 0} M_{t}$ is an artinian graded S-module, we denote $s(M)=\max \left\{t: M_{t} \neq 0\right\}$. Herzog, Popescu and Vlădoiu proved the following formula for the regularity of a monomial ideal of Borel type:

Proposition 1.3. [8, Corollary 2.7] If I is a Borel type ideal, with the notations above, we have

$$
\operatorname{reg}(I)=\max \left\{s\left(J_{0}^{s a t} / J_{0}\right), \ldots, s\left(J_{r-1}^{s a t} / J_{r-1}\right)\right\}+1
$$

Example 1.4. We consider the ideal $Q=\left(x_{1}^{a_{1}}, \ldots, x_{m}^{a_{m}}\right) \subset S$, where $1 \leq m \leq n$ and $a_{1} \geq a_{2} \geq \cdots \geq a_{m} \geq 1$. According to Proposition 1.3, $\operatorname{reg}(Q)=s(\bar{S} / \bar{Q})+1$, where $\bar{S}=K\left[x_{1}, \ldots, x_{m}\right]$ and $\bar{Q}=\bar{S} \cap Q$. Since $u=x_{1}^{a_{1}-1} \cdots x_{m}^{a_{m}-1} \in \bar{S}$ is the monomial of the highest degree which is not contain in \bar{Q}, it follows that

$$
\operatorname{reg}(Q)=\sum_{i=1}^{m}\left(a_{i}-1\right)+1=a_{1}+\cdots+a_{m}-m+1
$$

We consider the ideal $Q^{q}=\left(x_{1}^{q a_{1}}, \ldots, x_{m}^{q a_{m}}, x_{1}^{(q-1) a_{1}} x_{2}^{a_{2}}, \ldots\right)$. Note that $Q^{q} \cap \bar{S}=\bar{Q}^{q}$ and therefore $\operatorname{reg}\left(Q^{q}\right)=s\left(\bar{S} / \bar{Q}^{q}\right)+1$. One can easily see that $u=x_{1}^{q a_{1}-1} x_{2}^{a_{2}-1} \cdots x_{m}^{a_{m}-1}$ is the monomial of the highest degree which is not contain in \bar{Q}^{q}. Thus:

$$
\operatorname{reg}\left(Q^{q}\right)=q a_{1}-1+\sum_{i=2}^{m}\left(a_{i}-1\right)+1=q a_{1}+a_{2}+\cdots+a_{m}-m+1
$$

Note that $\operatorname{reg}\left(Q^{q}\right) \leq q \operatorname{reg}(Q)$, as we already know from [5, Corollary 1.8], and the equality holds if and only if $a_{2}=\cdots=a_{m}=1$.

2 Regularity of quasi-symbolic and bracket powers of Borel type ideals

Now, assume $I \subset S$ is an arbitrary monomial ideal. Then I has a unique irreduntant decomposition $I=\bigcap_{i=1}^{s} C_{i}$, where C_{i} are irreducible monomial ideals. One obtains from this presentation a canonical presentation of I as an intersection of primary ideals, $I=\bigcap_{i=1}^{r} Q_{i}$, where each Q_{i} is P_{i}-primary and is defined to be the intersection of all $C_{j}{ }^{\prime}$'s with $\sqrt{C_{j}}=P_{i}$. See [7] for further details.

Definition 2.1. Let q be a positive integer. We define the q-th quasi-symbolic power of I to be the ideal

$$
I^{((q))}:=\bigcap_{i=1}^{r} Q_{i}^{q} .
$$

Note that, $I^{(q)} \subset I^{((q))}$, where $I^{(q)}:=S \cap \bigcap_{P \in \operatorname{Ass}(S / I)} I^{q} S_{P}$ is the q-th symbolic power of I. The equality holds if all P_{i}^{\prime}-s are pairwise incomparable, but, in general, this is not the case. On the other hand, $I^{q} \subset I^{(q)}$.

Now, assume $I \subset S$ is of Borel type with the primary decomposition (1). One can easily see that $I^{q} S_{P_{1}} \cap S=I^{q}$, since all the minimal monomial generators of I are from $K\left[x_{1}, \ldots, x_{n_{0}}\right]$ and $P_{1}=\left(x_{1}, \ldots, x_{n_{0}}\right)$. Therefore, $I^{(q)}=I^{q}$.

In the following, we will assume that the primary decomposition (1), of a Borel type ideal $I \subset S$, is canonical in the above sense. We have the following lemma.

Lemma 2.2. If $I \subset S$ is an ideal of Borel type and q is a positive integer, then $\operatorname{Ass}\left(S / I^{((q))}\right) \subset$ Ass (S / I). In particular, $I^{((q))}$ is an ideal of Borel type.

Proof. Assume $I=\bigcap_{i=1}^{r} Q_{i}$ is the primary decomposition of I given in (1). It follows that $I^{((q))}:=\bigcap_{i=1}^{r} Q_{i}^{q}$. This primary decomposition of $I^{((q))}$ is not necessarily irredundant. However, since $\sqrt{Q_{i}^{q}}=\sqrt{Q_{i}}$, it follows that $\operatorname{Ass}\left(S / I^{((q))}\right) \subset \operatorname{Ass}(S / I)$. Therefore, by Proposition 1.1 $(c), I^{((q))}$ is an ideal of Borel type.
Example 2.3. We consider the following ideals, $Q=\left(x^{8}, x^{6} y^{2}, x^{2} y^{6}, y^{8}\right) \subset S:=K[x, y, z]$, $Q^{\prime}=Q+\left(x^{4} y^{4}\right) \subset S$, and $I:=\left(Q, z^{2}\right) \cap Q^{\prime}=\left(Q, x^{4} y^{4} z^{2}\right) \subset S$. Since, $Q \subsetneq Q^{\prime}$, it follows that $\left(Q, z^{2}\right) \cap Q^{\prime}$ is a primary decomposition of I and thus $\operatorname{Ass}(S / I)=\{(x, y),(x, y, z)\}$.

We have $Q=\left(x^{8}, y^{2}\right) \cap\left(x^{6}, y^{6}\right) \cap\left(x^{2}, y^{8}\right)$ and $Q^{\prime}=\left(x^{8}, y^{2}\right) \cap\left(x^{4}, y^{6}\right) \cap\left(x^{6}, y^{4}\right) \cap\left(x^{2}, y^{8}\right)$. Therefore, $I=Q^{\prime} \cap\left(x^{6}, y^{6}, z^{2}\right)$ is the canonical primary decomposition of I, and thus $I^{((2))}=Q^{2} \cap\left(x^{6}, y^{6}, z^{2}\right)^{2}$. On the other hand,

$$
Q^{\prime 2}=Q^{2}=\left(x^{16}, x^{14} y^{2}, x^{12} y^{4}, x^{10} y^{6}, x^{8} y^{8}, x^{6} y^{10}, x^{4} y^{12}, x^{2} y^{14}, y^{16}\right)
$$

and thus $I^{((2))}=Q^{2}$, since $Q^{2} \subset\left(x^{6}, y^{6}, z^{2}\right)^{2}$. We have $s\left(K[x, y] /\left(Q^{\prime} \cap K[x, y]\right)\right)=8$ and $s\left(Q^{\prime} /\left(Q, z^{2} x^{4} y^{4}\right)\right)=11$, and therefore, by Proposition 1.3, we get $\operatorname{reg}(I)=12$. Also, $s\left(K[x, y] /(Q \cap K[x, y])^{2}\right)=16$ and thus $\operatorname{reg}\left(I^{((2))}\right)=17$, according to Proposition 1.3.

Let $I \subset S$ be a Borel type ideal with the primary decomposition $I:=\bigcap_{i=1}^{r} Q_{i}$ from (1). We consider the sequential chain $I=I_{0} \subset I_{1} \subset \cdots \subset I_{r}=S$ of I, where $I_{i}:=$ $\bigcap_{j=i+1}^{r} Q_{j}$. Note that $I_{i}^{((q))}:=\bigcap_{j=i+1}^{r} Q_{j}^{q}$, since the previous primary decompositions of I_{i} 's are canonical. We consider the following chain of ideals

$$
I^{((q))}=I_{0}^{((q))} \subset I_{1}^{((q))} \subset \cdots I_{r}^{((q))}=S
$$

In the chain above, we may have some equalities. Nevertheless, if we denote J_{i} be the monomial ideal generated by $G\left(I_{i}\right)$ in $S_{i}:=K\left[x_{1}, \ldots, x_{n_{i}}\right]$, we have

$$
I_{i+1}^{((q))} / I_{i}^{((q))} \cong\left(\left(J_{i}^{((q))}\right)^{s a t} / J_{i}^{((q))}\right)\left[x_{n_{i}+1}, \ldots, x_{n}\right]
$$

Also, the sequential chain of $I_{i}^{((q))}$ is obtain from the previous chain of ideal, by removing those ideals I_{i} with $I_{i}=I_{i-1}$. Thus, by Proposition 1.3,

$$
\begin{equation*}
\operatorname{reg}\left(I^{((q))}\right)=\max \left\{s\left(\left(J_{i}^{((q))}\right)^{s a t} / J_{i}^{((q))}\right), 0 \leq i \leq r-1\right\}+1 \tag{2}
\end{equation*}
$$

Now, we are able to prove the following Theorem.
Theorem 2.4. With the above notations, we have $\operatorname{reg}\left(I^{((q))}\right) \leq q \cdot \operatorname{reg}(I)$.
Proof. We fix $0 \leq i \leq r-1$. Since $I_{i}:=\bigcap_{j=i+1}^{r} Q_{j}$, it follows that $J_{i}=\bigcap_{j=i+1}^{r} \bar{Q}_{j}$, where \bar{Q}_{j} is the ideal generated by $G\left(Q_{j}\right)$ in S_{i}. On the other hand, since $J_{i}^{\text {sat }}$ is generated by the elements of $G\left(I_{i+1}\right)$, it follows that $J_{i}^{s a t}=\bigcap_{j=i+2}^{r} \bar{Q}_{j}$. Note that

$$
s\left(J_{i}^{s a t} / J_{i}\right)+1=\min \left\{j: \mathbf{m}_{i}^{j} J_{i}^{s a t} \subset J_{i}\right\}
$$

and therefore $s\left(J_{i}^{\text {sat }} / J_{i}\right)+1=\min \left\{j: \mathbf{m}_{i}^{j} \bar{Q}_{k} \subset \bar{Q}_{i+1} \quad\right.$ for \quad all $\left.\quad k=i+2, \ldots, r\right\}$. Analogously, since $I_{i}^{((q))}:=\bigcap_{j=i+1}^{r} Q_{j}^{q}$, it follows that

$$
s\left(\left(J_{i}^{((q))}\right)^{\text {sat }} / J_{i}^{((q))}\right)+1=\min \left\{j: \mathbf{m}_{i}^{j} \bar{Q}_{k}^{q} \subset \bar{Q}_{i+1}^{q} \text { for all } k=i+2, \ldots, r\right\} .
$$

Note that if $\mathbf{m}_{i}^{j} \bar{Q}_{k} \subset \bar{Q}_{i+1}$ then $\mathbf{m}_{i}^{j q} \bar{Q}_{k}^{q}=\left(\mathbf{m}_{i}^{j} \bar{Q}_{k}\right)^{q} \subset \bar{Q}_{i+1}^{q}$. Therefore, we get

$$
\begin{equation*}
s\left(\left(J_{i}^{((q))}\right)^{s a t} / J_{i}^{((q))}\right)+1 \leq q \cdot\left(s\left(J_{i}^{s a t} / J_{i}\right)+1\right) . \tag{3}
\end{equation*}
$$

By applying Proposition 1.3 to I and (3) we get the required conclusion.
Let $I \subset S$ be a monomial ideal of Borel type. An interesting question is to find a relation between $\operatorname{reg}\left(I^{q}\right)$ and $\operatorname{reg}\left(I^{((q))}\right)$.

Let $I \subset S$ be a monomial ideal and let q be a nonnegative integer. We define the q-th bracket power of I, to be the ideal $I^{[q]}$, generated by all monomials u^{q}, where $u \in I$ is a monomial. In particular, $I^{[0]}=S$ and $I^{[1]}=I$. Note that if $G(I)=\left\{u_{1}, \ldots, u_{m}\right\}$ is the set of minimal monomial generators of I, then $G\left(I^{[q]}\right)=\left\{u_{1}^{q}, \ldots, u_{m}^{q}\right\}$. Note that $I^{[q]} \subset I^{q}$ for all q. In fact, when $q \geq 2$, the equality holds if and only if I is principal. Also, one can easily see that $(I \cap J)^{[q]}=I^{[q]} \cap J^{[q]}$ for any monomial ideals $I, J \subset S$.

Now, assume $I=\bigcap_{i=1}^{r} Q_{i}$ is an irredundant primary decomposition of I. We claim that $I^{[q]}=\bigcap_{i=1}^{r} Q_{i}^{[q]}$ is an irredundant primary decomposition of $I^{[q]}$, where q is a positive integer. In order to prove this, we fix an integer i with $1 \leq i \leq r$ and we chose a monomial $u \in Q_{i} \backslash \bigcap_{j \neq i} Q_{j}$. Obviously, $u^{q} \in Q_{i}^{[q]}$. We claim that $u^{q} \notin \bigcap_{j \neq i} Q_{j}$. Assume this is not the case. It follows that $u^{q}=u_{j}^{q} w_{j}$ for some monomials $u_{j} \in Q_{j}$ and $w_{j} \in S$, for all $j \neq i$. Therefore, $u_{j} \mid u$ for all $j \neq i$. It follows that $u \in \bigcap_{j \neq i} Q_{j}$, a contradiction.

As a consequence, we get the following Lemma.
Lemma 2.5. If $I \subset S$ be a monomial ideal and q a positive integer, then $\operatorname{Ass}(S / I)=$ Ass $\left(S / I^{[q]}\right)$. In particular, if I is of Borel type, then $I^{[q]}$ is of Borel type.

Now, we are able to prove the following Theorem.
Theorem 2.6. Let $I \subset S$ be a monomial ideal of Borel type. Then:

$$
\operatorname{reg}\left(I^{[q]}\right) \geq q \cdot \operatorname{reg}(I)
$$

Proof. We consider the primary irredundant decomposition $\bigcap_{i=1}^{r} Q_{i}$ of I from (1) and the sequential chain $I=I_{0} \subset I_{1} \subset \cdots \subset I_{r}:=S$ of I, where $I_{i}=\bigcap_{j=i+1}^{r} Q_{j}$, for $0 \leq i \leq r-1$. Note that the sequential chain of $I^{[q]}$, is $I^{[q]}=I_{0}^{[q]} \subset I_{1}^{[q]} \subset \cdots \subset I_{r}^{[q]}=S$. Indeed, all the inclusions are stricts.

We fix an integer $0 \leq i \leq r-1$. Let J_{i} be the monomial ideal generated by $G\left(I_{i}\right)$ in $S_{i}:=K\left[x_{1}, \ldots, x_{n_{i}}\right]$. We denote \bar{Q}_{j}, the ideal generated by $G\left(Q_{j}\right)$ in S_{i}, for all $1 \leq j \leq r$. With these notations, we have $J_{i}=\bigcap_{j=i+1}^{r} \bar{Q}_{j}$ and $J_{i}^{[q]}=\bigcap_{j=i+1}^{r} \bar{Q}_{j}^{[q]}$. On the other hand, since $J_{i}^{\text {sat }}$ is generated by the elements of $G\left(I_{i+1}\right)$, it follows that $J_{i}^{\text {sat }}=\bigcap_{j=i+2}^{r} \bar{Q}_{j}$.

Let $u \in J_{i}^{s a t} \backslash J_{i}$ be a nonzero monomial. We claim that $x_{1}^{q-1} u^{q} \in\left(J_{i}^{[q]}\right)^{\text {sat }} \backslash J_{i}^{[q]}$. It is clear that $x_{1}^{q-1} u^{q} \in\left(J_{i}^{[q]}\right)^{\text {sat }}$. If we assume that $x_{1}^{q-1} u^{q} \in J_{i}^{[q]}$, it follows that $x_{1}^{q-1} u^{q}=v^{q} \cdot w$, where $v \in J_{i}$ is a monomial and $w \in S$ is a monomial. Since $v^{q} \mid x_{1}^{q-1} u^{q}$, it follows that $v \mid u$ and therefore $u \in J_{i}$, a contradiction.

As a consequence, we get $s\left(\left(J_{i}^{[q]}\right)^{\text {sat }} / J_{i}^{[q]}\right) \geq q \cdot s\left(J_{i}^{\text {sat }} / J_{i}\right)+q-1$. By applying Proposition 1.3 , we get the required conclusion.

Remark 2.7. The conclusions of Theorem 2.4 and Theorem 2.6 hold for monomial ideals $I \subset S$ with $\operatorname{Ass}(S / I)$ totally ordered by inclusion. Indeed, if I is such an ideal, we can define a ring isomorphism $\varphi: S \rightarrow S$ given by a reordering of variables, such that $\varphi(I)$ is an ideal of Borel type. Since the Castelnuovo-Mumford regularity is an invariant, it follows that $\operatorname{reg}(I)=\operatorname{reg}(\varphi(I))$.

Bermejo and Giemenez give in [2] a formula for the regularity of a Borel type ideal I, when the irredundant irreducible decomposition is known. More precisely, they proved the following Proposition.

Proposition 2.8. [2, Corollary 3.17] Let $I \subset S$ be a monomial ideal of Borel type. Assume $I=\bigcap_{i=1}^{m} C_{i}$ is the irredundant irreducible decomposition of I. Then:

$$
\operatorname{reg}(I)=\max \left\{\operatorname{reg}\left(C_{i}\right): i=1, \ldots, m\right\} .
$$

Since $C_{i^{-}}$'s are irreducible monomial ideals, they are generated by powers of variables. Since $\sqrt{C_{i}} \in \operatorname{Ass}(S / I)$ and I is of Borel type, we may assume that $C_{i}=\left(x_{1}^{a_{i 1}}, \ldots, x_{r_{i}}^{a_{i r_{i}}}\right)$, where r_{i} is an integer with $1 \leq r_{i} \leq n$ and $a_{i j}$ are some positive integers. Denote $S_{i}:=$ $K\left[x_{1}, \ldots, x_{r_{i}}\right]$. If we denote \bar{C}_{i} the ideal generated by $G\left(C_{i}\right)$ in S_{i}, then, by Proposition 1.3, as in Example 1.5, we have $\operatorname{reg}\left(C_{i}\right)=s\left(S_{i} / \bar{C}_{i}\right)+1=a_{i 1}+\cdots+a_{i r_{i}}-r_{i}+1$. Therefore, we get the following corollary.

Corollary 2.9. With the notations above,

$$
\operatorname{reg}(I)=\max \left\{a_{i 1}+\cdots+a_{i r_{i}}-r_{i}+1: i=1, \ldots, m\right\} .
$$

Let q be a positive integer and consider the ideal $I^{[q]}$. Since $I=\bigcap_{i=1}^{m} C_{i}$, it follows that $I^{[q]}=\bigcap_{i=1}^{m} C_{i}^{[q]}$ and $C_{i}^{[q]}=\left(x_{1}^{q a_{i 1}}, \ldots, x_{r_{i}}^{q a_{i r_{i}}}\right)$. Note that $\bigcap_{i=1}^{m} C_{i}^{[q]}$ is the irredundant irreducible decomposition of $I^{[q]}$. Indeed, we can argue in the same way as we did for the irreducible primary decomposition of $I^{[q]}$. Therefore, by Corollary 2.9, we get the following.

Corollary 2.10. $\operatorname{reg}\left(I^{[q]}\right)=\max \left\{q a_{i 1}+\cdots+q a_{i r_{i}}-r_{i}+1: i=1, \ldots, m\right\}$.
The above formula leads us to the following upper bound for $\operatorname{reg}\left(I^{[q]}\right)$.
Proposition 2.11. Let $I \subset S$ be an ideal of Borel type and let q be a positive integer. Then:

$$
\operatorname{reg}\left(I^{[q]}\right) \leq q \operatorname{reg}(I)+(q-1)(n-1)=\alpha q \operatorname{reg}(I)-(n-1)
$$

where $\alpha=1+\frac{n-1}{\operatorname{reg}(I)}$.

Proof. With the above notations, we may assume $\operatorname{reg}(I)=a_{i 1}+\cdots+a_{i r_{i}}-r_{i}+1$ for some $1 \leq i \leq m$. According to Corollary 2.9 and Corollary 2.10, reg $\left(I^{[q]}\right)=q a_{i 1}+\cdots+q a_{i i_{r}}-r_{i}+1$. Therefore, $\operatorname{reg}\left(I^{[q]}\right)=q \operatorname{reg}(I)+(q-1)\left(r_{i}-1\right)$. Since $r_{i}-1 \leq n-1$, we get the required inequality. The remaining equality is trivial.

We conclude our paper, with the following example.
Example 2.12. Let $I=(x) \cap\left(x^{2}, y\right)=\left(x^{2}, x y\right) \subset S=K[x, y]$. Let q be a positive integer. It follows that $I^{q}=\left(x^{2 q}, x^{2 q-1} y, \ldots, x^{q} y^{q}\right)=\left(x^{q}\right) \cap\left(x^{2 q}, x^{2 q-1} y, \ldots, x^{q+1} y^{q-1}, y^{q}\right)$.

Also, we obtain $I^{((q))}=\left(x^{q}\right) \cap\left(x^{2}, y\right)^{q}=\left(x^{q}\right) \cap\left(x^{2 q}, x^{2 q-2} y, \ldots, x^{2} y^{q-1}, y^{q}\right)=$ $\left(x^{2 q}, x^{2 q-2} y, \ldots, x^{2 q-2\left\lfloor\frac{q}{2}\right\rfloor} y^{\left\lfloor\frac{q}{2}\right\rfloor}, x^{q} y^{\left\lfloor\frac{q}{2}\right\rfloor+1}\right)$, where we denoted by $\lfloor\alpha\rfloor$ the integer part of α. On the other hand, $I^{[q]}=\left(x^{q}\right) \cap\left(x^{2 q}, y^{q}\right)=\left(x^{2 q}, x^{q} y^{q}\right)$.

We consider the sequential chain of $I, I=: I_{0} \subset I_{1} \subset I_{2}:=S$, where $I_{1}=(x)$. We have $J_{0}=I \subset S$ and $J_{1}=(x) \subset K[x]$. Therefore, $J_{0}^{q}=I^{q}, J_{0}^{((q))}=I^{((q))}$ and $J_{0}^{[q]}=I^{[q]}$. Also, $J_{1}^{q}=J_{1}^{((q))}=J_{1}^{[q]}=\left(x^{q}\right) \subset K[x]$. We get $J_{0}^{\text {sat }}=(x) S,\left(J_{0}^{q}\right)^{\text {sat }}=\left(J_{0}^{((q))}\right)^{\text {sat }}=\left(J_{0}^{[q]}\right)^{\text {sat }}=$ $\left(x^{q}\right) S$ and $J_{1}^{\text {sat }}=\left(J_{1}^{q}\right)^{\text {sat }}=\left(J_{1}^{((q))}\right)^{\text {sat }}=\left(J_{1}^{[q]}\right)^{\text {sat }}=K[x]$.

We have $s\left(J_{1}^{\text {sat }} / J_{1}\right)=0$ and $s\left(\left(J_{1}^{q}\right)^{\text {sat }} / J_{1}^{q}\right)=s\left(\left(J_{1}^{((q))}\right)^{\text {sat }} / J_{1}^{((q))}\right)=s\left(\left(J_{1}^{[q]}\right)^{\text {sat }} / J_{1}^{[q]}\right)=$ $q-1$.

Also, one can easily compute $s\left(J_{0}^{\text {sat }} / J_{0}\right)=1, s\left(\left(J_{0}^{q}\right)^{\text {sat }} / J_{0}^{q}\right)=2 q-1, s\left(\left(J_{0}^{((q))}\right)^{\text {sat }} / J_{0}^{((q))}\right)=$ $2 q-1$ and $s\left(\left(J_{0}^{[q]}\right)^{s a t} / J_{0}^{[q]}\right)=3 q-2$. By Proposition 1.3, it follows that $\operatorname{reg}(I)=2$, $\operatorname{reg}\left(I^{q}\right)=\operatorname{reg}\left(I^{((q))}\right)=2 q$ and $\operatorname{reg}\left(I^{[q]}\right)=3 q-1$.

Since $I=(x) \cap\left(x^{2}, y\right)$ is also the irreducible irredundant decomposition of I, by Corollary 2.8 and Corollary 2.9, we can compute directly $\operatorname{reg}(I)=\max \{1-1+1,2+1-2+1\}=2$ and, respectively, $\operatorname{reg}\left(I^{[q]}\right)=\max \{q-1+1,2 q+q-2+1\}=3 q-1$.

Note that $\operatorname{reg}\left(I^{[q]}\right)=q \operatorname{reg}(I)+(q-1)(2-1)$ and therefore, the upper bound given in Proposition 2.11 is the best possible.

References

[1] D. Bayer, M. Stillman, A criterion for detecting m-regularity, Invent. Math 87 (1987), 1-11.
[2] I. Bermejo, P. Gimenez, Saturation and Castelnuovo-Mumford regularity, Journal of Algebra, 303 no. 2(2006), 592-617.
[3] G. Caviglia, E. Sbarra, Characteristic-free bounds for the Castelnuovo Mumford regularity, Compos. Math. 141 no. 6 (2005), 1365-1373.
[4] M. Cimpoeas "A stable property of Borel type ideals", Communications in Algebra, vol 36 no 2, 2008, p.674-677.
[5] M. Cimpoeas "Some remarks on Borel type ideals", Communications in Algebra, vol 37, no 2, 2009, p.724-727.
[6] D. Eisenbud "Commutative algebra", Springer-Verlag, New York, 1995.
[7] J. Herzog, T. Hibi, Monomial Ideals, Graduate Texts in Mathematics 260 , Springer, 2010.
[8] J. Herzog, D. Popescu, M. Vladoiu, On the Ext-Modules of ideals of Borel type, Contemporary Math. 331 (2003), 171-186.

Mircea Cimpoeas, Simion Stoilow Institute of Mathematics of the Romanian Academy
E-mail: mircea.cimpoeas@imar.ro

[^0]: ${ }^{1}$ The support from grant ID-PCE-2011-1023 of Romanian Ministry of Education, Research and Innovation is gratefully acknowledged.

