ON THE STANLEY DEPTH OF THE PATH IDEAL OF A CYCLE GRAPH

MIRCEA CIMPOEAŞ

Abstract

We give tight bounds for the Stanley depth of the quotient ring of the path ideal of a cycle graph. In particular, we prove that it satisfies the Stanley inequality.

Mathematics Subject Classification (2010): 13C15, 13P10, 13F20.
Keywords: Stanley depth, cycle graph, path ideal.

Article history:

Received 11 July 2016
Received in revised form 23 August 2016
Accepted 24 August 2016

Introduction

Let K be a field and $S=K\left[x_{1}, \ldots, x_{n}\right]$ the polynomial ring over K. Let M be a \mathbb{Z}^{n}-graded S-module. A Stanley decomposition of M is a direct sum $\mathcal{D}: M=\bigoplus_{i=1}^{r} m_{i} K\left[Z_{i}\right]$ as a \mathbb{Z}^{n}-graded K-vector space, where $m_{i} \in M$ is homogeneous with respect to \mathbb{Z}^{n}-grading, $Z_{i} \subset\left\{x_{1}, \ldots, x_{n}\right\}$ such that $m_{i} K\left[Z_{i}\right]=$ $\left\{u m_{i}: u \in K\left[Z_{i}\right]\right\} \subset M$ is a free $K\left[Z_{i}\right]$-submodule of M. We define $\operatorname{sdepth}(\mathcal{D})=\min _{i=1, \ldots, r}\left|Z_{i}\right|$ and $\operatorname{sdepth}(M)=\max \{\operatorname{sdepth}(\mathcal{D}) \mid \mathcal{D}$ is a Stanley decomposition of $M\}$. The number $\operatorname{sdepth}(M)$ is called the Stanley depth of M.

Herzog, Vladoiu and Zheng show in [10] that $\operatorname{sdepth}(M)$ can be computed in a finite number of steps if $M=I / J$, where $J \subset I \subset S$ are monomial ideals. In [13], Rinaldo give a computer implementation for this algorithm, in the computer algebra system CoCoA [6]. In [2], J. Apel restated a conjecture firstly given by Stanley in [14], namely that $\operatorname{sdepth}(M) \geq \operatorname{depth}(M)$ for any \mathbb{Z}^{n}-graded S-module M. This conjecture proves to be false, in general, for $M=S / I$ and $M=J / I$, where $0 \neq I \subset J \subset S$ are monomial ideals, see [7]. For a friendly introduction in the thematic of Stanley depth, we refer the reader [11].

Let $\Delta \subset 2^{[n]}$ be a simplicial complex. A face $F \in \Delta$ is called a facet, if F is maximal with respect to inclusion. We denote $\mathcal{F}(\Delta)$ the set of facets of Δ. If $F \in \mathcal{F}(\Delta)$, we denote $x_{F}=\prod_{j \in F} x_{j}$. Then the facet ideal $I(\Delta)$ associated to Δ is the squarefree monomial ideal $I=\left(x_{F}: F \in \mathcal{F}(\Delta)\right)$ of S. The facet ideal was studied by Faridi [8] from the depth perspective.

The line graph of lenght n, denoted by L_{n}, is a graph with the vertex set $V=[n]$ and the edge set $E=\{\{1,2\},\{2,3\}, \ldots,\{n-1, n\}\}$. Let $\Delta_{n, m}$ be the simplicial complex with the set of facets $\mathcal{F}\left(\Delta_{n, m}\right)=\{\{1,2, \ldots, m\},\{2,3, \ldots, m+1\}, \ldots,\{n-m+1, n-m+2, \ldots, n\}\}$, where $1 \leq m \leq n$. We denote $I_{n, m}=\left(x_{1} x_{2} \cdots x_{m}, x_{2} x_{3} \cdots x_{m+1}, \ldots, x_{n-m+1} x_{n-m+2} \cdots x_{n}\right)$, the associated facet ideal. Note that $I_{n, m}$ is the m-path ideal of the graph L_{n}, provided with the direction given by $1<2<\ldots<n$, see [9] for further details.

According to [9, Theorem 1.2], the projective dimension of $S / I_{n, m}$ is:

$$
\operatorname{pd}\left(S / I_{n, m}\right)=\left\{\begin{array}{l}
\frac{2(n-d)}{m+1}, n \equiv d(\bmod (m+1)) \text { with } 0 \leq d \leq m-1 \\
\frac{2 n-m+1}{m+1}, n \equiv m(\bmod (m+1))
\end{array}\right.
$$

[^0]By Auslander-Buchsbaum formula (see [15]), it follows that $\operatorname{depth}\left(S / I_{n, m}\right)=n-\operatorname{pd}\left(S / I_{n, m}\right)$ and, by a straightforward computation, we can see $\operatorname{depth}\left(S / I_{n, m}\right)=n+1-\left\lfloor\frac{n+1}{m+1}\right\rfloor-\left\lceil\frac{n+1}{m+1}\right\rceil=: \varphi(n, m)$. We proved in [5] that $\operatorname{sdepth}\left(S / I_{n, m}\right)=\varphi(n, m)$.

The cycle graph of length n, denoted by C_{n}, is a graph with the vertex set $V=[n]$ and the edge set $E=$ $\{\{1,2\},\{2,3\}, \ldots,\{n-1, n\},\{n, 1\}\}$. Let $\bar{\Delta}_{n, m}$ be the simplicial complex with the set of facets $\mathcal{F}\left(\bar{\Delta}_{n, m}\right)=$ $\{\{1,2, \ldots, m\},\{2,3, \ldots, m+1\}, \cdots,\{n-m+1, n-m+2, \ldots, n\},\{n-m+2, \ldots, n, 1\}, \ldots,\{n, 1, \ldots, m-$ $1\}\}$. We denote $J_{n, m}=\left(x_{1} x_{2} \cdots x_{m}, x_{2} x_{3} \cdots x_{m+1}, \ldots, x_{n-m+1} x_{n-m+2} \cdots x_{n}, \ldots, x_{n} x_{1} \cdots x_{m-1}\right)$, the associated facet ideal. Note that $J_{n, m}$ is the m-path ideal of the graph C_{n}.

Let $p=\left\lfloor\frac{n}{m+1}\right\rfloor$ and $d=n-(m+1) p$. According to [1, Corollary 5.5],

$$
\operatorname{pd}\left(S / J_{n, m}\right)=\left\{\begin{array}{l}
2 p+1, d \neq 0 \\
2 p, d=0
\end{array}\right.
$$

By Auslander-Buchsbaum formula, it follows that depth $\left(S / J_{n, m}\right)=n-\operatorname{pd}\left(S / J_{n, m}\right)=n-\left\lfloor\frac{n}{m+1}\right\rfloor-$ $\left\lceil\frac{n}{m+1}\right\rceil=\varphi(n-1, m)$. Our main result is Theorem 1.4, in which we prove that $\varphi(n, m) \geq \operatorname{sdepth}\left(S / J_{n, m}\right) \geq$ $\varphi(n-1, m)$. We also prove that, $\operatorname{sdepth}\left(J_{n, m} / I_{n, m}\right)=\operatorname{depth}\left(J_{n, m} / I_{n, m}\right)=\varphi(n-1, m)+m-1$, see Proposition 1.6. These results generalize [4, Theorem 1.9] and [4, Proposition 1.10].

1. Main Results

First, we recall the well known Depth Lemma, see for instance [15, Lemma 1.3.9].
Lemma 1.1. (Depth Lemma) If $0 \rightarrow U \rightarrow M \rightarrow N \rightarrow 0$ is a short exact sequence of modules over a local ring S, or a Noetherian graded ring with S_{0} local, then
a) depth $M \geq \min \{\operatorname{depth} N$, depth $U\}$.
b) depth $U \geq \min \{\operatorname{depth} M$, depth $N+1\}$.
c) $\operatorname{depth} N \geq \min \{\operatorname{depth} U-1$, depth $M\}$.

In [12], Asia Rauf proved the analog of Lemma 1.1(a) for sdepth:
Lemma 1.2. Let $0 \rightarrow U \rightarrow M \rightarrow N \rightarrow 0$ be a short exact sequence of \mathbb{Z}^{n}-graded S-modules. Then: $\operatorname{sdepth}(M) \geq \min \{\operatorname{sdepth}(U), \operatorname{sdepth}(N)\}$.

The following result is well known. However, we present an original proof.
Lemma 1.3. Let $I \subset S$ be a nonzero proper monomial ideal. Then, I is principal if and only if $\operatorname{sdepth}(S / I)=n-1$.

Proof. Assume $\operatorname{sdepth}(S / I)=n-1$ and let $S / I=\bigoplus_{i=1}^{r} u_{i} K\left[Z_{i}\right]$ be a Stanley decomposition with $\left|Z_{i}\right|=n-1$ for all i, and $u_{i} \in S$ monomials. Since $1 \notin I$, we may assume that $u_{1}=1$. Let $x_{j_{1}}$ be the variable which is not in Z_{1}. If $x_{j_{1}} \in I$, since $S /\left(x_{j_{1}}\right)=K\left[Z_{1}\right]$ and $K\left[Z_{1}\right] \subset S / I$, then $I=\left(x_{j_{1}}\right)$. Otherwise, we may assume that $u_{2}=x_{j_{1}}$.

Let $x_{j_{2}}$ be the variable which is not in Z_{2}. If $x_{j_{1}} x_{j_{2}} \in I$, then, one can easily see that $I=\left(x_{j_{1}} x_{j_{2}}\right)$. If $x_{j_{1}} x_{j_{2}} \notin I$, then we may assume $u_{3}=x_{j_{1}} x_{j_{2}}$ and so on. Thus, we have $u_{i}=x_{j_{1}} \cdots x_{j_{i-1}}$, for all $1 \leq i \leq r+1$, where $x_{j_{i}}$ is the variable which is not in Z_{i}. Moreover, $I=\left(u_{r+1}\right)$, and therefore I is principal.

In order to prove the other implication, assume that $I=(u)$ and write $u=\prod_{i=1}^{r} x_{j_{i}}$. We let $u_{i}=$ $\prod_{k=1}^{i-1} x_{j_{k}}$ and $Z_{i}=\left\{x_{1}, \ldots, x_{n}\right\} \backslash\left\{x_{j_{i}}\right\}$, for all $1 \leq i \leq r$. Then, $S / I=\bigoplus_{i=1}^{r} u_{i} K\left[Z_{i}\right]$ is a Stanley decomposition with $\left|Z_{i}\right|=n-1$ for all i. Therefore $\operatorname{sdepth}(S / I)=n-1$.

Our main result, is the following theorem.

Theorem 1.4. $\varphi(n, m) \geq \operatorname{sdepth}\left(S / J_{n, m}\right) \geq \operatorname{depth}\left(S / J_{n, m}\right)=\varphi(n-1, m)$.
Proof. If $n=m$, then $J_{n, n}=\left(x_{1} \ldots x_{n}\right)$ is a principal ideal, and, according to Lemma 1.3 we are done. Also, if $m=1$, then $J_{n, 1}=\left(x_{1}, \ldots, x_{n}\right)$ and so there is nothing to prove, since $S / J_{n, 1}=K$. The case $m=2$ follows from [4, Proposition 1.8] and [4, Theorem 1.9].

Assume $n>m \geq 3$. If $n=m+1$, then we consider the short exact sequence

$$
0 \rightarrow S /\left(J_{n, n-1}: x_{n}\right) \rightarrow S / J_{n, n-1} \rightarrow S /\left(J_{n, n-1}, x_{n}\right) \rightarrow 0
$$

Note that $\left(J_{n, n-1}: x_{n}\right)=\left(x_{1} \cdots x_{n-2}, x_{2} \cdots x_{n-1}, x_{3} \cdots x_{n-1} x_{1}, \cdots, x_{n-1} x_{1} \cdots x_{n-3}\right) \cong J_{n-1, n-2} S$. Therefore, by induction hypothesis and [10, Lemma 3.6],

$$
\operatorname{sdepth}\left(S /\left(J_{n, n-1}: x_{n}\right)\right)=\operatorname{depth}\left(S /\left(J_{n, n-1}: x_{n}\right)\right)=1+\varphi(n-2, n-2)=n-2
$$

Also, $\left(J_{n, n-1}, x_{n}\right)=\left(x_{1} \cdots x_{n-1}, x_{n}\right)$ and thus $S /\left(J_{n, n-1}, x_{n}\right) \cong K\left[x_{1}, \ldots, x_{n-1}\right] /\left(x_{1} \cdots x_{n-1}\right)$. Therefore, by Lemma 1.3, we have $\operatorname{sdepth}\left(S /\left(J_{n, n-1}, x_{n}\right)\right)=n-2=\operatorname{depth}\left(S /\left(J_{n, n-1}, x_{n}\right)\right)$.

Now, assume $n>m+1>3$. We consider the ideals $L_{0}=J_{n, m}, L_{k+1}=\left(L_{k}: x_{n-k}\right)$ and $U_{k}=$ (L_{k}, x_{n-k}), for $0 \leq k \leq m-2$. Note that

$$
L_{m-1}=\left(J_{n, m}: x_{n-m+2} \cdots x_{n}\right)=\left(x_{1}, x_{2} \cdots x_{m+1}, \ldots, x_{n-2 m+1} \cdots x_{n-m}, x_{n-m+1}\right) .
$$

If $n-2 m \leq 2$, then $L_{m-1}=\left(x_{1}, x_{n-m+1}\right)$ and thus $\operatorname{sdepth}\left(S / L_{m-1}\right)=\operatorname{depth}\left(S / L_{m-1}\right)=n-2=$ $\varphi(n, m)$, since $\left\lfloor\frac{n+1}{m+1}\right\rfloor=1$ and $\left\lceil\frac{n+1}{m+1}\right\rceil=2$.

If $n-2 m>2$, then $S / L_{m-1} \cong K\left[x_{2}, \ldots, x_{n-m}, x_{n-m+2}, \ldots, x_{n}\right] /\left(x_{2} \cdots x_{m+1}, \ldots, x_{n-2 m+1} \cdots x_{n-m}\right)$ and therefore, by [10, Lemma 3.6] and [5, Theorem 1.3], we have $\operatorname{sdepth}\left(S / L_{m-1}\right)=\operatorname{depth}\left(S / L_{m-1}\right)=$ $n-1-\left\lfloor\frac{n-m}{m+1}\right\rfloor-\left\lceil\frac{n-m}{m+1}\right\rceil=\varphi(n, m)$. On the other hand, for example by [3, Proposition 2.7], $\operatorname{sdepth}\left(S / L_{m-1}\right) \geq \operatorname{sdepth}\left(S / J_{n, m}\right)$. Thus, $\operatorname{sdepth}\left(S / J_{n, m}\right) \leq \varphi(n, m)$.

For any $0<k<m$, we have $L_{k}=\left(x_{1} \cdots x_{m-k}, x_{2} \cdots x_{m+1}, \ldots, x_{n-m-k} \cdots x_{n-k-1}\right.$, $\left.x_{n-m+1} \cdots x_{n-k}, x_{n-m+2} \cdots x_{n-k} x_{1}, \ldots, x_{n-k} x_{1} \cdots x_{m-k-1}\right) . \quad$ Therefore, $\quad U_{k}=\left(x_{1} \cdots x_{m-k}\right.$, $x_{2} \cdots x_{m+1}, \ldots, x_{n-m-k} \cdots x_{n-k-1}, x_{n-k}$), for $k \leq m-2$. We consider two cases:
(i) If $n-m-k<2$ and $0 \leq k \leq m-2$, then $\bar{U}_{k}=\left(x_{1} \cdots x_{m-k}, x_{n-k}\right)$ and therefore $\operatorname{sdepth}\left(S / U_{k}\right)=$ $\operatorname{depth}\left(S / U_{k}\right)=n-2=\varphi(n, m)$, since $\left\lfloor\frac{n+1}{m+1}\right\rfloor=1$ and $\left\lceil\frac{n+1}{m+1}\right\rceil=2$.
(ii) If $n-m-k \geq 2$, then, for any $0 \leq j \leq k \leq m-2$, we consider the ideals $V_{k, j}:=$ $\left(x_{1} \cdots x_{m-j}, x_{2} \cdots x_{m+1}, \ldots, x_{n-m-k} \cdots x_{n-k-1}\right)$ in $S_{k}:=K\left[x_{1}, \ldots, n_{n-k-1}\right]$. Note that $S / U_{k} \cong$ $\left(S_{k} / V_{k, k}\right)\left[x_{n-k+1}, \ldots, x_{n}\right]$ and thus, by [10, Lemma 3.6], $\operatorname{depth}\left(S / U_{k}\right)=\operatorname{depth}\left(S_{k} / V_{k, k}\right)+k$ and $\operatorname{sdepth}\left(S / U_{k}\right)=\operatorname{sdepth}\left(S_{k} / V_{k, k}\right)+k$.

For any $0 \leq j<k \leq m-2$, we claim that $V_{k, j} / V_{k, j+1}$ is isomorphic to

$$
\left(K\left[x_{m-j+2}, \ldots, x_{n-k-1}\right] /\left(x_{m-j+2} \cdots x_{2 m-j+1}, \ldots, x_{n-m-k} \cdots x_{n-k-1}\right)\right)\left[x_{1}, \ldots, x_{m-j}\right] .
$$

Indeed, if $u \in V_{k, j} \backslash V_{k, j+1}$ is a monomial, then $x_{1} \cdots x_{m-j} \mid u$ and $x_{m-j+1} \nmid u$. Also, $x_{m-j+2} \cdots x_{2 m-j+1} \nmid$ $u, \ldots, x_{n-m-k} \cdots x_{n-k-1} \nmid u$. Denoting $v=u /\left(x_{1} \cdots x_{m-j}\right)$, we can write $v=v^{\prime} v^{\prime \prime}$, with $v^{\prime} \in$ $K\left[x_{m-j+2}, \ldots, x_{n-k-1}\right] \backslash\left(x_{m-j+2} \cdots x_{2 m-j+1}, \ldots, x_{n-m-k} \cdots x_{n-k-1}\right)$ and $v^{\prime \prime} \in K\left[x_{1}, \ldots, x_{m-j}\right]$.

By [10, Lemma 3.6] and [5, Theorem 1.3], $\operatorname{sdepth}\left(V_{k, j} / V_{k, j+1}\right)=\operatorname{depth}\left(V_{k, j} / V_{k, j+1}\right)=m-j+\varphi(n-k-$ $m+j-2, m)=n-k-1-\left\lfloor\frac{n-m-1-k+j}{m+1}\right\rfloor-\left\lceil\frac{n-m-1-k+j}{m+1}\right\rceil=n-k+1-\left\lfloor\frac{n-k+j}{m+1}\right\rfloor-\left\lceil\frac{n-k+j}{m+1}\right\rceil \geq \varphi(n, m)-k$. On the other hand, $V_{k, 0}=I_{n-k-1, m}$ for any $0 \leq k \leq m-2$ and therefore, by [5, Theorem 1.3], $\operatorname{sdepth}\left(S / V_{k, 0}\right)=\operatorname{depth}\left(S / V_{k, 0}\right)=\varphi(n-k-1, m)=n-k-\left\lfloor\frac{n-k}{m+1}\right\rfloor-\left\lceil\frac{n-k}{m+1}\right\rceil \geq \varphi(n, m)-k$, for any $k \geq 1$. From the short exact sequences $0 \rightarrow V_{k, j} / V_{k, j+1} \rightarrow S / V_{k, j+1} \rightarrow S / V_{k, j} \rightarrow 0,0 \leq j<k$, Lemma 1.1 and Lemma 1.2, it follows that $\operatorname{sdepth}\left(S / V_{k, j+1}\right) \geq \operatorname{depth}\left(S / V_{k, j+1}\right)=\varphi(n, m)-k$, for all $0 \leq j<$ $k \leq m-2$. Thus $\operatorname{sdepth}\left(S / U_{k}\right) \geq \operatorname{depth}\left(S / U_{k}\right) \geq \varphi(n, m)$, for all $0<k \leq m-2$.On the other hand, $\operatorname{sdepth}\left(S / V_{0,0}\right)=\operatorname{depth}\left(S / V_{0,0}\right)=\varphi(n-1, m)$, and thus $\operatorname{sdepth}\left(S / U_{0}\right)=\operatorname{depth}\left(S / U_{0}\right)=\varphi(n-1, m)$.

Now, we consider short exact sequences

$$
0 \rightarrow S / L_{k+1} \rightarrow S / L_{k} \rightarrow S / U_{k} \rightarrow 0, \text { for } 0 \leq k<m
$$

By Lemma 1.1 and Lemma 1.2 we get $\operatorname{sdepth}\left(S / L_{k}\right) \geq \operatorname{depth}\left(S / L_{k}\right)=\varphi(n, m)$, for any $0<k \leq m-2$, and $\operatorname{sdepth}\left(S / L_{0}\right) \geq \operatorname{depth}\left(S / L_{0}\right)=\varphi(n-1, m)$.
Corollary 1.5. If $\left\lfloor\frac{n+1}{m+1}\right\rfloor=\left\lfloor\frac{n}{m+1}\right\rfloor$ and $\left\lceil\frac{n+1}{m+1}\right\rceil=\left\lceil\frac{n}{m+1}\right\rceil$, then

$$
\operatorname{sdepth}\left(S / J_{n, m}\right)=\operatorname{depth}\left(S / J_{n, m}\right)=\varphi(n, m)
$$

Proposition 1.6. $\operatorname{sdepth}\left(J_{n, m} / I_{n, m}\right) \geq \operatorname{depth}\left(J_{n, m} / I_{n, m}\right)=\varphi(n-1, m)+m-1$.
Proof. We claim that $J_{n, m} / I_{n, m}$ is isomorphic to

$$
\begin{gathered}
x_{n-m+2} \cdots x_{n} x_{1}\left(\frac{K\left[x_{2}, \ldots, x_{n-m}\right]}{\left(x_{2} \cdots x_{m}, x_{3} \cdots x_{m+2} \ldots, x_{n-2 m+1} \cdots x_{n-m}\right)}\right)\left[x_{n-m+2}, \ldots, x_{n}, x_{1}\right] \oplus \\
\oplus x_{n-m+3} \cdots x_{n} x_{1} x_{2}\left(\frac{K\left[x_{3}, \ldots, x_{n-m+1}\right]}{\left(x_{3} \cdots x_{m}, x_{4} \cdots x_{m+3}, \ldots, x_{n-2 m+2} \cdots x_{n-m+1}\right)}\right)\left[x_{n-m+3}, \ldots, x_{n}, x_{1}, x_{2}\right] \oplus \\
\cdots \oplus x_{n} x_{1} \cdots x_{m-1}\left(\frac{K\left[x_{m}, \ldots, x_{n-2}\right]}{\left(x_{m}, x_{m+1} \cdots x_{2 m}, \ldots, x_{n-m-1} \cdots x_{n-2}\right)}\right)\left[x_{n}, x_{1} \cdots, x_{m-1}\right]
\end{gathered}
$$

Indeed, let $u \in J_{n, m} \backslash I_{n, m}$ be a monomial. If $x_{n-m+2} \cdots x_{n} x_{1} \mid u$, then $x_{n-m+1} \nmid u$ and $x_{2} \cdots x_{m} \nmid u$. It follows that:
$u \in x_{n-m+2} \cdots x_{n} x_{1}\left(K\left[x_{2}, \ldots, x_{n-m}\right] /\left(x_{2} \cdots x_{m}, x_{3} \cdots x_{m+2} \ldots, x_{n-2 m+1} \cdots x_{n-m}\right)\right)\left[x_{n-m+2}, \ldots, x_{n}, x_{1}\right]$.
If $x_{n-m+2} \cdots x_{n} x_{1} \nmid u$ and $x_{n-m+3} \cdots x_{n} x_{1} x_{2} \mid u$ then $x_{n-m+2} \nmid u$ and $x_{3} \cdots x_{m} \nmid u$. Thus:

$$
u \in x_{n-m+3} \cdots x_{n} x_{1} x_{2}\left(\frac{K\left[x_{3}, \ldots, x_{n-m+1}\right]}{\left(x_{3} \cdots x_{m}, x_{4} \cdots x_{m+3}, \ldots, x_{n-2 m+2} \cdots x_{n-m+1}\right)}\right)\left[x_{n-m+3}, \ldots, x_{n}, x_{1}, x_{2}\right] .
$$

Finally, if $x_{n-m+2} \cdots x_{n} x_{1} \nmid u, \ldots, x_{n-1} x_{n} x_{1} \cdots x_{m-2} \nmid u$ and $x_{n} x_{1} \cdots x_{m-1} \mid u$, then it follows that $x_{n-1} \nmid u$ and $x_{m} \nmid u$. Therefore:

$$
u \notin x_{n} x_{1} \cdots x_{m-1}\left(\frac{K\left[x_{m}, \ldots, x_{n-2}\right]}{\left(x_{m}, x_{m+1} \cdots x_{2 m}, \ldots, x_{n-m-1} \cdots x_{n-2}\right)}\right)\left[x_{n}, x_{1} \ldots, x_{m-1}\right] .
$$

As in the proof of Theorem 3.1 (see the computations for $V_{k, j}$'s), by applying Lemma 1.1 and Lemma 1.2 , it follows that $\operatorname{sdepth}\left(J_{n, m} / I_{n, m}\right) \geq \operatorname{depth}\left(J_{n, m} / I_{n, m}\right)=\varphi(n-m-2, m)+m=\varphi(n-1, m)+m-1$, as required.

Inspired by [4, Conjecture 1.12] and computer experiments [6], we propose the following:
Conjecture 1.7. For any $n \geq 3(m+1)+1$, we have $\operatorname{sdepth}\left(S / J_{n, m}\right)=\varphi(n, m)$.

References

[1] A. Alilooee, S. Faridi, On the resolution of path ideals of cycles, Commun. Algebra, 43 (12), (2015), 5413-5433.
[2] J. Apel, On a conjecture of R. P. Stanley; Part II - Quotients Modulo Monomial Ideals, J. of Alg. Comb. 17, (2003), 57-74.
[3] M. Cimpoeas, Several inequalities regarding Stanley depth, Rom. J. Math. Comput. Sci. 2(1), (2012), 28-40.
[4] M. Cimpoeas, On the Stanley depth of edge ideals of line and cyclic graphs, Rom. J. Math. Comput. Sci. 5(1), (2015), 70-75.
[5] M. Cimpoeas, Stanley depth of the path ideal associated to a line graph, http://arxiv.org/pdf/1508.07540v2.pdf, to appear in Math. Rep., Buchar.
[6] CoCoATeam, CoCoA: a system for doing Computations in Commutative Algebra, Available at http://cocoa.dima.unige.it
[7] A. M. Duval, B. Goeckneker, C. J. Klivans, J. L. Martine, A non-partitionable Cohen-Macaulay simplicial complex, http://arxiv.org/pdf/1504.04279
[8] S. Faridi, The facet ideal of a simplicial complex, Manuscr. Math., 109 (2002), 159-174.
[9] Jing He, Adam Van Tuyl, Algebraic properties of the path ideal of a tree, Commun. Algebra 38 (2010), no. 5, 1725-742.
[10] J. Herzog, M. Vladoiu, X. Zheng, How to compute the Stanley depth of a monomial ideal, J. Algebra 322 (9), (2009), 3151-3169.
[11] J. Herzog, A survey on Stanley depth, In Monomial Ideals, Computations and Applications, Springer, (2013), 3-45.
[12] A. Rauf, Depth and sdepth of multigraded module, Commun. Algebra, 38 (2), (2010), 773-784.
[13] G. Rinaldo, An algorithm to compute the Stanley depth of monomial ideals, Matematiche, LXIII (ii), (2008), 243-256.
[14] R. P. Stanley, Linear Diophantine equations and local cohomology, Invent. Math. 68, (1982), 175-193.
[15] R. H. Villarreal, Monomial algebras. Monographs and Textbooks in Pure and Applied Mathematics, 238, Marcel Dekker, Inc., New York, (2001).

Simion Stoilow Institute of Mathematics, Research unit 5, P.O.Box 1-764, Bucharest 014700, Romania

E-mail address: mircea.cimpoeas@imar.ro

[^0]: ${ }^{1}$ The support from grant ID-PCE-2011-1023 of Romanian Ministry of Education, Research and Innovation is gratefully acknowledged.

