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Abstract. We give tight bounds for the Stanley depth of the quotient ring of the path
ideal of a cycle graph. In particular, we prove that it satisfies the Stanley inequality.
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Introduction

Let K be a field and S = K[x1, . . . , xn] the polynomial ring over K. Let M be a Zn-graded S-module.
A Stanley decomposition of M is a direct sum D : M =

⊕r
i=1 miK[Zi] as a Zn-graded K-vector space,

where mi ∈ M is homogeneous with respect to Zn-grading, Zi ⊂ {x1, . . . , xn} such that miK[Zi] =
{umi : u ∈ K[Zi]} ⊂ M is a free K[Zi]-submodule of M . We define sdepth(D) = mini=1,...,r |Zi| and
sdepth(M) = max{sdepth(D)| D is a Stanley decomposition of M}. The number sdepth(M) is called
the Stanley depth of M .

Herzog, Vladoiu and Zheng show in [10] that sdepth(M) can be computed in a finite number of steps
if M = I/J , where J ⊂ I ⊂ S are monomial ideals. In [13], Rinaldo give a computer implementation
for this algorithm, in the computer algebra system CoCoA [6]. In [2], J. Apel restated a conjecture firstly
given by Stanley in [14], namely that sdepth(M) ≥ depth(M) for any Zn-graded S-module M . This
conjecture proves to be false, in general, for M = S/I and M = J/I, where 0 6= I ⊂ J ⊂ S are monomial
ideals, see [7]. For a friendly introduction in the thematic of Stanley depth, we refer the reader [11].

Let ∆ ⊂ 2[n] be a simplicial complex. A face F ∈ ∆ is called a facet, if F is maximal with respect to
inclusion. We denote F(∆) the set of facets of ∆. If F ∈ F(∆), we denote xF =

∏
j∈F xj . Then the

facet ideal I(∆) associated to ∆ is the squarefree monomial ideal I = (xF : F ∈ F(∆)) of S. The facet
ideal was studied by Faridi [8] from the depth perspective.

The line graph of lenght n, denoted by Ln, is a graph with the vertex set V = [n] and the edge
set E = {{1, 2}, {2, 3}, . . . , {n − 1, n}}. Let ∆n,m be the simplicial complex with the set of facets
F(∆n,m) = {{1, 2, . . . ,m}, {2, 3, . . . ,m + 1}, . . . , {n − m + 1, n − m + 2, . . . , n}}, where 1 ≤ m ≤ n.
We denote In,m = (x1x2 · · ·xm, x2x3 · · ·xm+1, . . . , xn−m+1xn−m+2 · · ·xn) , the associated facet ideal.
Note that In,m is the m-path ideal of the graph Ln, provided with the direction given by 1 < 2 < . . . < n,
see [9] for further details.

According to [9, Theorem 1.2], the projective dimension of S/In,m is:

pd(S/In,m) =

{
2(n−d)
m+1 , n ≡ d(mod (m + 1)) with 0 ≤ d ≤ m− 1,

2n−m+1
m+1 , n ≡ m(mod (m + 1)).
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By Auslander-Buchsbaum formula (see [15]), it follows that depth(S/In,m) = n − pd(S/In,m) and, by

a straightforward computation, we can see depth(S/In,m) = n + 1 −
⌊

n+1
m+1

⌋
−

⌈
n+1
m+1

⌉
=: ϕ(n,m). We

proved in [5] that sdepth(S/In,m) = ϕ(n,m).
The cycle graph of length n, denoted by Cn, is a graph with the vertex set V = [n] and the edge set E =

{{1, 2}, {2, 3}, . . . , {n−1, n}, {n, 1}}. Let ∆̄n,m be the simplicial complex with the set of facets F(∆̄n,m) =
{{1, 2, . . . ,m}, {2, 3, . . . ,m+1}, · · · , {n−m+1, n−m+2, . . . , n}, {n−m+2, . . . , n, 1} , . . . , {n, 1, . . . ,m−
1}}. We denote Jn,m = (x1x2 · · ·xm, x2x3 · · ·xm+1, . . . , xn−m+1xn−m+2 · · ·xn, . . . , xnx1 · · ·xm−1), the
associated facet ideal. Note that Jn,m is the m-path ideal of the graph Cn.

Let p =
⌊

n
m+1

⌋
and d = n− (m + 1)p. According to [1, Corollary 5.5],

pd(S/Jn,m) =

{
2p + 1, d 6= 0,

2p, d = 0.

By Auslander-Buchsbaum formula, it follows that depth(S/Jn,m) = n − pd(S/Jn,m) = n −
⌊

n
m+1

⌋
−⌈

n
m+1

⌉
= ϕ(n−1,m). Our main result is Theorem 1.4, in which we prove that ϕ(n,m) ≥ sdepth(S/Jn,m) ≥

ϕ(n − 1,m). We also prove that, sdepth(Jn,m/In,m) = depth(Jn,m/In,m) = ϕ(n − 1,m) + m − 1, see
Proposition 1.6. These results generalize [4, Theorem 1.9] and [4, Proposition 1.10].

1. Main results

First, we recall the well known Depth Lemma, see for instance [15, Lemma 1.3.9].

Lemma 1.1. (Depth Lemma) If 0 → U → M → N → 0 is a short exact sequence of modules over a
local ring S, or a Noetherian graded ring with S0 local, then

a) depthM ≥ min{depthN, depthU}.
b) depthU ≥ min{depthM, depthN + 1}.
c) depthN ≥ min{depthU − 1,depthM}.

In [12], Asia Rauf proved the analog of Lemma 1.1(a) for sdepth:

Lemma 1.2. Let 0 → U → M → N → 0 be a short exact sequence of Zn-graded S-modules. Then:
sdepth(M) ≥ min{sdepth(U), sdepth(N)}.

The following result is well known. However, we present an original proof.

Lemma 1.3. Let I ⊂ S be a nonzero proper monomial ideal. Then, I is principal if and only if
sdepth(S/I) = n− 1.

Proof. Assume sdepth(S/I) = n − 1 and let S/I =
⊕r

i=1 uiK[Zi] be a Stanley decomposition with
|Zi| = n − 1 for all i, and ui ∈ S monomials. Since 1 /∈ I, we may assume that u1 = 1. Let xj1 be
the variable which is not in Z1. If xj1 ∈ I, since S/(xj1) = K[Z1] and K[Z1] ⊂ S/I, then I = (xj1).
Otherwise, we may assume that u2 = xj1 .

Let xj2 be the variable which is not in Z2. If xj1xj2 ∈ I, then, one can easily see that I = (xj1xj2).
If xj1xj2 /∈ I, then we may assume u3 = xj1xj2 and so on. Thus, we have ui = xj1 · · ·xji−1

, for all
1 ≤ i ≤ r + 1, where xji is the variable which is not in Zi. Moreover, I = (ur+1), and therefore I is
principal.

In order to prove the other implication, assume that I = (u) and write u =
∏r

i=1 xji . We let ui =∏i−1
k=1 xjk and Zi = {x1, . . . , xn} \ {xji}, for all 1 ≤ i ≤ r. Then, S/I =

⊕r
i=1 uiK[Zi] is a Stanley

decomposition with |Zi| = n− 1 for all i. Therefore sdepth(S/I) = n− 1. �

Our main result, is the following theorem.
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Theorem 1.4. ϕ(n,m) ≥ sdepth(S/Jn,m) ≥ depth(S/Jn,m) = ϕ(n− 1,m).

Proof. If n = m, then Jn,n = (x1 . . . xn) is a principal ideal, and, according to Lemma 1.3 we are done.
Also, if m = 1, then Jn,1 = (x1, . . . , xn) and so there is nothing to prove, since S/Jn,1 = K. The case
m = 2 follows from [4, Proposition 1.8] and [4, Theorem 1.9].

Assume n > m ≥ 3. If n = m + 1, then we consider the short exact sequence

0→ S/(Jn,n−1 : xn)→ S/Jn,n−1 → S/(Jn,n−1, xn)→ 0.

Note that (Jn,n−1 : xn) = (x1 · · ·xn−2, x2 · · ·xn−1, x3 · · ·xn−1x1, · · · , xn−1x1 · · ·xn−3) ∼= Jn−1,n−2S.
Therefore, by induction hypothesis and [10, Lemma 3.6],

sdepth(S/(Jn,n−1 : xn)) = depth(S/(Jn,n−1 : xn)) = 1 + ϕ(n− 2, n− 2) = n− 2.

Also, (Jn,n−1, xn) = (x1 · · ·xn−1, xn) and thus S/(Jn,n−1, xn) ∼= K[x1, . . . , xn−1]/(x1 · · ·xn−1). There-
fore, by Lemma 1.3, we have sdepth(S/(Jn,n−1, xn)) = n− 2 = depth(S/(Jn,n−1, xn)).

Now, assume n > m + 1 > 3. We consider the ideals L0 = Jn,m, Lk+1 = (Lk : xn−k) and Uk =
(Lk, xn−k), for 0 ≤ k ≤ m− 2. Note that

Lm−1 = (Jn,m : xn−m+2 · · ·xn) = (x1, x2 · · ·xm+1, . . . , xn−2m+1 · · ·xn−m, xn−m+1).

If n − 2m ≤ 2, then Lm−1 = (x1, xn−m+1) and thus sdepth(S/Lm−1) = depth(S/Lm−1) = n − 2 =

ϕ(n,m), since
⌊

n+1
m+1

⌋
= 1 and

⌈
n+1
m+1

⌉
= 2.

If n− 2m > 2, then S/Lm−1 ∼= K[x2, . . . , xn−m, xn−m+2, . . . , xn]/(x2 · · ·xm+1, . . . , xn−2m+1 · · ·xn−m)
and therefore, by [10, Lemma 3.6] and [5, Theorem 1.3], we have sdepth(S/Lm−1) = depth(S/Lm−1) =

n − 1 −
⌊
n−m
m+1

⌋
−

⌈
n−m
m+1

⌉
= ϕ(n,m). On the other hand, for example by [3, Proposition 2.7],

sdepth(S/Lm−1) ≥ sdepth(S/Jn,m). Thus, sdepth(S/Jn,m) ≤ ϕ(n,m).
For any 0 < k < m, we have Lk = (x1 · · ·xm−k, x2 · · ·xm+1, . . . , xn−m−k · · ·xn−k−1,

xn−m+1 · · ·xn−k, xn−m+2 · · ·xn−kx1, . . . , xn−kx1 · · ·xm−k−1). Therefore, Uk = (x1 · · ·xm−k,
x2 · · ·xm+1, . . . , xn−m−k · · ·xn−k−1, xn−k), for k ≤ m− 2. We consider two cases:

(i) If n−m− k < 2 and 0 ≤ k ≤ m− 2, then Uk = (x1 · · ·xm−k, xn−k) and therefore sdepth(S/Uk) =

depth(S/Uk) = n− 2 = ϕ(n,m), since
⌊

n+1
m+1

⌋
= 1 and

⌈
n+1
m+1

⌉
= 2.

(ii) If n − m − k ≥ 2, then, for any 0 ≤ j ≤ k ≤ m − 2, we consider the ideals Vk,j :=
(x1 · · ·xm−j , x2 · · ·xm+1, . . . , xn−m−k · · ·xn−k−1) in Sk := K[x1, . . . , nn−k−1]. Note that S/Uk

∼=
(Sk/Vk,k)[xn−k+1, . . . , xn] and thus, by [10, Lemma 3.6], depth(S/Uk) = depth(Sk/Vk,k) + k and
sdepth(S/Uk) = sdepth(Sk/Vk,k) + k.

For any 0 ≤ j < k ≤ m− 2, we claim that Vk,j/Vk,j+1 is isomorphic to

(K[xm−j+2, . . . , xn−k−1]/(xm−j+2 · · ·x2m−j+1, . . . , xn−m−k · · ·xn−k−1))[x1, . . . , xm−j ].

Indeed, if u ∈ Vk,j \Vk,j+1 is a monomial, then x1 · · ·xm−j |u and xm−j+1 - u. Also, xm−j+2 · · ·x2m−j+1 -
u, . . . , xn−m−k · · ·xn−k−1 - u. Denoting v = u/(x1 · · ·xm−j), we can write v = v′v′′, with v′ ∈
K[xm−j+2, . . . , xn−k−1] \ (xm−j+2 · · ·x2m−j+1, . . . , xn−m−k · · ·xn−k−1) and v′′ ∈ K[x1, . . . , xm−j ].

By [10, Lemma 3.6] and [5, Theorem 1.3], sdepth(Vk,j/Vk,j+1) = depth(Vk,j/Vk,j+1) = m−j+ϕ(n−k−
m+j−2,m) = n−k−1−

⌊
n−m−1−k+j

m+1

⌋
−
⌈
n−m−1−k+j

m+1

⌉
= n−k+1−

⌊
n−k+j
m+1

⌋
−
⌈
n−k+j
m+1

⌉
≥ ϕ(n,m)−k.

On the other hand, Vk,0 = In−k−1,m for any 0 ≤ k ≤ m − 2 and therefore, by [5, Theorem 1.3],

sdepth(S/Vk,0) = depth(S/Vk,0) = ϕ(n − k − 1,m) = n − k −
⌊

n−k
m+1

⌋
−

⌈
n−k
m+1

⌉
≥ ϕ(n,m) − k, for any

k ≥ 1. From the short exact sequences 0 → Vk,j/Vk,j+1 → S/Vk,j+1 → S/Vk,j → 0, 0 ≤ j < k, Lemma
1.1 and Lemma 1.2, it follows that sdepth(S/Vk,j+1) ≥ depth(S/Vk,j+1) = ϕ(n,m) − k, for all 0 ≤ j <
k ≤ m − 2. Thus sdepth(S/Uk) ≥ depth(S/Uk) ≥ ϕ(n,m), for all 0 < k ≤ m − 2.On the other hand,
sdepth(S/V0,0) = depth(S/V0,0) = ϕ(n− 1,m), and thus sdepth(S/U0) = depth(S/U0) = ϕ(n− 1,m).

Now, we consider short exact sequences

0→ S/Lk+1 → S/Lk → S/Uk → 0, for 0 ≤ k < m.
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By Lemma 1.1 and Lemma 1.2 we get sdepth(S/Lk) ≥ depth(S/Lk) = ϕ(n,m), for any 0 < k ≤ m− 2,
and sdepth(S/L0) ≥ depth(S/L0) = ϕ(n− 1,m). �

Corollary 1.5. If
⌊

n+1
m+1

⌋
=

⌊
n

m+1

⌋
and

⌈
n+1
m+1

⌉
=

⌈
n

m+1

⌉
, then

sdepth(S/Jn,m) = depth(S/Jn,m) = ϕ(n,m).

Proposition 1.6. sdepth(Jn,m/In,m) ≥ depth(Jn,m/In,m) = ϕ(n− 1,m) + m− 1.

Proof. We claim that Jn,m/In,m is isomorphic to

xn−m+2 · · ·xnx1(
K[x2, . . . , xn−m]

(x2 · · ·xm, x3 · · ·xm+2 . . . , xn−2m+1 · · ·xn−m)
)[xn−m+2, . . . , xn, x1]⊕

⊕xn−m+3 · · ·xnx1x2(
K[x3, . . . , xn−m+1]

(x3 · · ·xm, x4 · · ·xm+3, . . . , xn−2m+2 · · ·xn−m+1)
)[xn−m+3, . . . , xn, x1, x2]⊕

· · · ⊕ xnx1 · · ·xm−1(
K[xm, . . . , xn−2]

(xm, xm+1 · · ·x2m, . . . , xn−m−1 · · ·xn−2)
)[xn, x1 . . . , xm−1].

Indeed, let u ∈ Jn,m \ In,m be a monomial. If xn−m+2 · · ·xnx1|u, then xn−m+1 - u and x2 · · ·xm - u. It
follows that:

u ∈ xn−m+2 · · ·xnx1(K[x2, . . . , xn−m]/(x2 · · ·xm, x3 · · ·xm+2 . . . , xn−2m+1 · · ·xn−m))[xn−m+2, . . . , xn, x1].

If xn−m+2 · · ·xnx1 - u and xn−m+3 · · ·xnx1x2|u then xn−m+2 - u and x3 · · ·xm - u. Thus:

u ∈ xn−m+3 · · ·xnx1x2(
K[x3, . . . , xn−m+1]

(x3 · · ·xm, x4 · · ·xm+3, . . . , xn−2m+2 · · ·xn−m+1)
)[xn−m+3, . . . , xn, x1, x2].

Finally, if xn−m+2 · · ·xnx1 - u, . . . , xn−1xnx1 · · ·xm−2 - u and xnx1 · · ·xm−1|u, then it follows that
xn−1 - u and xm - u. Therefore:

u /∈ xnx1 · · ·xm−1(
K[xm, . . . , xn−2]

(xm, xm+1 · · ·x2m, . . . , xn−m−1 · · ·xn−2)
)[xn, x1 . . . , xm−1].

As in the proof of Theorem 3.1 (see the computations for Vk,j ’s), by applying Lemma 1.1 and Lemma
1.2, it follows that sdepth(Jn,m/In,m) ≥ depth(Jn,m/In,m) = ϕ(n−m−2,m)+m = ϕ(n−1,m)+m−1,
as required. �

Inspired by [4, Conjecture 1.12] and computer experiments [6], we propose the following:

Conjecture 1.7. For any n ≥ 3(m + 1) + 1, we have sdepth(S/Jn,m) = ϕ(n,m).
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