A GENERALIZATION OF LOCAL HOMOLOGY FUNCTORS

Mohammad H. Bijan-Zadeh and Karim Moslehi*

Abstract

Let M and N be modules over a commutative ring R with non-zero identity. In this paper, for an ideal I of R, we introduce generalized local homology modules $U_i^I(M, N)$ as follows: $U_i^I(M, N) = \varprojlim_t \operatorname{Tor}_i^R(M/I^tM, N)$ for all $i \ge 0$. Also we study finiteness and vanishing properties of $U_i^I(M, N)$ which show that it is of generalized local cohomology in some sense.

Introduction

Local cohomology was first defined and studied by Grothendieck [7]. Let R be a commutative ring with non-zero identity and M be an R-module. For an ideal I of R, the *i*-th local cohomology modules with support in I is defined as follows:

$$H_{I}^{i}(M) = \varinjlim_{t \ge 0} \operatorname{Ext}_{R}^{i} \left(R/I^{t}, M \right).$$

Now, consider the inverse system $\{M/I^tM\}_{t\geq 1}$ together with natural maps

$$\pi_{k,t}: \frac{M}{I^kM} \longrightarrow \frac{M}{I^tM}$$

for all $k, t \in \mathbb{N}$ with $k \ge t$. (We shall use \mathbb{N}_0 (respectively \mathbb{N}) to denote the set of non-negative (respectively positive) integers). Put $\Lambda_I(M) := \varprojlim_{t \in \mathbb{N}} M/I^t M$ which is the *I*-adic completion of M with respect to *I*. For $i \in \mathbb{N}_0$, we denote the left derived functor of Λ_I by L_i^I . This functor is called the *i*-th local homology functor with respect to *I*. On the other hand, a natural generalization of local cohomology modules was introduced by Herzog [8] as follows. For a pair of

²⁰¹⁰ Mathematics Subject Classifications: 13C10, 13C11, 13C15, 13D05, 13D30.

 $Key\ words\ and\ Phrases:$ Local homology, Local cohomology, Koszul complex, Total complex, Matlis duality.

^{*}Corresponding author

R-module (M, N) the *i*-th generalized local cohomology module of (M, N) with respect to *I* is the *R*-module

$$H_{I}^{i}(M,N) = \varinjlim_{t \in \mathbb{N}} \operatorname{Ext}_{R}^{i} \left(M/I^{t}M, N \right).$$

Clearly whenever M = R, the generalized local cohomology module $H_I^i(R, N)$ is the ordinary local cohomology module $H_I^i(N)$. In this paper, we introduce a natural generalization of local homology functor L_i^I . For $i \in \mathbb{N}_0$, we defined generalized local homology module $U_i^I(M, N)$ of pair (M, N) with respect to Ias follows:

$$U_i^I(M,N) = \varprojlim_{t \in \mathbb{N}} \operatorname{Tor}_i^I(M/I^tM,N).$$

Whenever M = R, for simplicity of notation we denote $U_i^I(R, N)$ by $U_i^I(N)$.

In this paper we study the finiteness and vanishing properties of generalized local homology modules in several cases. Also we provide a description of generalized local homology in terms of total complexes of Koszul complex.

1 Preliminary results

In this section we recall some basic properties of local homology functor.

Theorem 1.1. ([3, 2.4]) Let M be an Artinian R-module. Then $L_0^I(M) \cong \Lambda_I(M)$.

Corollary 1.2. ([3, 2.5]) Let M be an R-module. Then the following statements are equivalent:

(i) IM = M;(ii) $L_0^I(M) = 0;$ (iii) $\Lambda_I(M) = 0.$

Theorem 1.3. ([3, 4.1]) Let M be an Artinian R-module. Then

$$U_i^I(M) = L_i^I(M)$$

for all $i \in \mathbb{N}_0$.

Remark 1.4. Let M, N and P be R-modules. Then

(i) Using an argument similar that they used in [6, 1.1], it can been seen that there are epimorphisms

$$\Phi_i: L_i^I(M \otimes_R N) \longrightarrow U_i^I(M, N)$$

for all $i \in \mathbb{N}_0$.

(ii) If M is flat, then

$$U_i^I(M,N) \cong U_i^I(M \otimes_R N)$$

and

$$U_i^I \left(P \otimes_R M, N \right) \cong U_i^I \left(P, M \otimes_R N \right)$$

for all $i \in \mathbb{N}_0$ by [11, 11.53].

(iii) Suppose that $M \otimes_R N$ is a finitely generated *R*-module. Since Λ_I is an exact functor on the category of finitely generated *R*-modules, one can show that

$$U_0^I(M,N) \cong \Lambda_I(M \otimes_R N) \cong L_0^I(M \otimes_R N)$$

and $L_i^I(M \otimes_R N) = 0$, for all $i \in \mathbb{N}$. Thus, in view of (i), $U_i^I(M, N) = 0$, for all $i \in \mathbb{N}$.

2 Generalized local homology and change of rings

By the same argument as in the proof of Theorem 3.3 in [3], but by replacing the module R/I^t with the module M/I^tM we have the following theorem.

Theorem 2.1. (i) For each $i \in \mathbb{N}_0$, the local homology modules $U_i^I(M, N)$ are *I*-separated; that is

$$\bigcap_{s>0} I^s U_i^I(M,N) = 0.$$

(ii) If R is local with the unique maximal ideal \mathfrak{m} and M a finitely generated R-module, then, for each $i \in \mathbb{N}_0$,

$$U_i^I(M, D(N)) \cong D\left(H_I^i(M, N)\right),$$

where $D(-) := \operatorname{Hom}_R(-, E(R/\mathfrak{m}))$ is the Matlis dual functor with respect to the injective hull of R/\mathfrak{m} .

M. H. Bijan-zadeh and K. Moslehi

Remark 2.2. If we define

 $D(M, N) = \operatorname{Hom}_{R}(M, E(N/\mathfrak{m}N))$

we may restate the second part of the above theorem as follows

$$U_i^I(M, D(N, P)) \cong D(H_I^i(M, N), P)$$

Corollary 2.3. (i) $U_i^I(M, D(N)) = 0$ if and only if $H_I^i(M, N) = 0$.

(ii) If N is an Artinian R-module, then $U_i^I(M, N) = 0$ if and only if $H_I^i(M, D(N)) = 0$.

Proof. It is well know that N = 0 if and only if D(N) = 0. The assertion is now immediate from [9, 1.6(5)].

In the following Theorem, we assume that $f: R \longrightarrow R'$ is a flat homomorphism of rings and that M an R'-module. Also, for an ideal I of R, we denote its extension to R' by I^e .

Theorem 2.4. Let N be an R-module. Then we have the following isomorphism of R-modules

$$U_i^I(M,N) \cong U_i^{I^e}(M,N \otimes_R R')$$

for all $i \in \mathbb{N}_0$.

Proof. It is clear that $(I^t)^e = (I^e)^t$ and $I^t M = (I^e)^t M$. Hence, in view of [11, 11.64],

$$U_i^I(M,N) = \varprojlim_t \operatorname{Tor}_i^R \left(M/I^t M, N \right)$$
$$\cong \varprojlim_t \operatorname{Tor}_i^{R'} \left(M/(I^e)^t M, N \otimes_R R' \right)$$
$$= U_i^{I^e} \left(M, N \otimes_R R' \right)$$

for all $i \in \mathbb{N}_0$.

A (non-zero) Noetherian ring having only finitely many maximal ideals is called a *semi-local* ring.

Corollary 2.5. Suppose that R is a semi-local ring. Let M and N be R-modules such that N is an Artinian R-module. Then

$$U_i^I(M,N) \cong U_i^{\widehat{I}}\left(\widehat{M},N\right) \qquad (as \ R-modules)$$

for all $i \in \mathbb{N}_0$ where $\hat{}$ is the completion functor with respect to the Jacobson radical of R.

Proof. By [9, 3.14], we have $N \otimes_R \widehat{R} \cong N$ and we know that \widehat{R} is a flat *R*-module (see [5, 2.5.15]). Thus, by Remark 1.4 (ii),

$$U_i^I(M,N) = U_i^I\left(M,N\otimes_R \widehat{R}\right) \cong U_i^I\left(\widehat{M},N\right) \cong U_i^{\widehat{I}}\left(\widehat{M},N\right)$$

for all $i \in \mathbb{N}_0$.

3 Noetherianness and Artinianness of generalized local homology modules

From now on we suppose that R is a Noetherian local ring with a unique maximal ideal \mathfrak{m} .

Theorem 3.1. Let M be a finitely generated R-module and N an Artinian R-module. Then $U_i^{\mathfrak{m}}(M, N)$ is finitely generated, and so it is Noetherian, for all $i \in \mathbb{N}_0$.

Proof. By Corollary 2.5 we may assume that (R, \mathfrak{m}) is a complete local ring. Since D(N) is finitely generated, by [4, 2.2] $H^i_{\mathfrak{m}}(M, D(N))$ is Artinian. Also, by using Theorem 2.1 (ii), $U^{\mathfrak{m}}_i(M, N)$ is a finitely generated *R*-module.

Remark 3.2. (i) Let

$$0 \longrightarrow N' \longrightarrow N \longrightarrow N'' \longrightarrow 0$$

be an exact sequence of R-modules. Then, by [8, Satz 1.1.6], we have the long exact sequence

$$0 \longrightarrow H^0_I(M, N') \longrightarrow H^0_I(M, N) \longrightarrow H^0_I(M, N'') \longrightarrow H^1_I(M, N') \longrightarrow \cdots$$

(ii) Since the functor D(-) is exact, by using part (i) and Theorem 2.1 (ii), we can see that if

$$0 \longrightarrow N' \longrightarrow N \longrightarrow N'' \longrightarrow 0$$

M. H. Bijan-zadeh and K. Moslehi

is an exact sequence of Artinian modules, then there exists an exact sequence

$$\cdots \longrightarrow U_1^I(M, N'') \longrightarrow U_0^I(M, N') \longrightarrow U_0^I(M, N) \longrightarrow U_0^I(M, N'') \longrightarrow 0.$$

(iii) If N is an Artinian R-module, then $U_j^{\mathfrak{m}}(N)$ is a finitely generated R-module for all $j \in \mathbb{N}_0$, by [3, 4.6]. Also if M is a finitely generated, $M \otimes_R U_j^{\mathfrak{m}}(N)$ is a finitely generated R-module. Thus

$$U_i^I\left(M, U_j^{\mathfrak{m}}(N)\right) \cong \begin{cases} \Lambda_I\left(M \otimes_R U_j^{\mathfrak{m}}(N)\right) \; ; \quad if \quad i = 0 \; , j \ge 0, \\ 0 \qquad \qquad ; \quad if \quad i > 0 \; , j \ge 0 \end{cases}$$

by Remark 1.4 (iii).

Theorem 3.3. Let M be a finitely generated R-module and N an Artinian R-module. Then

$$U_i^{\mathfrak{m}}\left(M,\bigcap_{t>0}\mathfrak{m}^t N\right) \cong \begin{cases} 0 & ; \quad if \quad i=0, \\ U_i^{\mathfrak{m}}(M,N) & ; \quad if \quad i\geq 1. \end{cases}$$

Proof. Since N is an Artinian, there exists a positive integer n such that $\bigcap_{t>0} \mathfrak{m}^t N = \mathfrak{m}^n N$ and also $\Lambda_{\mathfrak{m}}(N) \cong N/\mathfrak{m}^n N$, Therefore we have the following short exact sequence of Artinian modules

$$0 \longrightarrow \bigcap_{t>0} \mathfrak{m}^t N \longrightarrow N \longrightarrow \Lambda_{\mathfrak{m}}(N) \longrightarrow 0.$$

By Remark 3.2 (ii), we get a long exact sequence

$$\cdots \longrightarrow U_{i+1}^{\mathfrak{m}}(M, \Lambda_{\mathfrak{m}}(N)) \longrightarrow U_{i}^{\mathfrak{m}}\left(M, \bigcap_{t>0} \mathfrak{m}^{t}N\right) \longrightarrow U_{i}^{\mathfrak{m}}(M, N)$$
$$\longrightarrow U_{i}^{\mathfrak{m}}(M, \Lambda_{\mathfrak{m}}(N)) \longrightarrow \cdots$$
$$\longrightarrow U_{0}^{\mathfrak{m}}\left(M, \bigcap_{t>0} \mathfrak{m}^{t}N\right) \longrightarrow U_{0}^{\mathfrak{m}}(M, N) \longrightarrow U_{0}^{\mathfrak{m}}(M, \Lambda_{\mathfrak{m}}(N)) \longrightarrow 0.$$

Since the *R*-modules $M \otimes_R N$ and $M \otimes_R \Lambda_{\mathfrak{m}}(N)$ are Artinian (see [9, 2.13]), it is easy to check that $U_0^{\mathfrak{m}}(M, N) \cong U_0^{\mathfrak{m}}(M, \Lambda_{\mathfrak{m}}(N))$. Therefore the result follows from Remark 3.2 (iii). **Theorem 3.4.** Let M be a finitely generated R-module and N an Artinian R-module. Then, for a positive integer s, the following statements are equivalent:

- (i) $U_i^{\mathfrak{m}}(M, N)$ is Artinian, for all i < s;
- (ii) $\mathfrak{m} \subseteq \operatorname{Rad} (\operatorname{Ann}_R (U_i^{\mathfrak{m}}(M, N)))$, for all i < s.

Proof. (i) \Rightarrow (ii). Suppose that i < s. Since $U_i^{\mathfrak{m}}(M, N)$ is Artinian for all i < s, we have that $\mathfrak{m}^n U_i^{\mathfrak{m}}(M, N) = 0$ for some positive integer n, by Theorem 2.1 (i). Therefore $\mathfrak{m} \subseteq \operatorname{Rad}(\operatorname{Ann}_R(U_i^{\mathfrak{m}}(M, N)))$.

(ii) \Rightarrow (i). We use induction on s. When s = 1, since M is finitely generated and N is Artinian, $U_0^{\mathfrak{m}}(M, N)$ is Artinian. Suppose that s > 1. By Theorem 3.3, we can replace N by $\bigcap_{t>0} \mathfrak{m}^t N$. The last module is just equal to $\mathfrak{m}^n N$ for sufficiently large n. Therefore we may assume that $\mathfrak{m}N = N$. Since N is Artinian, there is an element x in \mathfrak{m} such that xN = N (see [2, 1.1(i)]). Thus by the hypothesis, there exists positive integer t such that $x^t U_i^{\mathfrak{m}}(M, N) = 0$ for all i < s. Then the short exact sequence

$$0 \longrightarrow 0 :_N x^t \longrightarrow N \xrightarrow{x^t} N \longrightarrow 0$$

implies an exact sequence

$$0 \longrightarrow U^{\mathfrak{m}}_{i+1}(M,N) \longrightarrow U^{\mathfrak{m}}_{i}\left(M, 0:_{N} x^{t}\right) \longrightarrow U^{\mathfrak{m}}_{i}(M,N) \longrightarrow 0$$

for all i < s - 1. It follows that $\mathfrak{m} \subseteq \operatorname{Rad} \left(\operatorname{Ann}_R \left(U_i^{\mathfrak{m}}(M, 0:_N x^t) \right) \right)$, and by inductive hypothesis $U_i^{\mathfrak{m}}(M, 0:_N x^t)$ is Artinian for all i < s - 1. Thus $U_i^{\mathfrak{m}}(M, N)$ is Artinian for all i < s. This finishes the inductive step. \Box

Remark 3.5. We note that in the implication (i) \Rightarrow (ii) in the proof of Theorem 3.4 we need not assume that M is finitely generated and N Artinian.

4 Vanishing, non-vanishing results

We begin this section with the definition of coregular sequence which is a dual of regular sequence "in some sense".

Definition 4.1. (a) We say that an element $a \in R$ is *M*-coregular if aM = M.

(b) The sequence a_1, a_2, \dots, a_n of R is called an *M*-coregular sequence if

- (i) $\operatorname{Ann}_M(a_1, \cdots, a_n) \neq 0;$
- (ii) a_i is an $\operatorname{Ann}_M(a_1, \cdots, a_{i-1})$ -coregular element, for all $i = 1, 2, \cdots, n$.

(c) Let M and N be R-modules, where M is finitely generated and N is Artinian. We call the length of any maximal N-coregular sequence contained in $\operatorname{Ann}_R(M)$ the $\operatorname{Cograde}_N(M)$. We note that this is well-defined by [9, 3.10].

Theorem 4.2. Let M be a finitely generated and N an Artinian R-modules. Then

 $\operatorname{Cograde}_{N}\left(M/IM\right) = \inf\left\{i: U_{i}^{I}(M, N) \neq 0\right\}.$

Proof. It is well-known that $\operatorname{grade}_{D(N)}(M/IM)$ is the least integer *i* such that $H^i_I(M, D(N)) \neq 0$ (see for example [1, 5.5]). Also since N is Artinian, $D(D(N)) \cong N$, by [9, 1.6(5)]. Hence

$$\begin{aligned} \operatorname{Cograde}_{N}(M/IM) &= \inf \left\{ i: \operatorname{Tor}_{i}^{R}(M/IM, N) \neq 0 \right\} \\ &= \inf \left\{ i: \operatorname{Tor}_{i}^{R}(M/IM, D(D(N))) \neq 0 \right\} \\ &= \inf \left\{ i: D(\operatorname{Ext}_{R}^{i}(M/IM, D(N))) \neq 0 \right\} \\ &= \inf \left\{ i: \operatorname{Ext}_{R}^{i}(M/IM, D(N)) \neq 0 \right\} \\ &= \operatorname{grade}_{D(N)}(M/IM) \\ &= \inf \left\{ i: H_{I}^{i}(M, D(N)) \neq 0 \right\} \\ &= \inf \left\{ i: U_{i}^{I}(M, N) \neq 0 \right\}, \end{aligned}$$

by [9, 3.11] and Corollary 2.3 (ii).

Remark 4.3. Note that whenever R is not necessarily local, for all $i < \text{Cograde}_N(M/IM)$, we have that $U_i^I(M, N) = 0$.

Now we recall the concept of Krull dimension of an Artinian module, denote by KdimM, due to Roberts [10]: let M be an Artinian R-module. When M = 0we put KdimM = -1. Then by induction, for any ordinal α , we put Kdim $M = \alpha$ when (i) Kdim $M < \alpha$ is false, and (ii) for every ascending chain $M_0 \subseteq M_1 \subseteq \ldots$ of submodules of M, there exists a positive integer m_0 such that Kdim $(M_{m+1}/M_m) < \alpha$ for all $m > m_0$. Thus M is non-zero and Noetherian if and only if KdimM = 0.

Theorem 4.4. Let M be a finitely generated and N an Artinian R-module with d:=KdimN. Then, for each i > d,

- (i) $U_i^{\mathfrak{m}}(M, N) = 0$, and
- (ii) if there exists an element $x \in I$ which is N-coregular, $U_i^I(M, N) = 0$.

Proof. (i) We use induction on d. If d = 0, then N is Noetherian, and hence $M \otimes_R N$ is finitely generated. Thus, for each i > 0, $U_i^{\mathfrak{m}}(M, N) = 0$ by Remark 1.4 (iii). Let d > 0. Note that Kdim $N \ge$ Kdim $(\bigcap_{t>0} \mathfrak{m}^t N)$. Therefore by using the arguments similar that we use in the proof of Theorem 3.4, without loss

of generality, we may assume that there exists an element $x \in \mathfrak{m}$ such that xN = N. Thus the short exact sequence

$$0 \longrightarrow 0 :_N x \longrightarrow N \xrightarrow{x} N \longrightarrow 0$$

induces the long exact sequence

$$\cdots \longrightarrow U_i^{\mathfrak{m}}(M, 0:_N x) \longrightarrow U_i^{\mathfrak{m}}(M, N) \xrightarrow{x} U_i^{\mathfrak{m}}(M, N) \longrightarrow U_{i-1}^{\mathfrak{m}}(M, 0:_N x) \longrightarrow \cdots$$

By the proof of Proposition 4 in [10], we have that $\operatorname{Kdim}(0:_N x) \leq \operatorname{Kdim} N - 1$. Hence, by inductive hypothesis for each i > d - 1, $U_i^{\mathfrak{m}}(M, 0:_N x) = 0$. Hence, for each i > d, $U_i^{\mathfrak{m}}(M, N) \cong x U_i^{\mathfrak{m}}(M, N)$. Using Theorem 2.1 (i), we get

$$U_i^{\mathfrak{m}}(M,N) \cong \bigcap_{s>0} x^s U_i^{\mathfrak{m}}(M,N) \subseteq \bigcap_{s>0} \mathfrak{m}^s U_i^{\mathfrak{m}}(M,N) = 0.$$

This completes the inductive step.

(ii) Similar to proof (i).

5 Generalized local homology modules and total complex

In this section we assume that $\mathfrak{m} = (a_1, \ldots, a_n)$; K^t_{\bullet} is the Koszul complex of R with respect to the sequence a_1^t, \ldots, a_n^t . Also, if M is finitely generated and P_{\bullet} is a projective resolution of the R-module M, let C^t_{\bullet} be the total complex associated to the double complex $K^t_{\bullet} \otimes_R P_{\bullet}$. Hence there are isomorphisms

$$H^{i}_{\mathfrak{m}}(M,N) \cong \varinjlim_{t} H^{i} \left(\operatorname{Hom}_{R} \left(\operatorname{C}^{t}_{\bullet}, N \right) \right)$$

for all $i \in \mathbb{N}_0$ (see [8, satz 1.1.6]).

Thus it seems natural to look for its dual version.

Theorem 5.1. Let M be a finitely generated and N an Artinian R-modules. Then, for each $i \in \mathbb{N}_0$

$$U_i^{\mathfrak{m}}(M,N) \cong \varprojlim_t H_i \left(\mathcal{C}^t_{\bullet} \otimes_R N \right).$$

M. H. Bijan-zadeh and K. Moslehi

Proof. Converting local homology into local cohomology, Theorem 2.1 (ii), we get easily

$$U_{i}^{\mathfrak{m}}(M,N) \cong D\left(H_{\mathfrak{m}}^{i}(M,D(N))\right) \cong D\left(\underbrace{\lim_{t \to t}}_{t}H^{i}\left(\operatorname{Hom}_{R}\left(\operatorname{C}_{\bullet}^{t},D(N)\right)\right)\right)$$
$$\cong \underbrace{\lim_{t \to t}}_{t}D\left(H^{i}\left(\operatorname{Hom}_{R}\left(\operatorname{C}_{\bullet}^{t},D(N)\right)\right)\right) \cong \underbrace{\lim_{t \to t}}_{t}H_{i}\left(D\left(\operatorname{Hom}_{R}\left(\operatorname{C}_{\bullet}^{t},D(N)\right)\right)\right)$$
$$\cong \underbrace{\lim_{t \to t}}_{t}H_{i}\left(\operatorname{C}_{\bullet}^{t}\otimes_{R}D(D(N))\right) \cong \underbrace{\lim_{t \to t}}_{t}H_{i}\left(\operatorname{C}_{\bullet}^{t}\otimes_{R}N\right).$$

References

- M. H. Bijan-zadeh, A common generalization of local cohomology theories, Glasgow Math. J. 21 (1980), 173–181.
- [2] M. H. Bijan-zadeh, S. Rasoulyar, Torsion theory, co-cohen-macaulay and local homology, Bull. Korean Math. Soc. 39 (2002), No. 4, 577–587.
- [3] N. T. Coung, T. T. Nam, The *I*-adic completion and local homology for Artinian modules, *Math. Proc. Cambridge Philos. Soc.* **131** (2001), 61–72.
- [4] K. Divaani-aazar, R. Sazeedeh, M. Tousi, On vanishing of generalized local cohomology modules, *Algebra colloq.* 12 (2005), 213–219.
- [5] E. E. Enochs, O. M. G. Jenda, *Relative homological algebra*, Walter de Gruyter, Berlin, New York, 2000.
- [6] J. P. C. Greenlees, J. P. May, Derived functors of *I*-adic completion and local homolgy, *J. Algebra*, 142 (1992), 438–453.
- [7] A. Grothendieck, Local cohomology, Lecture Notes in Mathematics, 41 Springer, Berlin, 1967.
- [8] J. Herzog, Komplexe, Auflösungen und Dualitat in der Lokalen Algebra, Habilitationsschrift, Universität Regensburg, 1970.
- [9] A. Ooishi, Matlis duality and the width of a module, *Hiroshima Math. J.*, 6 (3) (1976), 573–587.

Generalization of local homology functors

- [10] R. N. Roberts, Krull dimension for Artinian modules over quasi-local commutative rings, Quart. J. Math. Oxford (3), 26 (1975), 269–273.
- [11] J. J. Rotman, An introduction to homological algebra, Academic Press, 1979.

Mohammad H. Bijan-Zadeh Faculty of Mathematics and Computer Engineering, Tehran Teacher Training University, Tehran, Iran *E-mail*: mh_bijan@pnu.ac.ir

Karim Moslehi Department of Mathematics, Faculty science Payame Noor University(PNU), Tehran, Iran *E-mail*: karim.moslehi@gmail.com