On Some New Class of Arithmetic Convolutions Involving Arbitrary Sets of Integers

${ }^{1}$ D.BHATTACHARJEE and ${ }^{2}$ P.K.SAIKIA
${ }^{1}$ Centre for Science Education, North-Eastern Hill University, Permanent Campus, Shillong-793022,India,
${ }^{2}$ Department of Mathematics, North-Eastern Hill University, Permanent Campus, Shillong-793022,India,
${ }^{1}$ E-mail:debashis_bhattacharjee@ yahoo.com,dbhattacharjee@ nehu.ac.in;
${ }^{2}$ E-mail: pks@nehu.ac.in

Abstract

In this paper we define a new type of arithmetic convolution called the S_{B} product and denote it by $*_{S_{B}}$. Let $R_{S_{B}}=\left\langle C^{N},+, *_{S_{B}}\right\rangle$ be the set of all complex valued arithmetic functions with ordinary addition and with a S_{B} - product considered as multiplication. We give conditions on $*_{S_{B}}$ which are necessary and sufficient for $R_{S_{B}}$ to be commutative, and associative. We also investigate some other algebraic properties of $R_{S_{B}}$ such as the existence of identity, of zero divisors. We determine all invertible elements of $R_{S_{B}}$ and we establish the conditions under which $R_{S_{B}}$ is a local ring .We then give a definition for completely multiplicative B-product and study some of its properties. We then study some important relations between S_{B} - product, B - product and unitary convolution. We conclude our discussion by considering an example of S_{B}-product and investigate whether the corresponding S_{B} - product is commutative, associative, has an identity etc.

2000 Mathematics Subject Classification: 11A25

Keywords and phrases: Arithmetic convolution, characteristic function, completely multiplicative function, Narkiewicz's A-product, B-product, K_{B} product, S-convolution, S_{B}-product.

1. Introduction

In a previous paper [2], the B - product is defined as follows. For every natural number n, let B_{n} be the set of some pairs of divisors of n. For arithmetical functions f and g, their B-product is given by

$$
\left(f *_{B} g\right)(n)=\sum_{(u, v) \in B_{n}} f(u) g(v), \quad \text { for } \quad n=1,2,3, \ldots
$$

This B-product generalizes simultaneously the A-product of Narkiewicz [12] and the lcm product and it has a non-void intersection with the Ψ - product of Lehmer [10]. The τ-product of Scheid [13] is also a particular case of B-product. There are several classes of arithmetic convolutions which can be found in Apostol [1], Cohen [7], Davison [8], McCarthy [11], Sivaramakrishnan [14], Vaidyanathaswamy [18], Subbarao [15] and more recently in the papers of Haukkanen [9], Tóth [16], [17] and Bhattacharjee [2]-[6]. In this paper, we define a new type of arithmetic convolution and we call it the S_{B}-product and denote it by ${ }_{S_{B}}$. We study in detail about the S_{B}-product in Section 2 of this paper. We then define completely multiplicative B product and study its properties in Section 3. In Section 4 we recall some identities mentioned in Tóth [16] and also study some important relations between S_{B}-product, B-product and unitary
convolution. We conclude our discussion in Section 5 by considering an example of S_{B}-product and investigate whether the corresponding S_{B}-product is commutative, associative, has an identity, has an inverse etc.

2. S_{B} - product and its properties

Let \mathbf{N} denote the set of natural numbers and let S be an arbitrary subset of \mathbf{N}. For every natural number n we say that the pair of divisors (u, v) to be S_{B} divisors of n if $(u, v) \in B_{n}$ where B_{n} is a set of some pairs of divisors of n and $\operatorname{gcd}(u, v) \in S$.

For arithmetical functions f and g, their S_{B}-product $f{ }_{S_{B}} g$ is given by

$$
\begin{aligned}
\left(f *_{S_{B}} g\right)(n) & =\underset{\substack{(u, v) \in B_{n}, \operatorname{gcd}(u, v) \in S}}{\sum f(u) g(v),} \text { for } n=1,2,3, \ldots \\
& =\sum_{(u, v) \in B_{n}} \rho_{S}(\langle u, v>) f(u) g(v),
\end{aligned}
$$

where ρ_{S} stands for the characteristic function of S and $\langle u, v\rangle$ stands for $\operatorname{gcd}(u, v)$.
If $S=\mathbf{N}$ where \mathbf{N} is the set of all natural numbers and

$$
B_{n}=\{(u, v): u v=n, \operatorname{gcd}(u, v) \in S\},
$$

then S_{B}-product is the Dirichlet's convolution. Let S be an arbitrary subset of \mathbf{N} and

$$
B_{n}=\{(u, v): u v=n \text { and } \operatorname{gcd}(u, v) \in S\},
$$

then S_{B}-product is the S-convolution of Tóth [16]. If B_{n} are sets of pairs of divisors of n defining the B - product, let us consider the following set B_{n} of pairs of divisor of n :

$$
B_{n}^{\prime}=\left\{(u, v):(u, v) \in B_{n}, \operatorname{gcd}(u, v) \in S\right\} .
$$

Then the S_{B}-product is the B - product defined by the sets B_{n}^{\prime}. If $S=\{1\}$ and

$$
B_{n}=\{(u, v): u v=n, \operatorname{gcd}(u, v) \in S\},
$$

then S_{B}-product is the unitary convolution. For $K(u, v)=\rho_{S}\langle u$, $v\rangle$, where $K(u, v)$ is a function of two variables u and v and range of $K \subseteq S \subseteq \mathbf{N}, S_{B}$-product is a special type of K_{B}-product of Bhattacharjee [4].

Let $R_{S_{B}}=\left\langle C^{\mathbf{N}},+{ }^{*} S_{B}\right\rangle$ be the set of all complex valued arithmetic functions with the ordinary addition and with a S_{B}-product considered as multiplication.

For a natural number k we define the function e_{k} as follows:

$$
e_{k}(n)=\left\{\begin{array}{l}
0, \text { if } n \neq k \\
1, \text { if } n=k .
\end{array}\right.
$$

Thus $e_{k}(n)=\delta_{k, n}$ (the Kronecker delta).
The system $R S_{B}=\left\langle C^{\mathbf{N}},+,{ }^{*} S_{B}\right\rangle$ is a ring like structure which is neither commutative nor associative in general. We now discuss some properties of the S_{B}-product.

Theorem 2.1. $R_{S_{B}}$ is commutative if and only if for every n,

$$
(u, v) \in B_{n} \Leftrightarrow(v, u) \in B_{n}
$$

Proof. Follows from the definition of S_{B}-product.

Theorem 2.2. $R_{S_{B}}$ is associative if and only iffor fixed n, d_{1}, d_{2}, d_{3} the following equality holds.

$$
\sum_{\begin{array}{l}
r \\
\left(r, d_{1}\right) \in B_{n} \\
\left(d_{2}, d_{3}\right) \in B_{r}
\end{array}}^{\rho_{S}\left(\left\langle r, d_{1}\right\rangle\right) \rho_{S}\left(\left\langle d_{2}, d_{3}\right\rangle\right)=} \sum_{\substack{w \\
\\
\left(d_{2}, w\right) \in B_{n} \\
\\
\left(d_{3}, d_{1}\right) \in B_{w}}} \rho_{S}\left(\left\langle d_{2}, w\right\rangle\right) \rho_{S}\left(\left\langle d_{3}, d_{1}\right\rangle\right) .
$$

Proof. \Leftarrow For every arithmetic functions f, g, h we have

$$
\left[\left(f *_{S_{B}} g\right) *_{S_{B}} h\right](n)=\sum_{x, t, u \in \mathbf{N}} f(t) g(u) h(x) \underset{\substack{r \\(r, x) \in B_{n},(t, u) \in B_{r}}}{ } \rho_{S}(\langle r, x\rangle) \rho_{S}(\langle t, u\rangle) .
$$

On the other hand

$$
\left[f *_{S_{B}}\left(g *_{S_{B}} h\right)\right](n)=\sum_{x, t, u \in \mathbf{N}}^{\sum f(t) g(u) h(x)} \sum_{\substack{w \\(t, w) \in B_{n},(u, x) \in B_{w}}} \rho_{S}(\langle t, w\rangle) \rho_{S}(\langle u, x\rangle) .
$$

By the assumption in both expressions the inner sums are equal. Therefore the S_{B} - product is associative.
\Rightarrow Conversely suppose that the S_{B}-product is associative and fix $n, d_{1}, d_{2}, d_{3} \in \mathbf{N}$. From the first part of the proof we get

$$
\left[\left(e_{d_{2}} *_{S_{B}} e_{d_{3}}\right) *_{S_{B}} e_{d}\right](n)=\sum_{\substack{r \\\left(r, d_{1}\right) \in B_{n},\left(d_{2}, d_{3}\right) \in B_{r}}} \rho_{S}\left(\left\langle r, d_{1}\right\rangle\right) \rho_{S}\left(\left\langle d_{2,} d_{3}\right\rangle\right) .
$$

Similarly

$$
\left[e_{d_{2}} *_{S_{B}}\left(e_{d_{3}} *_{S_{B}} e_{d_{1}}\right)\right](n)=\underset{\substack{w \\\left(d_{2}, w\right) \in B_{n},\left(d_{3}, d_{1}\right) \in B_{w}}}{\sum_{S}\left(\left\langle d_{2}, w\right\rangle\right) \rho_{S}\left(\left\langle d_{3}, d_{1}\right\rangle\right) .}
$$

Therefore the sums obtained are equal and the result follows.
Theorem 2.3. A function e is a right identity in the system $R_{S_{B}}$ if and only if for every k and n we have

$$
\sum_{(k, v) \in B_{n}} \rho_{S}\left(\langle k, v>) e(v)=e_{k}(n)\right.
$$

Proof. \Rightarrow For every k and n we have

$$
e_{k}(n)=\left(e_{k} *_{S_{B}} e\right)(n)=\sum_{\substack{u, v \\(u, v) \in B_{n}}} \rho_{S}(\langle u, v\rangle) e_{k}(u) e(v)=\sum_{\substack{v \\(k, v) \in B_{n}}} \rho_{S}(\langle k, v\rangle) e(v)
$$

\Leftarrow Conversely suppose for every f and n we have

$$
\begin{aligned}
\left(f *_{S_{B}} e\right)(n) & =\sum_{(u, v) \in B_{n}} \rho_{S}(\langle u, v\rangle) f(u) e(v) \\
= & \sum_{u} f(u) \sum_{(u, v) \in B_{n}} \rho_{S}(\langle u, v\rangle) e(v) \\
= & \sum_{u} f(u) e_{u}(n), \\
= & f(n) .
\end{aligned}
$$

A similar condition characterizes left identities. Hence we get
Theorem 2.4. A function e is an identity in the system $R_{S_{B}}$ if and only if for every k and n we have

$$
\sum_{\substack{v \\(k, v) \in B_{n}}} e(v) \rho_{S}(\langle k, v\rangle)=e_{k}(n)=\sum_{\substack{u \\(u, k) \in B_{n}}} e(u) \rho_{S}(\langle u, k\rangle) .
$$

Corollary 2.5. If the system $R_{S_{B}}$ has an identity e, then for every n there exist u and v such that $(u, n) \in B_{n},(n, v) \in B_{n}, \operatorname{gcd}(u, n) \in S$ and $\operatorname{gcd}(n, v) \in S$.

Hence $\quad B_{1}=\{(1,1)\}, \rho_{S}(\langle 1,1\rangle)=1$ and $e(1)=1 / \rho_{S}(\langle 1,1\rangle)=1$.
Corollary 2.6. The function e_{1} is the identity of the system $R_{S_{B}}$ if and only if for every $k(>1)$ and n we have:

$$
\begin{aligned}
& (k, 1) \in B_{n} \text { and } \rho_{S}(\langle k, 1\rangle)=1 \Leftrightarrow k=n \text { and } \rho_{S}(\langle k, 1\rangle)=\rho_{S}(\langle 1, k\rangle) \\
& \Leftrightarrow(1, k) \in B_{n} \text { and } \rho_{S}(\langle 1, k\rangle)=1 .
\end{aligned}
$$

Theorem 2.7 (i). If $R_{S_{B}}$ is commutative, associative, has a unique identity e and $f \in R_{S_{B}}$ satisfies

$$
\begin{equation*}
\sum_{(u, n) \in B_{n}} \rho_{S}(\langle u, n>) f(u) \neq 0, \text { for every } n, \tag{1}
\end{equation*}
$$

thenf has a right inverse. Such an inverse g can be defined inductively by the formulas:

$$
\begin{equation*}
g(1)=\left[f(1) \rho_{S}(\langle 1,1\rangle)\right]^{-1}, \tag{2}
\end{equation*}
$$

$$
g(n)=\left[e(n)-\sum_{\substack{v \\ v<n}} g(v) \sum_{\substack{u \\(u, v) \in B_{n}}} f(u) \rho_{S}(\langle u, v\rangle)\right]\left[\left(\sum_{(u, n) \in B_{n}}^{\left.\left.[f(u)) \rho_{S}(<u, n\rangle\right)\right]^{-1}, \text { for } n>1 .}\right.\right.
$$

(ii) Moreover if $f \in R_{S_{B}}$ has a right inverse, then (1) holds.

Proof. (i) From (1) for $n=1$ and Corollary 2.5 it follows that $\left.\rho_{S}(<1,1\rangle\right) f(1) \neq 0$. Therefore the formulas (2) define a function g. The verification of the formula

$$
\left(f *_{S_{B}} g\right)(n)=e(n), \text { for every } n
$$

is straightforward.
(ii) Let g be a right inverse of f i.e let $f{ }_{S_{B}} g=e$. From the associativity of the system $R_{S_{B}}$ it follows that

$$
f *_{S_{B}}\left(g *_{S_{B}} e_{n}\right)=\left(f *_{S_{B}} g\right) *_{S_{B}} e_{n}=e^{*} S_{B} e_{n}=e_{n} \text {, for every } n .
$$

Evidently for $v<n$, we have

$$
\left(g *_{S_{B}} e_{n}\right)(v)=0 .
$$

Therefore

$$
\begin{aligned}
1 & \left.=e_{n}(n)=\underset{(u, v) \in B_{n}}{\sum f(u)\left(g *_{B}\right.} e_{n}\right)(v) \rho_{S}(\langle u, v\rangle) \\
& =\left(g{ }^{*} S_{B} e_{n}\right)(n) \sum_{(u, n) \in B_{n}} f(u) \rho_{S}(\langle u, n\rangle),
\end{aligned}
$$

consequently (1) holds.
Similar results can be proved for left inverses. Hence we get the following theorem.
Theorem 2.8 (i). If $R_{S_{B}}$ is commutative, associative, has a unique identity e and $f \in R_{S_{B}}$ satisfies

$$
\sum_{\substack{u \\(u, n) \in B_{n}}} \rho_{S}(\langle u, n\rangle) f(u) \neq 0 \neq \sum_{\substack{v \\(n, v) \in B_{n}}} \rho_{S}(\langle n, v\rangle) f(v), \text { for every } n,
$$

then f is invertible and its left inverse g is given by the formulas (2), and the right inverses by similar ones.
(ii) Moreover if $f \in R_{S_{B}}$ is invertible, then (3) holds.

Corollary 2.9. If $R_{S_{B}}$ has an identity and $f \in R_{S_{B}}$ satisfies $f(n)>0$, for every n, then f is invertible.

Proof. From Corollary 2.5 it follows that, for every n, the set B_{n} is non-empty. Consequently the condition (3) is satisfied.

Theorem 2.10. If the system $R_{S_{B}}$ is associative and has an identity e, then the following conditions are equivalent:
(i) For every $n,\left((t, n) \in B_{n}, \operatorname{gcd}(t, n) \in S\right.$ if and only if $\left.t=1, \rho_{S}(\langle t, n\rangle)=\rho_{S}(\langle 1, n\rangle)=1\right)$
and

$$
\left((n, t) \in B_{n}, \operatorname{gcd}(n, t) \in S \text { if and only if } t=1, \rho_{S}(\langle n, t\rangle)=\rho_{S}(\langle n, 1\rangle)=1\right) .
$$

(ii) Every $f \in R_{S_{B}}$ satisfying $f(1) \neq 0$ is invertible.

If moreover the system $R_{S_{B}}$ is commutative, then the above conditions are equivalent to.
(iii) $R_{S_{B}}$ is a local ring.

Proof. (i) \Rightarrow (ii) From the assumption we conclude that

$$
\sum_{(u, n) \in B_{n}} \rho_{S}(\langle u, n\rangle) f(u)=\rho_{S}(\langle 1, n\rangle) f(1)=f(1) \neq 0
$$

and

$$
\sum_{(n, v) \in B_{n}} \rho_{S}(\langle n, v\rangle) f(v)=\rho_{S}(\langle n, 1\rangle) f(1)=f(1) \neq 0 .
$$

Therefore from Theorem 2.8 it follows that f is invertible.
(ii) \Rightarrow (i) Since e_{1} is invertible, from (3) with $f=e_{1}$ we get $(1, n),(n, 1) \in B_{n}$,

$$
\rho_{S}\left(\langle 1, n>)=\rho_{S}(\langle n, 1\rangle)=1 .\right.
$$

For $t>1,\left(e_{1}-e_{t}\right)(1)=e_{1}(1)-e_{t}(1)=1, \quad$ hence $e_{1}-e_{t}$ is invertible.
Moreover

$$
\sum_{\substack{u \\
(u, n) \in B_{n}}}\left(e_{1}-e_{t}\right)(u) \rho_{S}(<u, n>)=\left\{\begin{array}{l}
0, \text { if }(t, n) \in B_{n} \text { and gcd }(t, n) \in S \\
1, \text { otherwise. }
\end{array}\right.
$$

Therefore by Theorem 2.8 (ii) it follows that $(t, n) \notin B_{n}$ or $\operatorname{gcd}(t, n) \notin S$. Analogously we get $(n, t) \notin B_{n}$ or $\operatorname{gcd}(n, t) \notin S$.
(ii) \Rightarrow (iii) \quad The set I of elements $f \in R_{S_{B}}$ satisfying $f(1)=0$ is an ideal of $R S_{B}$. It is the unique maximal ideal since every $f \notin I$ is invertible. Hence $R_{S_{B}}$ is a local ring.
(iii) \Rightarrow (ii) Suppose that $f(1) \neq 0$. Since $g=f(1) e-f$ satisfies $g(1)=0$, the element g is not invertible. In a local ring the sum of invertible and not invertible elements is invertible. Consequently the element $f=f(1) \mathrm{e}+(f-f(1) . e)$ is invertible.

Theorem 2.11. If for every $n,\{(u, v): u v=n\} \subset B_{n} \subset\{(u, v): u v \mid n\}$ and $\operatorname{gcd}(u, v) \in S$ for $\operatorname{every}(u, v) \in B_{n}$ i.e $\rho s(\langle u, v\rangle)=1$, for every $(u, v) \in B_{n}$, then in $R_{S_{B}}$ there are no zero divisors.

Proof. Let $f, g \in R_{S_{B}}, f \neq 0, g \neq 0$. Then there exist u, v such that $f(u) \neq 0$, and $f(k)=0$, for $k<u$, $g(v) \neq 0$ and $g(l)=0$, for $l<v$. Then for $n=u v$ we get,

$$
\begin{aligned}
\left(f *_{S_{B}} g\right)(n) & =\sum_{\substack{k, l \\
k l=n}} \rho_{S}\left(\langle k, l>) f(k) g(l)+\sum_{\substack{k, l \\
k, l \mid n, k l<n \\
(k, l) \in B_{n}}}^{\rho_{S}(<k, l>) f(k) g(l)}\right. \\
& =f(u) g(v) \neq 0,
\end{aligned}
$$

since only the summand corresponding to $k=u, l=v$ is different from zero. Therefore $f *_{S_{B}} g \neq 0$.

Theorem 2.12. If there exist u, v such that $(u, v) \notin B_{n}$, for every n, then $e_{u} *_{S_{B}} e_{v}=0$
Proof. We have

$$
\begin{gathered}
\left(e_{u} *_{\mathrm{S}} e_{v}\right)(n)=\sum_{(k, l) \in B_{n}} \rho_{S}\left(\langle k, l>) e_{u}(k) e_{\nu}(l)=0,\right.
\end{gathered}
$$

since $(u, v) \notin B_{n}$.

Theorem 2.13. If for a fixed $u \neq 1$ and every n divisible by u we have $(u, n) \in B_{n}$ and
$\rho_{S}(\langle u, n\rangle)=1$, then e_{u} is a left zero divisor in the system $R_{S_{B}}$.

Proof. We are looking for a function $f \neq 0$ satisfying $e_{u} * S_{B} f=0$. For every n, we have,

$$
\left(e_{u} * s_{B} f\right)(n)=\sum_{\substack{v \\
(u, v) \in B_{n}}} f(v) \rho_{S}(<u, v>)=\left\{\begin{array}{c}
0, \text { if } u \nmid n \\
f(n)+\sum_{\substack{v<n \\
(u, v) \in B_{n}}} f(v) \rho_{S}(<u, v>), \text { if } u \mid n
\end{array}\right.
$$

We define f inductively:

Let $f(n)=1$ if $u \nmid n$ and $f(n)=-\left[\sum f(v) \rho_{S}(\langle u, v\rangle)\right]$, if $u \mid n$. Then we get $v<n$ $(u, v) \in B_{n}$
$e_{u}{ }^{*} S_{B} f=0$.

3. Completely Multiplicative B-product

We say that a B-product is completely multiplicative if for every pair (m, n) of natural numbers we have

$$
B_{m n}=\left\{\left(r_{1} r_{2}, s_{1} s_{2}\right):\left(r_{1}, s_{1}\right) \in B_{m},\left(r_{2}, s_{2}\right) \in B_{n}\right\}
$$

This definition can also be formulated as follows. For every pair (m, n) of natural numbers we have

$$
\begin{equation*}
\left(r_{1} r_{2}, s_{1} s_{2}\right) \in B_{m n} \text { if and only if }\left(r_{1}, s_{1}\right) \in B_{m},\left(r_{2}, s_{2}\right) \in B_{n} \tag{4}
\end{equation*}
$$

[Note: r_{1}, s_{1} are divisors of m and r_{2}, s_{2} are divisors of n respectively.]
Let us recall that an arithmetical function f is completely multiplicative if $f(n) \neq 0$ for at least one integer n and if $f(m n)=f(m) f(n)$ for every n. We now discuss some property of completely multiplicative B-product. More precisely the following theorem holds.

Theorem 3.1. The B-product of completely multiplicative functions is a completely multiplicative function if the B-product is completely multiplicative.

Proof. Let f, g be completely multiplicative functions and let (m, n) be a pair of natural numbers. Then,

$$
\begin{aligned}
\left(f *_{B} g\right)(m n)= & \underset{(r, s) \in B_{m n}}{\sum f(r) g(s)} \\
& =\sum_{\left(r_{1} r_{2}, s_{1} s_{2}\right) \in B_{m n}}^{f\left(r_{2} r_{2}\right) g\left(s_{1} s_{2}\right) \quad\left[\text { where } r=r_{1} r_{2}, s=s_{1} s_{2} \text { and } r_{1}\left|m, s_{1}\right| m, r_{2}\left|n, s_{2}\right| n\right]}
\end{aligned}
$$

$=\sum \quad \sum f\left(r_{1}\right) f\left(r_{2}\right) g\left(s_{1}\right) g\left(s_{2}\right)$ [since f, g and the B-product are completely multiplicative] $\left(r_{1}, s_{1}\right) \in B_{m}\left(r_{2}, s_{2}\right) \in B_{n}$
$=\sum f\left(r_{1}\right) g\left(s_{1}\right) \quad \sum f\left(r_{2}\right) g\left(s_{2}\right)=\left(f *_{B} g\right)(m)\left(f *_{B} g\right)(n)$. $\left(r_{1}, s_{1}\right) \in B_{m} \quad\left(r_{2}, s_{2}\right) \in B_{n}$

Hence follows the theorem.

4. Identities

For an arbitrary $S \subseteq \mathbf{N}$, let μ_{S} be the Möbius function of S defined by

$$
\begin{equation*}
\sum_{d \mid n} \mu_{S}(d)=\rho_{S}(n), n \in \mathbf{N} \tag{5}
\end{equation*}
$$

see Cohen[7], Tóth [16]. Therefore ,by Möbius inversion formula

$$
\begin{equation*}
\mu_{S}(n)=\sum_{d \mid n} \rho_{S}(d) \mu(n / d), n \in \mathbf{N} \tag{6}
\end{equation*}
$$

where $\mu=\mu_{\{1\}}$ is the ordinary Möbius function.
Theorem 4.1. If $S \subseteq \mathbf{N}$ and f and g are completely multiplicative functions and also the Bproduct is completely multiplicative, then, for every $n \in \mathbf{N}$,

$$
\begin{equation*}
\left(f *_{S_{B}} g\right)(n)=\sum_{(j, j) \in B_{j}} \mu_{S}(j) f(j) g(j)\left(f *_{B} g\right)(n / j) \tag{i}
\end{equation*}
$$

where $*_{B}$ is the B-product of Bhattacharjee [2].
(ii)

$$
\begin{aligned}
\left(f *_{S_{B}} g\right)(n)= & \sum_{\substack{a \in S \\
(a, a) \in B_{a} \\
\\
\\
\\
\\
\\
=}} \quad \sum \rho_{S}(a) f(a) g(a) \sum f(i) g(j) g(a)(f \mathrm{X} g)(n / a)
\end{aligned}
$$

if $B_{n / a}$ consists of all pairs of divisors of n / a and $\mathrm{X} \equiv{ }_{\{1\}}$ is the unitary convolution.
Proof. (i) Using identity (5) we have, for every $n \in \mathbf{N}$,

$$
\begin{aligned}
\left(f *{ }_{S_{B}} g\right)(n)= & \sum \rho_{S}(\langle u, v\rangle) f(u) g(v) \\
& (u, v) \in B_{n} \\
= & \sum \quad\left[\sum \mu_{S}(j)\right] f(u) g(v) \\
& (u, v) \in B_{n} \quad j \mid \operatorname{gcd}(u, v), \operatorname{gcd}(u, v) \in S
\end{aligned}
$$

Hence with $u=j a, v=j b$

$$
\begin{aligned}
& \left(f^{*}{ }_{S_{B}} g\right)(n)=\sum_{(j a, j b) \in B_{n}}\left[\sum_{j \mid \operatorname{gcd}(j a, j b)} \mu_{S}(j)\right] f(j a) g(j b) \\
& (j a, j b) \in B_{n} \quad j \mid \operatorname{gcd}(j a, j b) \\
& =\sum \quad \sum \mu_{S}(j) f(j) f(a) g(j) g(b) \text { [since } f \text { and } g \text { are completely multiplicative] } \\
& (j a, j b) \in B_{n} \quad j \mid \operatorname{gcd}(j a, j b)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum \mu_{S}(j) f(j) g(j)\left(f *_{B} g\right)(n / j) . \\
& (j, j) \in B_{j}
\end{aligned}
$$

(ii) Furthermore we have,

$$
\left(f^{*}{S_{B}} g\right)(n)=\sum_{(u, v) \in B_{n}}^{\sum \rho_{S}(\langle u, v\rangle) f(u) g(v)}
$$

$$
\begin{array}{r}
=\sum_{a \in S} \rho_{S}(a) \sum_{\substack{(u, v) \in B_{n} \\
\operatorname{gcd}(u, v)=a}} f(u) g(v) \\
=\sum_{a} \rho_{S}(a) \sum_{\substack{(u, v) \in B_{n} \\
\operatorname{gcd}(u / a, v / a)=1}} f(u) g(v) .
\end{array}
$$

If $u=a i, v=a j$, we get

$$
\left(f^{*}{ }_{S_{B}} g\right)(n)=\sum_{a \in S(a, a) \in B_{a}} \rho_{S}(a) \quad \sum_{\substack{(i, j) \in B_{n / a} \\ \operatorname{gcd}(i, j)=1}} f(a) f(i) g(a) g(j)
$$

[since f, g and the B-product are completely multiplicative]

$$
\begin{aligned}
= & \sum_{\substack{a \in S \\
(a, a) \in B_{a}}} \rho_{S}(a) f(a) g(a) \\
= & \sum_{\substack{(i, j) \in B_{n / a} \\
\operatorname{gcd}(i, j)=1}} f(i) g(j) \\
= & \sum \rho_{S}(a) f(a) g(a)(f \mathrm{X} g)(n / a),
\end{aligned}
$$

if $i j=n / a$ i.e if $B_{n / a}$ is the set of all pairs of divisors of n / a. Hence we have the theorem.

5. Example

We conclude our discussion by considering an example of S_{B} - product and investigate whether the corresponding S_{B} - product is commutative, associative, has an identity, has inverses as well as zero divisors.

Example 5.1. Let $B_{n}=\{(1,1),(1, n),(n, 1)\}, S=\{1\}$.

Solution.

(i) Commutativity: Follows clearly from Theorem 2.1.
(ii) Associativity: For associativity we have,

$$
\sum_{\substack{r \\\left(r, d_{1}\right) \in B_{n} \\\left(d_{2}, d_{3}\right) \in B_{r}}} \rho_{S}\left(<r, d_{1}>\right) \rho_{S}\left(<d_{2}, d_{3}>\right)= \begin{cases}2 & \text { for } d_{1}=d_{2}=d_{3}=1 \neq n \\ 1 & \text { for } n=1=d_{1}=d_{2}=d_{3} \\ \text { or } n \neq 1, d_{i}=n, d_{j}=d_{k}=1,\{i, j, k\}=\{1,2,3\} \\ 0, & \text { otherwise. }\end{cases}
$$

Since the result does not depend on the ordering of d_{1}, d_{2}, d_{3} we obtain the associativity from Theorem 2.2.
(iii) Existence of identity: By Corollary 2.6, we have

$$
\begin{aligned}
\sum_{\substack{v \\
(k, v) \in B_{n}}} \rho_{S}(<k, v>) e_{1}(v)=\rho_{S}(k, 1) & = \begin{cases}1, & \text { if and onlyif } k=n \\
0, & \text { otherwise }\end{cases} \\
& =e_{k}(n) .
\end{aligned}
$$

Hence e_{1} is a right identity of $R_{S_{B}}$ and similarly e_{1} is a left identity of $R_{S_{B}}$. Therefore e_{1} is the identity of $R_{S_{B}}$.
(iv) Existence of inverse: We have

$$
\sum_{\substack{u \\
(u, n) \in B_{n}}} \rho_{S}(<u, n>) f(u)=\left\{\begin{array}{l}
f(1), \text { if } n=1 \\
f(1), \text { if } n>1 .
\end{array}\right.
$$

Therefore from Theorem 2.7 (i) it follows that $f \in R_{S_{B}}$ is invertible if and only if $f(1) \neq 0$, for $n \geq 1$.
(v) Existence of zero divisors:

Here $f^{*} s_{B} g=0$ if and only if $f=0$ or $g=0$ or $f(1)=g(1)=0$
Proof. We have

$$
\begin{aligned}
\left(f^{*} s_{B} g\right)(1) & \left.=\rho_{S}(<1,1\rangle\right) f(1) g(1)=f(1) g(1), \\
\left(f^{*} s_{B} g\right)(n) & =\rho_{S}(\langle 1,1\rangle) f(1) g(1)+\rho_{S}(<1, n>) f(1) g(n)+\rho_{S}(\langle n, 1\rangle) f(n) g(1) \text { for } n>1 \\
& =f(1) g(1)+f(1) g(n)+f(n) g(1) .
\end{aligned}
$$

\Leftarrow Clear.
$\Rightarrow \quad$ Assume $f^{*} s_{B} g=0, f \neq 0, g \neq 0$ and $f(1) \neq 0$ (say). Hence $g(1)=0, g(n)=0$ for $n>1$, a contradiction. Thus $f \in R_{S_{B}}$ is a zero divisor if and only if $f(1) \neq 0$.

Acknowledgements

The first author would like to thank Prof. dr. hab. Jerzy Browkin, Institute of Mathematics, Polish Academy of Sciences, Warsaw, Poland for his valuable suggestions.

References

[1] T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, (1976), NewYork.
[2] D. Bhattacharjee, B-product and its properties, Bulletin of Pure and Applied Sciences, 16E(1) (1997), 77-83.
[3] D. Bhattacharjee, Multiplicative B-product and its properties, Georgian Mathematical Journal, 5(4) (1998), 315-320.
[4] D. Bhattacharjee, A Generalized B-product and its properties, Bulletin of the Allahabad Mathematical Society, 17 (2002), 17-21.
[5] D. Bhattacharjee, Multiplicative K_{B}-product and its properties, Bulletin of the Calcutta Mathematical Society, 97(2) (2005), 153-162.
[6] D. Bhattacharjee, On Some New Arithmetical Convolutions, Proceedings of the 2007 International Conference on High Performance Computing Networking and Communication Systems (HPCNCS-07) during 9-12 July 2007 in Orlando, FL, USA, 26-30.
[7] E. Cohen, Arithmetical functions associated with arbitrary sets of integers, Acta Arith., 5(1959), 407-415.
[8] T. M. K. Davison, On Arithmetic Convolutions, Canadian Mathematical Bulletin 9 (1966), 287-296.
[9] P. Haukkanen, On a Binomial Convolution of Arithmetic Functions, Vierde Serie Deel 14, No. 2 Juli, Nieuv Archief Voor Wiskunde,(1996), 209-216.
[10] D. H. Lehmer, A New Calculas of Numerical Functions, American Journal of Mathematics, 53 (1931), 843-854.
[11] P. J. McCarthy, Introduction to Arithmetical Functions, Springer-Verlag, New York, 1986.
[12] W. Narkiewicz, On a Class of Arithmetical Convolutions, Colloquium Mathematicum, 10 (1963), 1- 11.
[13] H. Scheid, Einige Ringe Zahlentheoretischer Funktionen, Journ. Reine Angew Math., 237 (1969), 1-11.
[14] R. Sivaramakrishnan, Classical Theory of Arithmetical Functions, Monographs and Textbooks in Pure and Applied Mathematics, 126, Marcel-Dekker Inc.,(1989), New York.
[15] M. V. Subbarao, On Some Arithmetic Convolution in the Theory of Arithmetic Functions, Springer Verlag, Lecture Notes in Mathematics, 251, Berlin, (1972), 247- 271.
[16] L. Tóth, On a Class of Arithmetic Convolutions involving Arbitrary Sets of Integers, Math. Pannonica, 13 (2002), 249-263.
[17] L. Tóth, On a Certain Arithmetic Functions involving Exponential Divisors, Annales Univ. Sci. Budapest, Sect. Comp., 24 (2004), 285-294.
[18] R. Vaidyanathaswamy, The Theory of Multiplicative Arithmetical Functions, Transactions of the American Mathematical Society, 33 (1931), 579-662.

