On Some New Class of Arithmetic Convolutions Involving Arbitrary Sets of Integers

¹D.BHATTACHARJEE and ²P.K.SAIKIA

¹Centre for Science Education, North-Eastern Hill University, Permanent Campus, Shillong-793022,India,
²Department of Mathematics, North-Eastern Hill University, Permanent Campus, Shillong-793022,India,

¹E-mail:debashis_bhattacharjee@yahoo.com,dbhattacharjee@nehu.ac.in; ²E-mail: pks@nehu.ac.in

Abstract. In this paper we define a new type of arithmetic convolution called the S_B – product and denote it by $*_{S_B}$.Let $R_{S_B} = \langle C^N, +, *_{S_B} \rangle$ be the set of all complex valued arithmetic functions with ordinary addition and with a S_B – product considered as multiplication. We give conditions on $*_{S_B}$ which are necessary and sufficient for R_{S_B} to be commutative, and associative. We also investigate some other algebraic properties of R_{S_B} such as the existence of identity, of zero divisors. We determine all invertible elements of R_{S_B} and we establish the conditions under which R_{S_B} is a local ring .We then give a definition for completely multiplicative *B*-product and study some of its properties. We then study some important relations between S_B – product, B – product and unitary convolution. We conclude our discussion by considering an example of S_B -product and investigate whether the corresponding S_B – product is commutative, associative, has an identity etc.

2000 Mathematics Subject Classification: 11A25

Keywords and phrases: Arithmetic convolution, characteristic function, completely multiplicative function, Narkiewicz's *A*-product, *B*-product, *K*_{*B*} – product, *S*-convolution, S_B – product.

1. Introduction

In a previous paper [2], the B – product is defined as follows. For every natural number n, let B_n be the set of some pairs of divisors of n. For arithmetical functions f and g, their B-product is given by

$$(f *_B g)(n) = \sum_{(u,v) \in B_n} f(u) g(v), \quad \text{for} \quad n = 1,2,3,\dots$$

This *B*-product generalizes simultaneously the *A*-product of Narkiewicz [12] and the *lcm* product and it has a non-void intersection with the Ψ - product of Lehmer [10]. The τ - product of Scheid [13] is also a particular case of *B*-product. There are several classes of arithmetic convolutions which can be found in Apostol [1], Cohen [7], Davison [8], McCarthy [11], Sivaramakrishnan [14], Vaidyanathaswamy [18], Subbarao [15] and more recently in the papers of Haukkanen [9], Tóth [16], [17] and Bhattacharjee [2]-[6]. In this paper, we define a new type of arithmetic convolution and we call it the *S*_B-product and denote it by *_S_B. We study in detail about the *S*_B-product in Section **2** of this paper. We then define completely multiplicative *B*-

product the S_B -product in Section 2 of this paper. We then define completely multiplicative Bproduct and study its properties in Section 3. In Section 4 we recall some identities mentioned in Tóth [16] and also study some important relations between S_B -product, B -product and unitary convolution. We conclude our discussion in Section 5 by considering an example of S_B -product and investigate whether the corresponding S_B -product is commutative, associative, has an identity, has an inverse etc.

2. *S_B* - product and its properties

Let N denote the set of natural numbers and let S be an arbitrary subset of N. For every natural number n we say that the pair of divisors (u, v) to be S_B divisors of n if $(u, v) \in B_n$ where B_n is a set of some pairs of divisors of n and gcd $(u, v) \in S$.

For arithmetical functions f and g, their S_B -product $f *_{S_D} g$ is given by

$$(f *_{S_B} g)(n) = \sum_{\substack{(u, v) \in B_n, \\ \gcd(u, v) \in S}} f(u) g(v), \quad \text{for} \quad n = 1, 2, 3, \dots$$

$$g c d(u, v) \in S$$

$$= \sum_{\substack{(u, v) \in B_n}} \rho_S(< u, v >) f(u) g(v),$$

where ρ_S stands for the characteristic function of *S* and $\langle u, v \rangle$ stands for gcd (u, v).

If $S = \mathbf{N}$ where **N** is the set of all natural numbers and

 $B_n = \{ (u, v): uv = n, gcd (u, v) \in S \},\$

then S_B -product is the Dirichlet's convolution. Let S be an arbitrary subset of N and

 $B_n = \{(u, v): uv = n \text{ and } gcd(u, v) \in S\},\$

then S_B -product is the S-convolution of Tóth [16]. If B_n are sets of pairs of divisors of n defining the B – product, let us consider the following set B_n of pairs of divisor of n:

 $B_n = \{(u, v) : (u, v) \in B_n, \text{gcd}(u, v) \in S\}.$

Then the *S*_{*B*}-product is the *B* – product defined by the sets B_n . If *S*={1} and $B_n = \{(u, v): uv=n, gcd(u, v) \in S\},\$

then S_B -product is the unitary convolution. For $K(u, v) = \rho_S < u, v>$, where K(u, v) is a function of two variables u and v and range of $K \subseteq S \subseteq \mathbb{N}$, S_B -product is a special type of K_B -product of Bhattacharjee [4].

Let $R_{S_B} = \langle C^N, +, *_{S_B} \rangle$ be the set of all complex valued arithmetic functions with the ordinary addition and with a S_B -product considered as multiplication.

For a natural number k we define the function e_k as follows:

$$e_k(n) = \begin{cases} 0, \text{ if } n \neq k \\ 1, \text{ if } n = k. \end{cases}$$

Thus $e_k(n) = \delta_{k,n}$ (the Kronecker delta).

The system $R_{S_B} = \langle C^N, +, *_{S_B} \rangle$ is a ring like structure which is neither commutative nor associative in general. We now discuss some properties of the S_B-product.

Theorem 2.1. R_{S_R} is commutative if and only if for every n,

$$(u, v) \in B_n \iff (v, u) \in B_n$$
.

Proof. Follows from the definition of S_B –product.

Theorem 2.2. R_{S_B} is associative if and only if for fixed n, d_1, d_2, d_3 the following equality holds.

$$\sum_{r} \rho_{S} (< r, d_{1} >) \rho_{S} (< d_{2}, d_{3} >) = \sum_{w} \rho_{S} (< d_{2}, w >) \rho_{S} (< d_{3}, d_{1} >) .$$

$$(r, d_{1}) \in B_{n} (d_{2}, d_{3}) \in B_{r} (d_{3}, d_{1}) \in B_{w}$$

Proof. \Leftarrow For every arithmetic functions *f*, *g*, *h* we have

$$[(f *_{S_B} g) *_{S_B} h](n) = \sum_{x, t, u \in \mathbb{N}} f(t)g(u)h(x) \sum_{x, t, u \in \mathbb{N}} \rho_S(\langle r, x \rangle) \rho_S(\langle t, u \rangle).$$

On the other hand

$$[f_{S_{B}}^{*}(g_{S_{B}}^{*}h)](n) = \sum_{x, t, u \in \mathbf{N}} f(t)g(u)h(x) \sum_{x, t, u \in \mathbf{N}} \rho_{S}(\langle t, w \rangle) \rho_{S}(\langle u, x \rangle).$$

By the assumption in both expressions the inner sums are equal. Therefore the S_B - product is associative.

⇒ Conversely suppose that the S_B -product is associative and fix $n, d_1, d_2, d_3 \in \mathbb{N}$. From the first part of the proof we get

$$[(e_{d_2} *_{S_B} e_{d_3}) *_{S_B} e_{d_1}](n) = \sum \rho_S (< r, d_1 >) \rho_S (< d_2, d_3 >).$$

$$r_{(r, d_1) \in B_n, (d_2, d_3) \in B_r}$$

Similarly

$$[e_{d_2} *_{S_B} (e_{d_3} *_{S_B} e_{d_1})](n) = \sum_{\substack{w \\ (d_2,w) \in B_n, (d_3,d_1) \in B_w}} \rho_S (< d_3, d_1 >).$$

Therefore the sums obtained are equal and the result follows.

Theorem 2.3. A function *e* is a right identity in the system R_{S_B} if and only if for every *k* and *n* we have

$$\sum_{(k, v) \in B_n} \rho_{S}(\langle k, v \rangle) e(v) = e_k(n).$$

Proof. \Rightarrow For every *k* and *n* we have

$$e_{k}(n) = (e_{k} *_{S_{B}} e)(n) = \sum \rho_{S}(\langle u, v \rangle) e_{k}(u)e(v) = \sum \rho_{S}(\langle k, v \rangle) e(v)$$

$$u, v$$

$$(u, v) \in B_{n}$$

$$(k, v) \in B_{n}$$

 \Leftarrow Conversely suppose for every f and n we have

$$(f *_{S_B} e)(n) = \sum \rho_S (\langle u, v \rangle) f(u) e(v)$$

(u,v) $\in B_n$
$$= \sum_u f(u) \sum_{(u,v) \in B_n} \rho_S (\langle u, v \rangle) e(v)$$

$$= \sum_u f(u) e_u(n),$$

$$= f(n).$$

A similar condition characterizes left identities. Hence we get

Theorem 2.4. A function *e* is an identity in the system R_{S_B} if and only if for every *k* and *n* we have

$$\sum_{\substack{v \\ (k, v) \in B_n}} e(v) \rho_S(\langle k, v \rangle) = e_k(n) = \sum_{\substack{u \\ (u, k) \in B_n}} e(u) \rho_S(\langle u, k \rangle).$$

Corollary 2.5. If the system R_{S_B} has an identity e, then for every n there exist u and v such that $(u, n) \in B_n$, $(n, v) \in B_n$, $gcd(u, n) \in S$ and $gcd(n, v) \in S$.

Hence $B_1 = \{(1,1)\}$, $\rho_S(<1, 1>) = 1$ and $e(1) = 1/\rho_S(<1, 1>) = 1$.

Corollary 2.6. The function e_1 is the identity of the system R_{S_B} if and only if for every k (>1) and n we have:

 $(k,1) \in B_n \text{ and } \rho_S(\langle k, 1 \rangle) = 1 \Leftrightarrow k = n \text{ and } \rho_S(\langle k, 1 \rangle) = \rho_S(\langle 1, k \rangle)$

 \Leftrightarrow (1, k) $\in B_n$ and $\rho_S(<1, k>) = 1$.

Theorem 2.7 (i). If R_{S_B} is commutative, associative, has a unique identity e and $f \in R_{S_B}$ satisfies

$$\sum_{\substack{(u, n) \in B_n}} \rho_S(\langle u, n \rangle) f(u) \neq 0, \text{ for every } n, \tag{1}$$

then f has a right inverse. Such an inverse g can be defined inductively by the formulas:

$$g(1) = [f(1) \rho_{S} (\langle 1, 1 \rangle)]^{-1}, \qquad (2)$$

$$g(n) = [e(n) - \sum_{v} g(v) \sum_{u} f(u) \rho_{S} (< u, v>)] [(\sum_{u} f(u)) \rho_{S} (< u, n>)]^{-1}, \text{ for } n>1.$$

(ii) Moreover if $f \in R_{S_B}$ has a right inverse, then (1) holds.

Proof. (i) From (1) for n=1 and Corollary 2.5 it follows that $\rho_S(<1,1>)f(1) \neq 0$. Therefore the formulas (2) define a function g. The verification of the formula

$$(f^*_{S_B}g)(n) = e(n)$$
, for every n ,

is straightforward.

(ii) Let g be a right inverse of f i.e let $f *_{S_B} g = e$. From the associativity of the

system $R_{S_{R}}$ it follows that

$$f *_{S_B} (g *_{S_B} e_n) = (f *_{S_B} g) *_{S_B} e_n = e *_{S_B} e_n = e_n$$
, for every *n*.

Evidently for v < n, we have

$$(g *_{S_B} e_n)(v) = 0.$$

Therefore

$$1 = e_n(n) = \sum_{\substack{(u, v) \in B_n \\ = (g^*s_B^*e_n)(n) \sum_{\substack{(u, v) \in B_n \\ (u, n) \in B_n \\ (u, n) \in B_n}}} e_n)(v) \rho_s (< u, n>),$$

consequently (1) holds.

Similar results can be proved for left inverses. Hence we get the following theorem.

Theorem 2.8 (i). If R_{S_B} is commutative, associative, has a unique identity e and $f \in R_{S_B}$ satisfies

$$\sum_{\substack{u \\ (u, n) \in B_n}} \rho_S(\langle u, n \rangle) f(u) \neq 0 \neq \sum_{\substack{v \\ (n, v) \in B_n}} \rho_S(\langle n, v \rangle) f(v), \text{ for every } n,$$
(3)

then f is invertible and its left inverse g is given by the formulas (2), and the right inverses by similar ones.

(ii) Moreover if $f \in R_{S_R}$ is invertible, then (3) holds.

Corollary 2.9. If R_{S_B} has an identity and $f \in R_{S_B}$ satisfies f(n) > 0, for every n, then f is invertible.

Proof. From Corollary **2.5** it follows that, for every *n*, the set B_n is non-empty. Consequently the condition (3) is satisfied.

Theorem 2.10. If the system R_{S_B} is associative and has an identity *e*, then the following conditions are equivalent:

(i) For every n, $((t, n) \in B_n, \text{gcd}(t, n) \in S \text{ if and only if } t = 1, \rho_S(\langle t, n \rangle) = \rho_S(\langle 1, n \rangle) = 1)$

and

$$((n, t) \in B_n, \text{gcd}(n, t) \in S \text{ if and only if } t=1, \rho_S(\langle n, t \rangle) = \rho_S(\langle n, 1 \rangle) = 1).$$

(ii) Every $f \in R_{S_B}$ satisfying $f(1) \neq 0$ is invertible.

If moreover the system $R_{S_{R}}$ is commutative, then the above conditions are equivalent to.

(iii) R_{S_R} is a local ring.

Proof . (**i**) \Rightarrow (**ii**) From the assumption we conclude that

$$\sum_{(u, n) \in B_n} \rho_S (< u, n >) f(u) = \rho_S (< 1, n >) f(1) = f(1) \neq 0$$

and

$$\sum_{(n, v) \in B_n} \rho_S(\langle n, v \rangle) f(v) = \rho_S(\langle n, 1 \rangle) f(1) = f(1) \neq 0.$$

Therefore from Theorem 2.8 it follows that f is invertible.

(ii) \Rightarrow (i) Since e_1 is invertible, from (3) with $f=e_1$ we get $(1,n),(n,1) \in B_n$.

$$\rho_{S}(<1, n>) = \rho_{S}() = 1.$$

For t > 1, $(e_1 - e_t)(1) = e_1(1) - e_t(1) = 1$, hence $e_1 - e_t$ is invertible.

Moreover

$$\sum_{\substack{u\\(u,n)\in B_n}} (e_1 - e_t)(u) \rho_S(\langle u, n \rangle) = \begin{cases} 0, \text{if } (t,n) \in B_n \text{ and gcd } (t,n) \in S \\ 1, \text{ otherwise.} \end{cases}$$

Therefore by Theorem 2.8 (ii) it follows that $(t, n) \notin B_n$ or $gcd(t, n) \notin S$. Analogously we get $(n, t) \notin B_n$ or $gcd(n, t) \notin S$.

(ii) \Rightarrow (iii) The set *I* of elements $f \in R_{S_B}$ satisfying f(1)=0 is an ideal of R_{S_B} . It is the unique maximal ideal since every $f \notin I$ is invertible. Hence R_{S_B} is a local ring.

(iii) \Rightarrow (ii) Suppose that $f(1) \neq 0$. Since g = f(1)e - f satisfies g(1)=0, the element g is not invertible. In a local ring the sum of invertible and not invertible elements is invertible. Consequently the element f = f(1)e + (f - f(1).e) is invertible. \Box

Theorem 2.11. If for every n, $\{(u, v): uv=n\} \subset B_n \subset \{(u, v): uv \mid n\}$ and gcd $(u, v) \in S$ for every $(u, v) \in B_n$ i.e. $\rho_{S}(\langle u, v \rangle) = 1$, for every $(u, v) \in B_n$, then in R_{S_B} there are no zero divisors.

Proof. Let $f, g \in R_{S_B}, f \neq 0, g \neq 0$. Then there exist u, v such that $f(u) \neq 0$, and f(k) = 0, for k < u, $g(v) \neq 0$ and g(l) = 0, for l < v. Then for n = uv we get,

$$(f *_{S_{B}} g)(n) = \sum \rho_{S} (< k, l >) f(k)g(l) + \sum \rho_{S} (< k, l >) f(k)g(l)$$

$$k, l \\ kl = n \\ (k, l) \in B_{n}$$

$$= f(u) g(v) \neq 0,$$

since only the summand corresponding to k = u, l = v is different from zero. Therefore $f *_{S_B} g \neq 0$.

Theorem 2.12. If there exist u, v such that $(u, v) \notin B_n$, for every n, then $e_u *_{S_B} e_v = 0$ *Proof.* We have

$$(e_{u} *_{S_{B}} e_{v})(n) = \sum \rho_{S} (\langle k, l \rangle) e_{u}(k) e_{v}(l) = 0,$$

(k, l) \in B_{n}

since $(u, v) \notin B_n$.

Theorem 2.13. If for a fixed $u \neq 1$ and every n divisible by u we have $(u, n) \in B_n$ and

 $\rho_S(\langle u, n \rangle) = 1$, then e_u is a left zero divisor in the system R_{S_R} .

Proof. We are looking for a function $f \neq 0$ satisfying $e_u *_{S_R} f = 0$. For every *n*, we have,

$$(e_u * s_B f)(n) = \sum_{\substack{v \\ (u,v) \in B_n}} f(v) \rho_S(\langle u, v \rangle) = \begin{cases} 0, & \text{if } u \nmid n \\ f(n) + \sum_{\substack{v < n \\ (u,v) \in B_n}} f(v) \rho_S(\langle u, v \rangle), & \text{if } u \mid n. \end{cases}$$

We define *f* inductively:

Let f(n) = 1 if $u \nmid n$ and $f(n) = -\left[\sum_{v < n} f(v) \rho_{S}(\langle u, v \rangle)\right]$, if $u \mid n$. Then we get $\begin{aligned} v < n \\ (u, v) \in B_{n} \end{aligned}$

r	-	1
L		I
7		1

3. Completely Multiplicative *B*-product

We say that a *B*-product is completely multiplicative if for every pair (m, n) of natural numbers we have

$$B_{mn} = \{ (r_1 r_2, s_1 s_2) : (r_1, s_1) \in B_m, (r_2, s_2) \in B_n \}.$$

This definition can also be formulated as follows. For every pair (m, n) of natural numbers we have

$$(r_1r_2, s_1s_2) \in B_{mn}$$
 if and only if $(r_1, s_1) \in B_m, (r_2, s_2) \in B_n$ (4)

[Note: r_1, s_1 are divisors of *m* and r_2, s_2 are divisors of *n* respectively.]

Let us recall that an arithmetical function f is completely multiplicative if $f(n) \neq 0$ for at least one integer n and if f(mn) = f(m) f(n) for every n. We now discuss some property of completely multiplicative *B*-product. More precisely the following theorem holds.

Theorem 3.1. *The B-product of completely multiplicative functions is a completely multiplicative function if the B-product is completely multiplicative.*

Proof. Let f, g be completely multiplicative functions and let (m, n) be a pair of natural numbers. Then,

$$(f *_B g)(mn) = \sum f(r)g(s)$$

(r, s) $\in B_{mn}$
$$= \sum f(r_1r_2)g(s_1 s_2) \text{ [where } r = r_1r_2 \text{ , } s = s_1 s_2 \text{ and } r_1|m, s_1|m, r_2|n, s_2|n]$$

(r_1r_2, s_1s_2) $\in B_{mn}$

 $= \sum_{(r_1,s_1) \in B_m} \sum_{(r_2,s_2) \in B_n} f(r_1) f(r_2) g(s_1) g(s_2) \text{ [since } f, g \text{ and the } B\text{-product are completely multiplicative]}$

$$= \sum_{\substack{f(r_1) \ g(s_1) \ (r_2, s_2) \in B_n}} f(r_2) \ g(s_2) = (f *_B g)(m) \ (f *_B g)(n).$$

Hence follows the theorem.

4. Identities

For an arbitrary $S \subseteq \mathbf{N}$, let μ_S be the Möbius function of S defined by

$$\sum_{d|n} \mu_{S}(d) = \rho_{S}(n), n \in \mathbf{N},$$
(5)

see Cohen[7], Tóth [16]. Therefore ,by Möbius inversion formula

$$\mu_{S}(n) = \sum_{d|n} \rho_{S}(d) \ \mu(n/d) \ , n \in \mathbf{N}, \tag{6}$$

where $\mu = \mu_{\{1\}}$ is the ordinary Möbius function.

Theorem 4.1. If $S \subseteq \mathbf{N}$ and f and g are completely multiplicative functions and also the B-product is completely multiplicative, then, for every $n \in \mathbf{N}$,

(i)
$$(f *_{S_B} g)(n) = \sum \mu_S(j) f(j) g(j) (f *_B g) (n/j),$$

 $(j, j) \in B_j$

where $*_B$ is the B-product of Bhattacharjee [2].

(ii)
$$(f *_{S_B} g)(n) = \sum_{\substack{a \in S \\ (a, a) \in B_a}} \rho_S(a) f(a) g(a) \sum_{\substack{f(i) \in B_{n/a, gcd}(i, j) = 1}} f(i) g(j)$$

 $= \sum \rho_S(a) f(a) g(a) (f \mathbf{X} g) (n/a),$

if $B_{n/a}$ consists of all pairs of divisors of n/a and $X \equiv *_{\{1\}}$ is the unitary convolution.

Proof. (i) Using identity (5) we have, for every $n \in \mathbb{N}$,

$$(f * _{S_B} g)(n) = \sum \rho_S(\langle u, v \rangle) f(u)g(v)$$
$$(u, v) \in B_n$$
$$= \sum_{(u, v) \in B_n} [\sum \mu_S(j)] f(u) g(v)$$
$$_{(u, v) \in B_n} [j|gcd(u, v), gcd(u, v) \in S]$$

Hence with u=ja, v=jb

$$(f * _{S_B} g)(n) = \sum_{(ja, jb) \in B_n} [\sum \mu_S(j)] f(ja) g(jb)$$

 $= \sum_{(ja, jb) \in B_n} \sum_{j \mid gcd(ja, jb)} \sum_{$

 $= \sum \mu_{S}(j) f(j) g(j) \sum f(a) g(b) \text{ [since the } B\text{- product is completely multiplicative]}$ (*j*, *j*) $\in B_{j}$ (*a*, *b*) $\in B_{n/j}$

$$= \sum \mu_{\mathcal{S}}(j)f(j) g(j) (f *_{\mathcal{B}} g)(n/j).$$

(j, j) $\in B_j$

(ii) Furthermore we have,

$$(f * _{S_B} g)(n) = \sum \rho_S(\langle u, v \rangle) f(u) g(v)$$
$$(u, v) \in B_n$$

$$= \sum_{a \in S} \rho_{S}(a) \sum_{\substack{(u, v) \in B_{n} \\ \text{gcd}(u, v) = a}} f(u)g(v)$$
$$= \sum_{a} \rho_{S}(a) \sum_{\substack{(u, v) \in B_{n}}} f(u)g(v).$$

$$gcd(u/a, v/a)=1$$

If u=ai, v=aj, we get

$$(f * {}_{S_{B}} g)(n) = \sum_{a \in S} \rho_{S}(a) \sum_{\substack{a \in S (a, a) \in B_{a} \\ \gcd(i, j) \in I}} \frac{\sum f(a) f(i) g(a)g(j)}{g(a)g(j)}$$

[since f, g and the B-product are completely multiplicative]

$$= \sum_{\substack{a \in S \\ (a, a) \in B_a}} \rho_S(a) f(a) g(a) \sum_{\substack{(i, j) \in B_{n/a} \\ gcd (i, j)=1}} f(i) g(j)$$
$$= \sum \rho_S(a) f(a) g(a) (f X g)(n/a),$$

if ij = n/a i.e if $B_{n/a}$ is the set of all pairs of divisors of n/a. Hence we have the theorem. \Box

5. Example

We conclude our discussion by considering an example of S_B - product and investigate whether the corresponding S_B - product is commutative, associative, has an identity, has inverses as well as zero divisors.

Example 5.1. Let $B_n = \{(1,1), (1,n), (n,1)\}, S = \{1\}.$

Solution.

(i) Commutativity: Follows clearly from Theorem 2.1.

(ii) Associativity: For associativity we have,

$$\sum_{\substack{r \\ (r,d_1) \in B_n \\ (d_2,d_3) \in B_r}} \rho_S(\langle r,d_1 \rangle) \rho_S(\langle d_2,d_3 \rangle) = \begin{cases} 2 & \text{for } d_1 = d_2 = d_3 = 1 \neq n \\ 1 & \text{for } n = 1 = d_1 = d_2 = d_3 \\ & \text{or } n \neq 1, d_i = n, d_j = d_k = 1, \{i, j, k\} = \{1,2,3\} \\ 0, & \text{otherwise.} \end{cases}$$

Since the result does not depend on the ordering of d_1, d_2, d_3 we obtain the associativity from Theorem 2.2.

(iii) Existence of identity: By Corollary 2.6, we have

$$\sum_{\substack{v \\ (k,v) \in B_n}} \rho_S(\langle k, v \rangle) e_1(v) = \rho_S(k,1) = \begin{cases} 1, & \text{if and only if } k = n \\ 0, & \text{otherwise} \end{cases}$$
$$= e_k(n).$$

Hence e_1 is a right identity of R_{S_B} and similarly e_1 is a left identity of R_{S_B} . Therefore e_1 is the identity of R_{S_B} .

(iv) Existence of inverse: We have

$$\sum_{\substack{u \\ (u,n) \in B_n}} \rho_S(\langle u, n \rangle) f(u) = \begin{cases} f(1), \text{ if } n = 1\\ f(1), \text{ if } n > 1. \end{cases}$$

Therefore from Theorem 2.7 (i) it follows that $f \in R_{S_B}$ is invertible if and only if $f(1) \neq 0$, for $n \ge 1$.

(v) Existence of zero divisors:

Here $f * S_{R} g = 0$ if and only if f = 0 or g = 0 or f(1) = g(1) = 0

Proof. We have

$$(f * s_B g)(1) = \rho_S(\langle 1,1 \rangle)f(1)g(1) = f(1)g(1),$$

$$(f * s_B g)(n) = \rho_S(\langle 1,1 \rangle)f(1)g(1) + \rho_S(\langle 1,n \rangle)f(1)g(n) + \rho_S(\langle n,1 \rangle)f(n)g(1) \text{ for } n > 1$$

$$= f(1)g(1) + f(1)g(n) + f(n)g(1).$$

 \Leftarrow Clear.

⇒ Assume $f *_{S_B} g = 0$, $f \neq 0$, $g \neq 0$ and $f(1) \neq 0$ (say). Hence g(1)=0, g(n)=0 for n > 1, a contradiction. Thus $f \in R_{S_B}$ is a zero divisor if and only if $f(1) \neq 0$.

Acknowledgements

The first author would like to thank Prof. dr. hab. Jerzy Browkin, Institute of Mathematics, Polish Academy of Sciences, Warsaw, Poland for his valuable suggestions.

References

- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, (1976), NewYork.
- [2] D. Bhattacharjee, *B*-product and its properties, *Bulletin of Pure and Applied Sciences*, 16E(1) (1997), 77-83.
- [3] D. Bhattacharjee, Multiplicative *B*-product and its properties, *Georgian Mathematical Journal*, **5**(4) (1998), 315-320.
- [4] D. Bhattacharjee, A Generalized B-product and its properties, Bulletin of the Allahabad Mathematical Society, 17 (2002), 17-21.
- [5] D. Bhattacharjee, Multiplicative K_B –product and its properties, *Bulletin of the Calcutta Mathematical Society*, **97(2)** (2005), 153-162.
- [6] D. Bhattacharjee, On Some New Arithmetical Convolutions, Proceedings of the 2007 International Conference on High Performance Computing Networking and Communication Systems (HPCNCS-07) during 9-12 July 2007 in Orlando, FL, USA, 26-30.
- [7] E. Cohen, Arithmetical functions associated with arbitrary sets of integers, *Acta Arith.*, **5**(1959), 407-415.
- [8] T. M. K. Davison, On Arithmetic Convolutions, *Canadian Mathematical Bulletin* 9 (1966), 287-296.
- [9] P. Haukkanen, On a Binomial Convolution of Arithmetic Functions, Vierde Serie Deel 14, No. 2 Juli, Nieuv Archief Voor Wiskunde, (1996), 209-216.
- [10] D. H. Lehmer, A New Calculas of Numerical Functions, American Journal of Mathematics, 53 (1931), 843-854.
- [11] P. J. McCarthy, Introduction to Arithmetical Functions, Springer-Verlag, New York, 1986.
- [12] W. Narkiewicz, On a Class of Arithmetical Convolutions, *Colloquium Mathematicum*, **10** (1963), 1-11.
- [13] H. Scheid, Einige Ringe Zahlentheoretischer Funktionen, Journ. Reine Angew Math., 237 (1969), 1-11.
- [14] R. Sivaramakrishnan, Classical Theory of Arithmetical Functions, *Monographs and Textbooks in Pure and Applied Mathematics*, **126**, *Marcel-Dekker Inc.*,(1989), New York.
- [15] M. V. Subbarao, On Some Arithmetic Convolution in the Theory of Arithmetic Functions, *Springer Verlag, Lecture Notes in Mathematics*, **251**, Berlin, (1972), 247-271.

- [16] L. Tóth, On a Class of Arithmetic Convolutions involving Arbitrary Sets of Integers, *Math. Pannonica*, **13** (2002), 249-263.
- [17] L. Tóth, On a Certain Arithmetic Functions involving Exponential Divisors, Annales Univ. Sci. Budapest, Sect. Comp., 24 (2004), 285-294.
- [18] R. Vaidyanathaswamy, The Theory of Multiplicative Arithmetical Functions, *Transactions* of the American Mathematical Society, **33** (1931), 579-662.