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Abstract. In this paper we define a new type of arithmetic convolution called the SB – 

product and  denote it by *S
B
.Let  R S

B
 = < C

N
, + ,*S

B
>  be the set of all complex valued 

arithmetic functions with ordinary addition and  with a SB – product considered as 

multiplication. We give conditions on *S
B
 which are necessary and sufficient for R S

B
 to 

be commutative, and associative. We also investigate some other algebraic properties of 

R S
B
 such as the existence of identity, of zero divisors. We determine all invertible 

elements of R S
B
 and we establish the conditions under which R S

B
 is a local ring .We then 

give a definition for completely multiplicative B-product and study some of its properties. 

We then study some important relations between SB – product, B – product and unitary 

convolution. We conclude our discussion by considering an example of SB -product and 

investigate whether the corresponding SB – product is commutative, associative, has an 

identity etc. 

 

                2000 Mathematics Subject Classification: 11A25 

 

Keywords and phrases:  Arithmetic convolution, characteristic function, 

completely multiplicative  function, Narkiewicz’s A-product, B-product, KB –

product, S-convolution, SB –product. 
 

 

1.  Introduction 
 

In a previous paper [2], the B – product is defined as follows. For every natural number n, 

let Bn be the set of some pairs of divisors of n. For arithmetical functions f and g, their B-product 

is given by 

 

                       (  f *B g) (n) = ∑ f ( u) g (v ),            for    n = 1,2,3,… .                                                                      
                                             (u ,v) Bn        

 

This B-product generalizes simultaneously the A-product of Narkiewicz [12] and the lcm product  

and it has a non-void intersection with the  Ψ- product of  Lehmer [10]. The  τ - product of  

Scheid [13] is also a particular case of B-product. There are several classes of arithmetic 

convolutions which can be found in Apostol [1], Cohen [7], Davison [8] , McCarthy [11], 

Sivaramakrishnan [14], Vaidyanathaswamy [18], Subbarao [15] and more recently in the papers 

of Haukkanen [9], Tóth [16], [17] and Bhattacharjee [2]-[6]. In this paper, we define a new type 

of arithmetic convolution and we call it the SB-product and denote it by *S
B
. We study in detail 

about the SB-product in Section 2 of this paper. We then define completely multiplicative B-

product and study its properties in Section 3. In Section 4 we recall some identities mentioned in 

Tóth [16] and also  study some important relations between SB-product, B -product and unitary 
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convolution. We conclude our discussion in Section 5 by considering an example of SB -product 

and investigate whether the corresponding SB-product is commutative, associative, has an 

identity, has an inverse etc. 

 

2.  SB - product and its properties 

 
Let N denote the set of natural numbers and let S be an arbitrary subset of N. For every 

natural number  n  we say that the pair  of divisors (u, v)  to be SB divisors of n if  (u ,v)B n  

where Bn is a  set of some pairs of divisors of n and gcd (u ,v) S. 
 

For arithmetical functions f and g, their SB-product f *S
B
g  is given by  

                     (f *S
B
 g)(n)    =        f(u) g(v),                     for    n = 1,2,3,… 

                                                 (u, v)B n, 
                                                           gcd (u, v)S   
                                                              
                                          =    S ( < u ,v>) f(u) g(v), 
                                                        (u ,v)B n   

where S  stands for the characteristic function of S and < u, v> stands for gcd (u, v). 
 

If  S = N  where N  is the set of all natural numbers and  

                   B n  ={ (u, v): uv = n, gcd (u, v) S },  

then  SB-product is the Dirichlet’s convolution. Let S be an arbitrary subset of N and  

                                B n = {(u, v): uv=n and gcd(u, v) S}, 

then  SB-product is the S-convolution of Tóth [16]. If B n  are sets of pairs of divisors of  n  

defining the B – product, let us consider the following set B
'
n  of pairs of divisor of n : 

                               B
'
n ={(u, v)  : (u, v) B n , gcd (u, v)  S }.  

Then the SB-product is the B – product defined by the sets B
'
n . If S={1} and  

                               B n = {(u, v):  uv=n,  gcd(u, v) S},  

then SB-product  is the unitary convolution. For K(u, v)= S < u, v>, where K(u, v) is a function of 

two variables u and v and range of K S , SB-product is a special type of KB -product of 

Bhattacharjee [4]. 

 

Let R S
B

 = < C
N
, + ,*S

B
>  be the set of all complex valued arithmetic functions with the 

ordinary addition and with a SB-product considered as multiplication. 

 

 

For a natural number k we define the function ek as follows: 

 

                                                     









.if,1

if,0
)(

kn

kn
nek  

 

Thus  ek (n) =  k ,n  (the Kronecker delta). 

 

The system R S
B
 = < C

N
, + , *S

B
  >  is a  ring like structure which is neither  

commutative nor associative in general. We now discuss some properties of the SB-product. 
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Theorem 2.1. R S
B
 is commutative if and only if for every n,  

                                             (u, v) Bn       (v, u) Bn .  

 

Proof.   Follows from the definition of SB –product.                                                       □ 

 

 

Theorem 2.2. R S
B
 is associative if and only if for fixed n, d1,d2,d3  the following  equality 

holds. 

 
           S (< r, d1 >) S  (<d2, d3 >)   =    S  (<d2, w >) S (<d3, d1 >) .  
              r                                                               w 
            (r, d1 )  Bn                                               (d2,w )  Bn 
            (d2, d3 ) Br                                               (d3,d1 )  Bw      

 

Proof.   For every arithmetic functions f, g , h we have 

 
                   [(f *S

B
 g) *S

B
 h](n)    =     f(t)g(u)h(x)  S ( < r, x >) S ( < t, u> ). 

                                                                      x, t ,u  N           r 
                                                                                                 (r, x ) Bn  , (t ,u) Br    
 

On the other hand 

 
              [ f *S

B
 (g  *S

B
 h)](n) =     f(t)g(u)h(x)  S (< t, w>) S (< u, x>).   

                                                               x, t, u  N           w 
                                                                          (t, w ) Bn , (u ,x) Bw 

 

By the assumption in both expressions the inner sums are equal. Therefore the SB   - product is 

associative. 

 

  Conversely suppose that the SB   -product is associative and fix n, d1, d2, d3  N.  From the 

first part of the proof we get  

 
                             [(e d

2
*S

B
 e d

3
) *S

B
ed

1
](n)    = S (< r, d1 >) S (< d2, d3>).   

                                                                                        r 
                                                                                        (r, d1) Bn , (d2,d3) Br 

 
Similarly 

 
                       [e d

2
*S

B
 (e d

3
  *S

B
 e d

1
)](n)  =  S (< d2, w >) S (< d3, d1>).   

                                                                                  w 
                                                                                 (d2,w) Bn , (d3,d1) Bw 

                                   
 Therefore the sums obtained are equal and the result follows.                                        □  

 

Theorem 2.3. A function e is a right identity in the system RS
B

 if and only if for every k and n we 

have  
 
                                          S(< k , v>) e (v)  = ek ( n). 
                                       (k, v) Bn   
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 Proof.    For every k and n we have 

 
                            ek (n)  =  (ek  *S

B
 e)(n) =  S (< u, v>) ek (u)e(v)    =  S (< k, v>) e(v) 

                                                                                                                           u, v                                                v 

                                                                               (u, v) Bn                                                  (k, v) Bn 

 
  Conversely suppose for every f   and  n we have   
 
                                          (f *S

B 
e)(n)  =  S (< u, v>) f (u) e(v) 

                                                                            (u ,v) Bn 
                         
                                                            =  f(u)   S (< u, v>) e(v) 
                                                                            u           (u, v) Bn 

                                                           =  f(u) eu(n),  
                                                                           u  

                                                           =  f(n).                                                                      □  

A similar condition characterizes left identities. Hence we get 

Theorem  2.4. A function e is an identity in the system R S
B
   if and only if for every k and n we 

have  

                                e (v) S (< k, v>)  = ek ( n) =   e (u) S(< u, k>) .  
                                      v                                                          u 
                                    (k, v) Bn                                                                    (u, k) Bn                                                     

Corollary  2.5.  If the system RS
B

  has an identity e, then for every n there exist u and v such that 

(u, n) Bn  ,  (n, v) Bn , gcd(u, n) S  and  gcd(n, v) S. 

Hence   B1 = {(1,1)} , S(<1, 1>) = 1 and e(1) = 1/S (<1,1>) = 1. 

Corollary  2.6. The  function  e1 is the identity of the system R S
B
 if  and  only if  for every  k ( >1)  

and   n  we  have: 

       ( k,1) Bn     and  S(< k, 1 >) =  1   k =n  and  S(< k, 1 >) = S(< 1, k>)     

          (1, k ) Bn     and   S(< 1, k>) = 1. 

Theorem 2.7 (i).  If R S
B
 is commutative, associative, has a unique identity e and  f  R S

B
   

satisfies        

                                            S(< u, n> ) f(u)   0 , for every n,                                      (1) 
                                                    (u, n) Bn      

then f has a right  inverse. Such an inverse g can be defined inductively by the formulas: 

              g(1) = [ f(1) S  (< 1,1 >) ]
-1

 ,                                                                             (2) 
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             g(n) =  [ e(n) –  g(v)  f(u) S  (< u ,v>)] [(  f(u) ) S  (< u ,n >)]
-1

,   for   n >1. 
                                              v             u                                        u 
                                              v<n      (u, v) Bn                            (u, n) Bn                                              

(ii) Moreover if  f R S
B

 has a right inverse, then (1) holds. 

Proof. (i)  From (1) for n=1 and Corollary 2.5 it follows that S (<1 ,1>) f( 1 )    0. Therefore the 

formulas (2) define a function g. The verification of the formula 

                                                   
( f *S

B
 g)(n ) =  e( n),   for every  n,  

is straightforward. 

            (ii) Let g be a right inverse of f  i.e  let   f *S
B
 g  = e.  From the associativity of the   

system R S
B

   it follows that  

                           f *S
B
 (g*S 

B 
en  ) = (f *S

B
 g) *S 

B 
en    =  e *S

B
 en

  
 = en, for every n.   

Evidently for v< n, we have    

 

                                               (g *S 
B 

en  )(v) = 0.  

 
Therefore  

 
                                  1 = en(n)  =   f (u) (g*S 

B 
en)(v) S  (< u ,v>)  

                                                    (u, v) Bn   

                                     = (g*S 
B 

en)(n)  f(u) S  (< u ,n>), 

                                                                       (u ,n) Bn  

         
consequently (1) holds.                                                                                                       □ 

Similar results can be proved for left inverses. Hence we get the following theorem. 

 

Theorem 2.8 (i). If  R S
B

 is commutative, associative, has a unique identity e and  f  R S
B

   

satisfies        
 

                               S ( <u, n> ) f (u)    0     S ( < n, v>) f(v),  for every n,             (3)                                                                
                                     u                                                   v 
                                   (u, n) Bn                                                           (n, v) Bn     

then f is invertible and its left  inverse  g is given by the formulas (2), and the right  inverses by 

similar ones. 

 

(ii) Moreover if  f RS
B 

is invertible, then (3) holds.  

 

Corollary 2.9. If R S
B

 has an identity and f  RS
B  

satisfies f (n) >0, for every n , then  f  is 

invertible. 
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Proof. From Corollary 2.5 it follows that, for every n, the set Bn is non-empty. Consequently the 

condition (3) is satisfied.                                                                                                      □ 

 

Theorem 2.10. If the system RS
B  

is associative and has an identity e, then the following 

conditions are equivalent: 

(i)  For every n, ( (t, n)  Bn , gcd(t, n) S if and only if  t = 1, S (< t, n>) = S(< 1,n >)  = 1)        

 
                                                                         and  

                         

                       ( (n, t)  Bn , gcd(n, t) S  if and only if  t=1, S (< n, t>) = S(< n, 1>) = 1).  

 

(ii) Every f R  S
B

 satisfying  f (1)  0 is invertible. 

        

If moreover the system  R S
B
 is commutative, then the above conditions are equivalent to. 

  

(iii)  R  S
B
  is a local ring. 

 

Proof . ( i )  (ii)  From the assumption we conclude  that  

 

                             S (< u, n>) f(u)  = S  (< 1, n>) f (1)=f (1) 0  
                                (u, n) Bn            

and 

 

                            S (< n, v>) f(v)  = S (< n, 1>) f (1)= f (1)  0. 
                               (n, v) Bn      

 
Therefore from Theorem 2.8 it follows that f  is invertible. 
 

 (ii) (i)  Since e1 is invertible, from (3) with f=e1  we get  (1,n),(n,1) Bn,  

 

                                  S(<1, n>) = S(< n, 1>) = 1. 

For t>1 , (e1 – et  )(1)= e1 (1) – et  (1) =1,      hence e1  - et   is invertible. 

Moreover             

   


 





otherwise.,1

)( gcdand),(if,0
,)(

),(

1

St,nBnt
nuuee

n
S

n
Bnu

u

t   

 

Therefore by Theorem 2.8 (ii) it follows that (t, n)  Bn  or  gcd (t, n)  S. Analogously we  get 

(n ,t)  Bn  or  gcd(n ,t)  S.  

 

(ii) (iii)   The set I of elements f R S
B
 satisfying f(1)=0 is an ideal of  R  S

B
 . It is the unique 

maximal ideal since every f I is invertible. Hence R  S
B
 is a local ring. 

Galaxy
Text Box
28



 7 

 

(iii) (ii)  Suppose that  f (1)  ≠   0. Since  g = f(1)e – f  satisfies g(1)=0, the element g is not 

invertible. In a local ring the sum of invertible and not invertible elements is invertible. 

Consequently the element f = f (1)e + ( f –  f(1).e)   is invertible.                      □ 

 

Theorem  2.11.  If  for every  n ,{(u, v): uv=n}  Bn   {(u, v) : uv | n} and gcd ( u, v ) S for 

every (u, v)  Bn  i.e   S( < u, v> )=1, for every (u, v)  Bn, then in RS
B
 there are no zero 

divisors. 

 

Proof. Let  f, g  RS
B
, f  0, g  0.Then there exist u, v such that f( u) 0, and f( k ) = 0, for k<u, 

g( v)0  and g( l )=0,  for  l < v. Then for n = uv  we get , 

  
                   ( f  *S

B   
g)(n)= S (< k, l>)f(k)g(l) + S (<k, l>)f(k)g(l) 

                                                 k, l                                      k, l 
                                            kl=n                                    k l | n,  k l < n 
                                                                                           (k, l) Bn   

                                                                                          

                                       = f(u) g(v)   0, 

 
since only the summand corresponding to k = u, l = v is different from zero. Therefore  

f *S
B 

g  0 .                                                                                                  .                      □ 

 

Theorem 2.12. If there exist u, v such that (u ,v)  Bn , for every n, then  eu  *S
B   

ev = 0 

Proof.   We have  

                                    (eu *S
B   

ev)(n) = S (< k ,l >) eu(k) ev(l) = 0, 

                                                             (k, l)   Bn    

since (u ,v)  Bn .                                                                                                               □ 

 

Theorem 2.13. If  for  a  fixed u  1 and every n divisible by u  we  have  (u, n) Bn     and  

 

S (< u, n>) = 1,  then eu   is a left zero divisor in the system R S
B
 . 

 

Proof.  We are looking for a function f  0 satisfying eu *S
B   

f = 0. For every n, we have,  

 












 






.|if,),()()(

|if,0

),()()(*

),(),(

nuvuvfnf

nu

vuvfnfse

nn
Bvu

nv

S

Bvu
v

SBu
  

 
We define f  inductively: 

 

Let  f ( n )   =   1 if   nu |  and    f ( n )   = – [  f(v) S(<u, v>) ] ,  if u | n.  Then  we  get                                                                                            

                                                                                  v<n 
                                                                   (u, v) Bn  

 eu*S
B 

f  =  0.   

                                                                                                                    □ 
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3.    Completely Multiplicative B-product 

 
We say that a B-product is completely multiplicative if for every pair (m ,n) of natural 

numbers we have 

 

                                 Bmn ={(r1r2 ,s1s2)  : (r1,s1) Bm , (r2,s2) Bn }. 

 
This definition can also be formulated as follows. For every pair (m ,n)  of natural numbers we 

have  

 

                            (r1r2 ,s1s2)  Bmn  if and only if (r1,s1) Bm , (r2,s2) Bn                        (4) 

 
[Note:  r1, s1   are divisors of m and r2, s2  are divisors of n respectively.] 

 

Let us recall that an arithmetical function f  is completely multiplicative if f ( n) ≠ 0 for at 

least one integer n and if f (mn) = f(m) f(n) for every n. We now discuss some property of 

completely multiplicative B-product. More precisely the following theorem holds. 

 
Theorem  3.1. The B-product of completely multiplicative functions is a completely multiplicative 

function if the B-product is completely multiplicative. 

 

Proof.  Let f , g be completely multiplicative functions and let (m, n) be a pair of natural numbers. 

Then, 

 

        (f *B g)(mn) =  f(r)g(s) 
                              (r, s)  Bmn    

                           

                           =  f(r1r2)g(s1 s2)  [where r= r1r2  , s= s1 s2 and r1|m, s1|m , r2|n,s2|n ] 

                                    (r1r2,s1s2)  Bmn   

   

 =          f(r1)f(r2) g(s1 )g(s2) [since f, g and the B-product are completely multiplicative]                   
(r1

 
,s1)  Bm (r2

 
,
 
s2) Bn   

 

=  f(r1) g(s1 )    f(r2)  g(s2) = ( f *B  g )(m) ( f *B  g )(n). 
   (r1

 
,s1)  Bm     (r2

 
,
 
s2) Bn   

 
Hence follows the theorem.                                                                                                    □ 

 

4.  Identities   

 

For an arbitrary S  N , let S   be the Möbius function of S  defined by  

 

                                             S (d)   =ρS (n), n N,                                                        (5) 
                                                   d|n      

 
see Cohen[7], Tóth [16].  Therefore ,by Möbius inversion formula 
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                                            S (n) =  ρS(d)  (n/d) ,n N,                                              (6) 
                                                                   d|n      

 

where    = {1}   is the ordinary Möbius function. 

.
Theorem  4.1. If  S  N and f and g are completely multiplicative functions and  also  the B-

product  is completely multiplicative,  then,  for every n N, 

 
(i)                          ( f * S

B   
g)(n) =S (j) f(j) g(j) (f *B  g ) (n/j), 

                                                               (j, j) Bj  

where *B    is the B-product of Bhattacharjee [2]. 

 
(ii)                               ( f * S

B   
g )(n) =    ρS (a) f(a) g(a)  f(i) g(j)    

                                                              a S      

                                                                                                                  (a, a) Ba  ,               (i, j) Bn/a,  gcd (i, j)=1 

                                 

                             

                                                          =   ρS (a)f(a)g(a)(f X g)(n/a),  

 

if Bn/a  consists of all  pairs of divisors of n/a  and X  ≡ *{1 } is the unitary  convolution. 

 

Proof. (i) Using identity (5) we have, for every nN,   

 
                                         (f * S

B   
g)(n)  =  ρS (<u, v>) f(u)g(v)  

                                                                             (u, v) Bn     
                       

                                                              =           [S (j)] f(u) g(v) 
                                                                           (u, v) Bn      j|gcd(u ,v), gcd(u ,v) S 

 

Hence with u=ja, v= jb 

 
( f * S

B  
g)(n) =            [S (j)] f(ja) g(jb)     

                          (ja, jb) Bn     j|gcd (ja, jb) 
    

                     =           S (j) f(j) f(a)g(j)g(b) [ since f and g are completely multiplicative] 

                    (ja, jb)Bn     j|gcd(ja, jb) 

                       

                   = S (j))f(j)g(j) f(a) g(b) [since the B- product is completely multiplicative]   
                          (j, j) Bj                    (a, b) Bn/j 

 

                    = S (j)f(j) g(j) (f *B g )(n/j).                      
                          (j, j) Bj                    

(ii) Furthermore we have, 

 

                 ( f * S
B   

g)(n) =  ρS (<u, v>) f(u) g(v) 

                                             (u, v) Bn       
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                                                   =    ρS (a)  f(u)g(v) 
                                              a S            (u, v) Bn  

                                                             gcd(u, v) = a  

 

                        
                                      =  ρS (a)  f(u)g(v). 
                                          a            (u, v) Bn   
                                                              gcd(u/a, v/a)=1 

 
If  u=ai, v=aj, we get 

    
  ( f * S

B   
g)(n)  =     ρS (a)         f(a) f(i) g(a)g(j)   

                          a S  (a, a) Ba    (i, j) Bn/a    
                                                          gcd(i, j)=1 
                                                             
                          [ since f, g and the B-product are completely  multiplicative ]                    

 
                       =     ρS (a) f(a) g(a)   f(i) g(j)    
                                 a S                                          (i, j) Bn/a  

                                                  (a, a) Ba                              gcd (i, j)=1 
 

                       =    ρS (a) f(a) g(a) (f X g)(n/a),  

 

if ij = n/a i.e if Bn/a  is the set of all pairs of divisors of n/a. Hence we have the theorem.    □ 

 

 

5.  Example  
 

We conclude our discussion by considering an example of SB - product and investigate 

whether the corresponding SB - product is commutative, associative, has an identity, has inverses 

as well as zero divisors. 

 

Example 5.1.  Let  Bn  ={(1,1),(1,n),(n,1)}, S={1}. 

 

Solution.  

 
(i) Commutativity: Follows clearly from  Theorem 2.1. 

 

(ii) Associativity: For associativity we have, 






















 otherwise.,0

}3,2,1{},,{,1,,1or

1for1

1for2

)3,2()1,(
321

321

),(
),(

32

1

kjiddndn

dddn

nddd

ddSdrS
kji

Bdd
Bdr

r

r

n



 

 

Since the result does not depend on the ordering of d1,d2,d3 we obtain the associativity from 

Theorem 2.2. 
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(iii) Existence of identity: By Corollary 2.6, we have 

 

.)(

otherwise,0

,1
)1,()(),(

),(

1

ne

nk
kvevk

k

S

Bvk
v

S

n





 




 ifonly  and if


 

 

Hence e1 is a right identity of R S
B
  and  similarly e1 is a left identity of R S

B
 . Therefore e1 is the 

identity of R S
B
 . 

 
(iv) Existence of inverse:   We have 

 












.1if),1(

1if),1(
)(),(

),(

nf

nf
ufnu

nBnu
u

S  

 

 

Therefore from Theorem 2.7 (i)  it follows that  f R S
B
 is invertible if and only if f(1)  0, for 

n≥1. 

 
(v) Existence of zero divisors: 

 

Here f * S
B   

g =0 if and only if f = 0 or g= 0 or f(1)= g(1)=0 

 
Proof.  We have 

(f * S
B   

g)(1)  = S (<1,1>)f(1)g(1) = f(1)g(1), 

(f * S
B   

g)(n)  =  S(<1,1>)f(1)g(1)  + S (<1,n>)f(1)g(n) + S (<n,1>) f(n)g(1)   for  n>1 

                     = f(1)g(1) + f(1)g(n) + f(n)g(1). 

    Clear. 

    Assume f * S
B   

g =0 , f ≠ 0, g ≠ 0 and  f(1) ≠0(say). Hence g(1)=0, g(n)=0 for  n >1,  a 

contradiction. Thus f  R S
B
 is a zero divisor if and only if f (1) ≠0. 
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