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Abstract

In this paper, we establish the existence and uniqueness of solution for a
class of boundary value problems for implicit fractional differential equations
with Caputo fractional derivative. The arguments are based upon the Banach
contraction principle, Schauder’s fixed point theorem and the nonlinear alterna-
tive of Leray-Schauder type. As applications, two examples are included to show
the applicability of our results.
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1 Introduction

Fractional order differential equations are generalizations of classical integer order dif-
ferential equations. Fractional differential equations can describe many phenomena
in various fields of applied sciences and engineering such as acoustic, control, signal
processing, porous media, electrochemistry, viscoelasticity, rheology, polymer physics,
proteins, electromagnetics, optics, medicine, economics, astrophysics, chemical engi-
neering, chaotic dynamics, statistical physics, thermodynamics, biosciences, bioengi-
neering, etc. See for example [1, 2, 4, 5, 8, 10, 11, 12, 14, 15], and references therein.

Recently, considerable attention has been given to the existence of solutions of
boundary value problem and boundary conditions for implicit fractional differential
equations and integral equations with Caputo fractional derivative. See for example
[3, 6, 7, 13, 16], and references therein.
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Motivated by the above cited works, the purpose of this paper, is to establish
existence and uniqueness results to the following implicit fractional-order differential
equation:

cDαy(t) = f(t, y(t),cDαy(t)), for each, t ∈ J = [0, T ], T > 0, 1 < α ≤ 2, (1)

y(0) = y0, y(T ) = y1, (2)

where cDα is the Caputo fractional derivative, f : J × R× R→ R is a given function
and y0, y1 ∈ R.

In this paper we present three results for the problem (1) − (2). The first one is
based on the Banach contraction principle, the second one on Schauder’s fixed point
theorem, and the last one on the nonlinear alternative of Leray-Schauder type. Finally,
we present two illustrative examples.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are
used throughout this paper. By C(J,R) we denote the Banach space of all continuous
functions from J into R with the norm

‖y‖∞ = sup{|y(t)| : t ∈ J}.

Definition 2.1 ([11, 14]). The fractional (arbitrary) order integral of the function
h ∈ L1([0, T ],R+) of order α ∈ R+ is defined by

Iαh(t) =
1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds,

where Γ is the Euler gamma function defined by Γ(α) =

∫ ∞
0

tα−1e−tdt, α > 0.

Definition 2.2 ([11]). For a function h given on the interval [0, T ], the Caputo
fractional-order derivative of order α of h, is defined by

(cDαh)(t) =
1

Γ(n− α)

∫ t

0

(t− s)n−α−1h(n)(s)ds,

where n = [α] + 1.

Lemma 2.3 ([11]) Let α ≥ 0 and n = [α] + 1. Then

Iα(cDαf(t)) = f(t)−
n−1∑
k=0

fk(0)

k!
tk.
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We need the following auxiliary lemmas.

Lemma 2.4 ([16]) Let α > 0. Then the differential equation

cDαk(t) = 0

has solutions k(t) = c0 + c1t + c2t
2 + · · · + cn−1t

n−1, ci ∈ R, i = 0, 1, 2, . . . , n − 1,
n = [α] + 1.

Lemma 2.5 ([16]) Let α > 0. Then

IαcDαk(t) = k(t) + c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1

for some ci ∈ R, i = 0, 1, 2, . . . , n− 1, n = [α] + 1.

Theorem 2.6 ([9]) (Banach’s fixed point theorem). Let C be a non-empty closed
subset of a Banach space X. Then any contraction mapping T of C into itself has a
unique fixed point.

Theorem 2.7 ([9]) (Schauder’s fixed point theorem). Let X be a Banach space. C be
a closed, convex and nonempty subset of X. Let N : C → C be a continuous mapping
such that N(C) is a relatively compact subset of X. Then N has at least one fixed
point in C.

Theorem 2.8 ([9]) ([Nonlinear Alternative of Leray-Schauder type). Let X be a Ba-
nach space with C ⊂ X closed and convex. Assume U is a relatively open subset of C
with 0 ∈ U and N : U → C is a compact map. Then either,

(i) N has a fixed point in U ; or

(ii) there is a point u ∈ ∂U and λ ∈ (0, 1) with u = λN(u).

3 Existence of Solutions

Let us defining what we mean by a solution of problem (1)-(2).

Definition 3.1 A function u ∈ C1(J,R) is said to be a solution of the problem (1)−(2)
is u satisfied equation (1) on J and conditions (2).

For the existence of solutions for the problem (1)− (2), we need the following auxiliary
lemmas:
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Lemma 3.2 Let 1 < α ≤ 2 and g : J → R be continuous. A function y is a solution
of the fractional boundary value problem

cDαy(t) = f(t, y(t),cDαy(t)), for each, t ∈ J, 1 < α ≤ 2,

y(0) = y0, y(T ) = y1,

if and only if, y is a solution of the fractional integral equation

y(t) = l(t) +

∫ T

0

G(t, s)f

(
s, l(s) +

∫ T

0

G(t, τ)g(τ)dτ, g(s)

)
ds, (3)

where

l(t) = (1− t

T
)y0 +

t

T
y1 = y0 +

(y1 − y0)

T
t, (4)

cDαy(t) = g(t)

and

G(t, s) =
1

Γ(α)

{ (t− s)α−1 − t
T

(T − s)α−1 if 0 ≤ s ≤ t
− t
T

(T − s)α−1 if t ≤ s ≤ T.

}
(5)

Proof: By Lemma 2.5 we reduce (1)− (2) to the equation

y(t) = Iαg(t) + c0 + c1t =
1

Γ(α)

∫ t

0

(t− s)α−1g(s)ds+ c0 + c1t

for some constants c0, and c1 ∈ R. Conditions (2) give

c0 = y0 and c1 =
1

T
yT −

1

T
y0 −

1

TΓ(α)

∫ T

0

(T − s)α−1g(s)ds.

Then the solution of (1)− (2) is given by

y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1g(s)ds− t

TΓ(α)

∫ T

0

(T − s)α−1g(s)ds

+ (1− t

T
)y0 +

t

T
y1

=
1

Γ(α)

[∫ t

0

[(t− s)α−1 − t

T
(T − s)α−1]g(s)ds

− t

T

∫ T

t

(T − s)α−1g(s)ds
]

+ (1− t

T
)y0 +

t

T
y1.

Hence we get (3). Inversely, if y satisfies (3), then equations (1) and (2) hold.
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From the expression of G(t, s), it is obvious that G(t, s) is continuous on [0, T ] ×
[0, T ]. Denote by

G∗ := sup{|G(t, s)|, (t, s) ∈ J × J}.

We are now in a position to state and prove our existence result for the problem
(1)− (2) based on Banach’s fixed point.

Theorem 3.3 Assume

(H1) The function f : J × R× R→ R is continuous.

(H2) There exist constants K > 0 and 0 < L < 1 such that

|f(t, u, v)− f(t, ū, v̄)| ≤ K|u− ū|+ L|v − v̄|

for any u, v, ū, v̄ ∈ R and t ∈ J .

If
KTG∗

1− L
< 1, (6)

then there exists a unique solution for the boundary value problem (1)− (2).

Proof. The proof will be given in several steps. Transform the problem (1) − (2)
into a fixed point problem. Define the operator N : C(J,R)→ C(J,R) by:

N(y)(t) = l(t) +

∫ T

0

G(t, s)k(s)ds, (7)

where k ∈ C(J) satisfies the implicit functional equation

k(t) = f(t, y(t), k(t)),

l and G are the functions defined by (4) and (5) respectively.
Clearly, the fixed points of operator N are solutions of problem (1) − (2). Let

u,w ∈ C(J,R). Then for t ∈ J , we have

(Nu)(t)− (Nw)(t) =

∫ T

0

G(t, s)
(
g(s)− h(s)

)
ds,

where g, h ∈ C(J,R) be such that

g(t) = f(t, u(t), g(t)),

and

h(t) = f(t, w(t), h(t)).
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Then, for t ∈ J

|(Nu)(t)− (Nw)(t)| ≤
∫ T

0

|G(t, s)||g(s)− h(s)|ds. (8)

By (H2) we have

|g(t)− h(t)| = |f(t, u(t), g(t))− f(t, w(t), h(t))|
≤ K|u(t)− w(t)|+ L|g(t)− h(t)|.

Thus

|g(t)− h(t)| ≤ K

1− L
|u(t)− w(t)|.

By (8) we have

|(Nu)(t)− (Nw)(t)| ≤ K

(1− L)

∫ T

0

|G(t, s)||u(s)− w(s)|ds

≤ KTG∗

1− L
‖u− w‖∞.

Then

‖Nu−Nw‖∞ ≤
KTG∗

1− L
‖u− w‖∞.

By (6), the operator N is a contraction. Hence, by Banach’s contraction principle, N
has a unique fixed point which is a unique solution of the problem (1)− (2).

Our next existence result is based on Schauder’s fixed point theorem.

Theorem 3.4 Assume (H1),(H2) and the following hypothesis holds.

(H3) There exist p, q, r ∈ C(J,R+) with r∗ = sup
t∈J

r(t) < 1 such that

|f(t, u, w)| ≤ p(t) + q(t)|u|+ r(t)|w| for t ∈ J and u,w ∈ R.

If
q∗TG∗

1− r∗
< 1, (9)

where q∗ = sup
t∈J

q(t), then the boundary value problem (1)−(2) has at least one solution.

Proof. Let the operator N defined in (7). We shall show that N satisfies the assump-
tion of Schauder’s fixed point theorem. The proof will be given in several steps.

Claim 1: N is continuous.
Let {un} be a sequence such that un → u in C(J,R). Then for each t ∈ J
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|N(un)(t)−N(u)(t)| ≤
∫ T

0

|G(t, s)||gn(s)− g(s)|ds, (10)

where gn, g ∈ C(J,R) such that

gn(t) = f(t, un(t), gn(t)),

and
g(t) = f(t, u(t), g(t)).

By (H2), we have

|gn(t)− g(t)| = |f(t, un(t), gn(t))− f(t, u(t), g(t))|
≤ K|un(t)− u(t)|+ L|gn(t)− g(t)|.

Then

|gn(t)− g(t)| ≤ K

1− L
|un(t)− u(t)|.

Since un → u, then we get gn(t)→ g(t) as n→∞ for each t ∈ J. And let η > 0 be
such that, for each t ∈ J , we have |gn(t)| ≤ η and |g(t)| ≤ η. Then, we have

|G(t, s)||gn(s)− g(s)| ≤ |G(t, s)|[|gn(s)|+ |g(s)|]
≤ 2η|G(t, s)|.

For each t ∈ J , the function s → 2η|G(t, s)| is integrable on J . Then the Lebesgue
Dominated Convergence Theorem and (10) imply that

|N(un)(t)−N(u)(t)| → 0 as n→∞,

and hence
‖N(un)−N(u)‖∞ → 0 as n→∞.

Consequently, N is continuous.

Let

R ≥ (2|y0|+ |y1|)(1− r∗) +G∗Tp∗

M
,

where M := 1− r∗ −G∗Tq∗ and p∗ = sup
t∈J

p(t). Define

DR = {u ∈ C(J,R) : ‖u‖∞ ≤ R}.

It is clear that DR is a bounded, closed and convex subset of C(J).

Claim 2: N(DR) ⊂ DR.
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Let u ∈ DR we show that Nu ∈ DR. For each t ∈ J , we have

|Nu(t)| ≤ |l(t)|+
∫ T

0

|G(t, s)||g(s)|ds

≤ |y0|+ |y1 − y0|+G∗
∫ T

0

|g(s)|ds

≤ 2|y0|+ |y1|+G∗
∫ T

0

|g(s)|ds. (11)

where g(t) = f(t, u(t), g(t)).
By (H3), for each t ∈ J, we have

|g(t)| = |f(t, u(t), g(t))|
≤ p(t) + q(t)|u(t)|+ r(t)|g(t)|
≤ p(t) + q(t)R + r(t)|g(t)|
≤ p∗ + q∗R + r∗|g(t)|.

Then

|g(t)| ≤ p∗ + q∗R

1− r∗
.

Thus (11) implies that, for each t ∈ J,

|Nu(t)| ≤ 2|y0|+ |y1|+
p∗ + q∗R

1− r∗
G∗T

≤ R.

Then N(DR) ⊂ DR.

Claim 3: N(DR) is relatively compact.

Let t1, t2 ∈ J, t1 < t2, and let u ∈ DR. Then

|N(u)(t2)−N(u)(t1)| =

∣∣∣∣l(t2)− l(t1) +

∫ T

0

[G(t2, s)−G(t1, s)]g(s)ds

∣∣∣∣
=

∣∣∣∣(y1 − y0)

T
(t2 − t1) +

∫ T

0

[G(t2, s)−G(t1, s)]g(s)ds

∣∣∣∣
≤

∣∣∣∣(y1 − y0)

T
(t2 − t1)

∣∣∣∣+
p∗ + q∗R

1− r∗

∣∣∣∣∫ T

0

[G(t2, s)−G(t1, s)]ds

∣∣∣∣ .
As t1 → t2, the right-hand side of the above inequality tends to zero.

As a consequence of Claims 1 to 3 together with the Arzelá-Ascoli theorem, we
conclude that N : C(J,R)→ C(J,R) is continuous and compact. As a consequence of
Schauder’s fixed point Theorem, we deduce that N has a fixed point which is a solution
of the problem (1)− (2).

Our next existence result is based on nonlinear alternative of Leray-Schauder type.
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Theorem 3.5 Assume (H1)-(H3) and (9) hold. Then the IVP (1) − (2) has at least
one solution.

Proof. Consider the operator N defined in (7). We shall show that N satisfies the
assumption of Leray-Schauder fixed point theorem. The proof will be given in several
claims.

Claim 1: Clearly N is continuous.

Claim 2: N maps bounded sets into bounded sets in C(J,R).

Indeed, it is enough to show that for any ρ > 0, there exist a positive constant `
such that for each u ∈ Bρ = {u ∈ C(J,R) : ‖u‖∞ ≤ ρ}, we have ‖N(u)‖∞ ≤ `.
For u ∈ Bρ, we have, for each t ∈ J ,

|Nu(t)| ≤ |l(t)|+
∫ T

0

|G(t, s)||g(s)|ds.

≤ |y0|+ |y1 − y0|+G∗
∫ T

0

|g(s)|ds.

Then

|Nu(t)| ≤ 2|y0|+ |y1|+G∗
∫ T

0

|g(t)|ds. (12)

By (H3), for each t ∈ J, we have

|g(t)| = |f(t, u(t), g(t))|
≤ p(t) + q(t)|u(t)|+ r(t)|g(t)|
≤ p(t) + q(t)ρ+ r(t)|g(t)|
≤ p∗ + q∗ρ+ r∗|g(t)|.

Then

|g(t)| ≤ p∗ + q∗ρ

1− r∗
:= M∗.

Thus (12) implies that

|Nu(t)| ≤ 2|y0|+ |y1|+G∗M∗T.

Thus

‖Nu‖∞ ≤ 2|y0|+ |y1|+G∗M∗T := l.

Claim 3: Clearly, N maps bounded sets into equicontinuous sets of C(J,R).
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We conclude that N : C(J,R) −→ C(J,R) is continuous and completely continuous.

Claim 4: A priori bounds.

We now show there exists an open set U ⊆ C(J,R) with u 6= λN(u), for λ ∈ (0, 1)
and u ∈ ∂U . Let u ∈ C(J,R) and u = λN(u) for some 0 < λ < 1. Thus for each t ∈ J ,
we have

u(t) = λl(t) + λ

∫ T

0

G(t, s)g(s)ds.

This implies by (H2) that, for each t ∈ J , we have

|u(t)| ≤ 2|y0|+ |y1|+
∫ T

0

|G(t, s)||g(s)|ds. (13)

And, by (H3), for each t ∈ J, we have

|g(t)| = |f(t, u(t), g(t))|
≤ p(t) + q(t)|u(t)|+ r(t)|g(t)|
≤ p∗ + q∗|u(t)|+ r∗|g(t)|.

Thus

|g(t)| ≤ 1

1− r∗
(p∗ + q∗|u(t)|).

Hence

|u(t)| ≤
(

2|y0|+ |y1|+
p∗TG∗

1− r∗

)
+

q∗G∗

1− r∗

∫ T

0

|u(s)|ds

≤
(

2|y0|+ |y1|+
p∗TG∗

1− r∗

)
+
q∗TG∗

1− r∗
||u||∞.

Then

||u||∞ ≤
(

2|y0|+ |y1|+
p∗TG∗

1− r∗

)
+
q∗TG∗

1− r∗
||u||∞.

Thus

||u||∞ ≤
M1

1− q∗TG∗

1− r∗
:= M,

where

M1 = 2|y0|+ |y1|+
p∗TG∗

1− r∗
.

Let
U = {u ∈ C(J,R) : ‖u‖∞ < M + 1}.
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By our choice of U , there is no u ∈ ∂U such that u = λN(u), for λ ∈ (0, 1). As a
consequence of Theorem 2.8, we deduce that N has a fixed point u in U which is a
solution to (1)− (2).

4 Examples

Example 1. Consider the following boundary value problem

cD
3
2y(t) =

1

3et+2(1 + |y(t)|+ |cD 3
2y(t)|)

, for each, t ∈ [0, 1], (14)

y(0) = 1, y(1) = 2. (15)

Set

f(t, u, v) =
1

3et+2(1 + |u|+ |v|)
, t ∈ [0, 1], u, v ∈ R.

Clearly, the function f is jointly continuous.
For any u, v, ū, v̄ ∈ R and t ∈ [0, 1]

|f(t, u, v)− f(t, ū, v̄)| ≤ 1

3e2
(|u− ū|+ |v − v̄|).

Hence condition (H2) is satisfied with K = 1
3e2

and L = 1
3e2

< 1.
From (5) the function G is given by

G(t, s) =
1

Γ(3
2
)

{ (t− s) 1
2 − t(1− s) 1

2 if 0 ≤ s ≤ t

−t(1− s) 1
2 if t ≤ s ≤ 1.

}
Clearly G∗ < 2

Γ( 3
2

)
. Thus condition

KTG∗

1− L
< 1,

is satisfied with T = 1 and α = 3
2
. It follows from Theorem 3.3 that the problem

(14)-(15) as a unique solution on J .
Example 2. Consider the following boundary value problem

cD
3
2y(t) =

(6 + |y(t)|+ |cD 3
2y(t)|)

10et+1(1 + |y(t)|+ |cD 3
2y(t)|)

, for each, t ∈ [0, 1], (16)

y(0) = 1, y(1) = 2. (17)

Set

f(t, u, v) =
6 + |u|+ |v|

10et+1(1 + |u|+ |v|)
, t ∈ [0, 1], u, v ∈ R.
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Clearly, the function f is jointly continuous.
For each u, v, ū, v̄ ∈ R and t ∈ [0, 1]

|f(t, u, v)− f(t, ū, v̄)| ≤ 1

2e
(|u− ū|+ |v − v̄|).

Hence condition (H2) is satisfied with K = L = 1
2e
.

Also, we have, for each u, v,∈ R and t ∈ [0, 1]

|f(t, u, v)| ≤ 1

10et+1
(6 + |u|+ |v|).

Thus condition (H3) is satisfied with p(t) = 3
5et+1 and q(t) = r(t) = 1

10et+1 . Clearly
p∗ = 3

5e
, q∗ = 1

10e
and r∗ = 1

10e
< 1.

From (5) the function G is given by

G(t, s) =
1

Γ(3
2
)

{ (t− s) 1
2 − t(1− s) 1

2 if 0 ≤ s ≤ t

−t(1− s) 1
2 if t ≤ s ≤ 1.

}
Clearly G∗ < 2

Γ( 3
2

)
. Thus condition

q∗TG∗

1− r∗
< 1,

is satisfied with T = 1 and α = 3
2
. It follows from Theorems 3.4 and 3.5 that the

problem (16)-(17) at least one solution on J .
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