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Abstract. The domination number is an important vulnerability parameter that has
become one of the most widely studied topics in graph theory. The bondage num-
ber is related to the domination number, and also the most often studied property
of vulnerability of communication networks. Recently, Dankelmann et al. have de-
fined the exponential domination number in [17]. We investigate a refinement that
involves the exponential bondage number of this parameter. Let G = (V (G), E(G)) be
a simple graph. The exponential bondage number, denoted by bexp(G), is defined by
bexp(G) = min{|Be| : Be ⊆ E(G), γe(G−Be) > γe(G)}, where γe(G) is the exponential
domination number of G. In this paper, the above mentioned new parameter is defined
and examined. Then upper bounds, lower bounds and exact formulas are obtained for
any graph G. Finally, the exact values have been determined for some well-known graph
families.
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1. Introduction

Graph theory has seen an explosive growth due to interaction with areas like computer science, opera-
tion research, etc. Especially, it has become one of the most powerful mathematical tools in the analysis
and study of the architecture of a network. A network is described as an undirected and unweighted
graph in which vertices represent the processing and edges represent the communication channel between
them [8, 9, 13].

It is known that communication systems are often exposed to failures and attacks. So vulnerability
of the network topology is a key aspect in the design of computer networks. The vulnerability value of
a communication network shows the resistance of the network after the disruption of some centers or
connection lines until a communication breakdown. In the literature, various measures have been defined
to measure the robustness of network and a variety of graph theoretic parameters have been used to derive
formulas to calculate network vulnerability. Graph vulnerability relates to the study of graph when some
of its elements (vertices or edges) are removed. The measures of graph vulnerability are usually invariants
that measure how a deletion of one or more network elements changes properties of the network. The best
known measure of reliability of a graph is its connectivity. The vertex (edge) connectivity is defined to
be the minimum number of vertices (edges) whose deletion results in a disconnected or trivial graph [8].
Then toughness [25], integrity [5], domination number [6, 19], bondage number [3, 4, 7, 10], reinforcement
number [12] etc. have been proposed for measuring the vulnerability of networks. Recently, some average
vulnerability parameters such as average lower independence number [2, 14, 24], average lower domination
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number [14, 23], average connectivity number [15], average lower bondage number [20] and average lower
reinforcement number [21] have been defined.

Let G = (V (G), E(G)) be a simple undirected graph of order n. We begin by recalling some standard
definitions that we need throughout this paper. For any vertex v ∈ V (G), the open neighborhood of v is
NG(v) = {u ∈ V (G)|uv ∈ E(G)} and closed neighborhood of v is NG[v] = NG(v)∪{v}. The degree of v in
G denoted by deg(v), is the size of its open neighborhood. A vertex v is said to be pendant if deg(v) = 1
[6, 19]. A vertex u is called support vertex if u is adjacent to a pendant vertex. The graph G is called
r-regular graph if deg(v) = r for every vertex v ∈ V (G). The complement G of a graph G has V (G) as its
vertex sets, but two vertex are adjacent in G if only if they are not adjacent in G. The distance d(u, v)
between two vertices u and v in G is the length of a shortest path between them. The diameter of G,
denoted by diam(G) is the largest distance between two vertices in V (G) [6, 19]. A cycle passing through
all the vertices of a graph is called a Hamiltonian cycle. A graph containing a Hamiltonian cycle is called
a Hamiltonian graph, and also if there exist a path P in the graph G such that V (P ) = V (G), then G
is called semihamiltonian [19]. A vertex-transitive graph is a graph such that every pair of vertices is
equivalent under some element of its automorphism group [26]. A set of pairwise independent edges of G
is called a matching in G, while a matching of maximum cardinality is a maximum matching in G [19].
A vertex cover of a graph G can also more simply be thought of as a set S of vertices of G such that
every edge of G has at least one of member of S as an endpoint. The vertex set of a graph is therefore
always a vertex cover. The smallest possible vertex cover for a given graph G is known as a minimum
vertex cover, and its size is called the vertex cover number, denoted by τ(G). An edge cover is a subset
of edges defined similarly to the vertex cover, namely a collection of graph edges such that the union of
edge endpoints corresponds to the entire vertex set of the graph. Therefore, only graphs with no isolated
points have an edge cover. An edge cover having the smallest possible number of edges for a given graph
is known as a edge cover number, denoted by τ ′(G) [18]. The smallest integer not less than x is denoted
by dxe. A set S ⊆ V (G) is a dominating set if every vertex in V (G)−S is adjacent to at least one vertex
in S. The minimum cardinality taken over all dominating sets of G is called the domination number of
G is denoted by γ(G) [6, 19].

There are different application of domination problems. For instance, dominating sets in graphs are
natural models for facility location problems in operations research [19] or domination number is the one
of the most important vulnerability parameter for networks [19, 23]. When investigating the domination
number of a given graph G, one may want to know the answer of the following question: How does
the domination number increases in a graph G? or How many edges need to be added to decrease the
domination number of the original graph? One of the vulnerability parameters known as bondage number
in a graph G answers the former question. The bondage number b(G) was introduced by Fink et al. [10]
and is defined as follows:

b(G) = min{|B| : B ⊆ E(G), γ(G−B) > γ(G)}.

We call such an edge set B that γ(G−B) > γ(G) the bondage set and the minimum one the minimum
bondage set. If E(G) = ∅, then we say that b(G) =∞.

The reinforcement number in a graph G answers the latter question. The reinforcement number r(G)
was introduced by Kok et al.[12] and is defined as follows:

r(G) = min{|R| : R ⊆ E(G), γ(G) > γ(G+R)}.

We call such an edge set R ⊆ E(G) a reinforcement set, if γ(G) > γ(G+R).
In 2009, Dankelmann introduced the concept of exponential domination[17]. This new parameter

is closely in relation with distance of each pair of vertices. The exponential domination number is
the theoretical vulnerability parameters for a network that is represented by a graph. An exponential

dominating set of graph G is subset S ⊆ V (G) such that
∑
v∈S(1/2)d(u,v)−1 ≥ 1,∀v ∈ V (G), where

d(u, v) is the length of a shortest path in 〈V (G)− (S −{u})〉 if such a path exist, and ∞ otherwise. The
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minimum exponential domination number, γe(G) is the smallest cardinality of an exponential dominating
set. We call such an edge set is a minimum exponential set or a γe-set.

Our aim in this paper is to define a new vulnerability parameter, so called exponential bondage
number. In Section 2, some well-known basic results are given for exponential domination number and
bondage number. In Section 3, we define a new parameter namely the exponential bondage number
denoted by bexp(G). In Section 4, we determine upper bounds, lower bounds and exact solutions of the
exponential bondage number for any graph G. Finally, the exponential bondage numbers of the popular
well-known graphs are computed in Section 5.

2. Basic Results

In this section some well-known basic results are given with regard to exponential domination number
and bondage number.

Theorem 2.1. [17] The exponential domination number of
(a) the path graph Pn of order n ≥ 2 is γe(Pn) = dn+1

4 e.

(b) the cycle graph Cn of order n ≥ 4 is γe(Cn) =

{
2 , if n = 4;
dn4 e , if n 6= 4.

Theorem 2.2. [17] For every graph G, γe(G) ≤ γ(G), and also γe(G) = 1 if and only if γ(G) = 1.

Theorem 2.3. [1] Let G be any connected graph with n vertices and ∃v ∈ V (G) such that deg(v) = n−1.
Then, γe(G) = 1

Theorem 2.4. [10] If G is a connected graph of order n ≥ 2, then b(G) ≤ n− γ(G) + 1.

Theorem 2.5. [10] The bondage number of

(a) the path graph Pn of order n ≥ 2 is b(Pn) =

{
2 , if n ≡ 1(mod 3);
1 , otherwise.

(b) the cycle graph Cn of order n ≥ 3 is b(Cn) =

{
3 , if n ≡ 1(mod 3);
2 , otherwise.

(c) the complete graph Kn of order n ≥ 2 is b(Kn) = dn2 e.
(d) the star graph Sn of order n ≥ 3 is b(Sn) = 1.

Theorem 2.6. [22] If G is a nonempty graph with a unique minimum dominating set, then b(G) = 1.

Theorem 2.7. [11] Let G be a vertex-transitive graph. Then, b(G) ≥ d n
2γ(G)e.

3. The Exponential Bondage Number

In this section, we introduce a new graph theoretical parameter: the exponential bondage number and
it is defined as:

bexp(G) = min{|Be| : Be ⊆ E(G), γe(G−Be) > γe(G)},
where γe(G) is the exponential domination number of the graph G. We call such an edge set Be that
γe(G−Be) > γe(G) the exponential bondage set and the minimum one the minimum exponential bondage
set.

If we think of a graph as a modeling of network, the exponential bondage number may be more sensitive
than other measures of vulnerability such as connectivity, domination number, exponential domination
number and bondage number for distinguish two graphs whose number the vertices and edges are the
same. For example, consider two graphs G1 and G2 in Figure1, where |V (G1)| = |V (G2)| = 7 and
|E(G1)| = |E(G2)| = 8. They have not only equal connectivity but also equal domination number,
exponential domination number and bondage number such as k(G1) = k(G2) = 1, γ(G1) = γ(G2) = 2,
γe(G1) = γe(G2) = 2 and b(G1) = b(G2) = 1. These values could be easily checked by readers. So, how
can we distinguish between the graphs G1 and G2?
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Figure 1. The graphs G1 and G2

When the exponential bondage numbers of these two graphs G1 and G2 are computed, bexp(G1) = 1
and bexp(G2) = 2 are obtained. The results could be checked by readers. Thus, the exponential bondage
number may be used for distinguish between these two graphs G1 and G2.

4. Upper Bounds, Lower Bounds and Exact Formulas

Theorem 4.1. If γ(G) = γe(G), then bexp(G) ≥ b(G).

Proof. Let Be be a minimum exponential bondage set of graph G. Then γ(G) = γe(G) ≤ γe(G−Be) ≤
γ(G−Be) by Theorem 2.2. Thus, we have bexp(G) ≥ b(G).
The proof is completed. �

Theorem 4.2. If G is a connected graph, then bexp(G) ≤ δ(G).

Proof. To exponentially dominate all the vertices as the minimum number, first of all the vertex u with
maximum degree should be taken to γe-set. That is, the vertex u belongs to a minimum exponential
dominating set. Let D be γe-set for G. We know that u ∈ D. Suppose that the graph G has a vertex v
with minimum degree, deg(v) = δ(G), that does not belong to D. Let Ev denote the set of edges incident
with v. The minimum exponential dominating set for G− Ev is D + {v}. Hence γe(G− Ev) > γe(G) is
obtained. As a result, we have bexp(G) ≤ |Ev| = deg(v) ≤ δ(G).
The proof is completed. �

Theorem 4.3. If G is a vertex-transitive graph and γ(G) = γe(G), then

bexp(G) ≥ 2d n

2γe(G)
e+ γe(G)− (n+ 1).

Proof. By Theorems 2.4 and 4.1, we have bexp(G) ≥ 2b(G) + γe(G)− (n+ 1). By using Theorem 2.7, it
is trivial that

bexp(G) ≥ 2d n

2γe(G)
e+ γe(G)− (n+ 1).

The proof is completed. �

Theorem 4.4. Let G be a connected graph of order n. If G includes only one pendant vertex, then
bexp(G) = 1.

Proof. Let v be the pendant vertex of G. The removal of an edge e which is incident to v from the graph
G leaves a graph G′ ∼= G − {e} consisting of two components. One of these is an isolated vertex and
the other is connected graph H with n − 1 vertices. That is, G′ = H ∪ {v}. Let D be γe-set for G.
Since the set D must include the support vertex u which is adjacent to the vertex v, it is easy to see
that γe(H) = γe(G). Hence the γe-set for G′ is D∪{v}. Consequently, since γe(G

′) > γe(G) is obtained,
the minimum exponential bondage set of G has an edge which is incident to vertex v. Thus, we have
bexp(G) = 1.
The proof is completed. �
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5. The Exponential Bondage Number of Some Well-Known Graphs

In this section we calculate the exponential bondage number of some well known graphs such as the
path graph Pn, the cycle graph Cn, the complete graph Kn, the star graph Sn and the wheel graph Wn.
Furthermore, we give some corollaries for any graph G.

Theorem 5.1. The exponential bondage number of the path graph Pn of order (n ≥ 2) is given by
bexp(Pn) = 1.

Proof. While we are calculating the exponential bondage number of the path graph Pn, we have four
cases according to the number of vertices of Pn.

Case 1. n ≡ 0(mod 4).
We know that γe(Pn) = dn+1

4 e by Theorem 2.1. The removal of an edge from Pn leaves a graph H
consisting of two paths Pn1 and Pn2 , where n1+n2 = n. Then, one of the following statements is satisfied.

• n1 ≡ 1(mod 4) and n2 ≡ 3(mod 4)
• n1 ≡ n2 ≡ 2(mod 4)
• n1 ≡ n2 ≡ 0(mod 4)

In the first case,
γe(H) = γe(Pn1

) + γe(Pn2
) = dn1+1

4 e+ dn2+1
4 e

= n1+3
4 + n2+1

4 = n+4
4 = dn+1

4 e = γe(Pn).

In the second case,
γe(H) = γe(Pn1

) + γe(Pn2
) = dn1+1

4 e+ dn2+1
4 e

= n1+2
4 + n2+2

4 = n+4
4 = dn+1

4 e = γe(Pn).

In the last case,
γe(H) = γe(Pn1

) + γe(Pn2
) = dn1+1

4 e+ dn2+1
4 e

= n1+4
4 + n2+4

4 = n+8
4 = n+4

4 + 1

= dn+1
4 e+ 1 = γe(Pn) + 1 > γe(Pn).

So, if the graph H is obtained by removing exactly one edge from Pn such that n1 ≡ n2 ≡ 0(mod 4),
then we get bexp(Pn) = 1.

Case 2. n ≡ 1(mod 4).
Let H be a graph obtained by the deletion of an edge of Pn. Then, we get either n1 ≡ 1(mod 4) and

n2 ≡ 0(mod 4), or n1 ≡ 2(mod 4) and n2 ≡ 3(mod 4).
In the former case,

γe(H) = γe(Pn1
) + γe(Pn2

) = dn1+1
4 e+ dn2+1

4 e

= n1+3
4 + n2+4

4 = n+7
4 = n+3

4 + 1

= dn+1
4 e+ 1 = γe(Pn) + 1 > γe(Pn).

In the latter case,
γe(H) = γe(Pn1

) + γe(Pn2
) = dn1+1

4 e+ dn2+1
4 e
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= n1+2
4 + n2+1

4 = n+3
4 = dn+1

4 e = γe(Pn).

If the graph H is obtained by removing one edge from Pn consists of an isolated vertex and a path
of order n− 1, then we get γe(H) > γe(Pn). Consequently, we have bexp(Pn) = 1.

Case 3. n ≡ 2(mod 4).
Let H be a graph obtained by removing an edge from Pn. Then, one of the following statements is

satisfied.

• n1 ≡ n2 ≡ 1(mod 4)
• n1 ≡ n2 ≡ 3(mod 4)
• n1 ≡ 2(mod 4) and n2 ≡ 0(mod 4)

In the first case,
γe(H) = γe(Pn1

) + γe(Pn2
) = dn1+1

4 e+ dn2+1
4 e

= n1+3
4 + n2+3

4 = n+6
4 = dn+2

4 e+ 1 = γe(Pn) + 1 > γe(Pn).

In the second case, it is easy to see that γe(H) = γe(Pn).
In the last case,

γe(H) = γe(Pn1
) + γe(Pn2

) = dn1+1
4 e+ dn2+1

4 e

= n1+2
4 + n2+4

4 = n+6
4 = n+2

4 + 1

= dn+1
4 e+ 1 = γe(Pn) + 1 > γe(Pn).

If an edge is removed from Pn such that either n1 ≡ n2 ≡ 1(mod 4) or, n1 ≡ 2(mod 4) and n2 ≡ 0(mod 4),
then γe(H) > γe(Pn). Hence, we get bexp(Pn) = 1.

Case 4. n ≡ 3(mod 4).
Removing an edge from Pn, we have either n1 ≡ 1(mod 4) and n2 ≡ 2(mod 4), or n1 ≡ 0(mod 4) and

n2 ≡ 3(mod 4).
In the former case,

γe(H) = γe(Pn1
) + γe(Pn2

) = dn1+1
4 e+ dn2+1

4 e

= n1+3
4 + n2+2

4 = n+5
4 = n+1

4 + 1

= dn+1
4 e+ 1 = γe(Pn) + 1 > γe(Pn).

In the latter case,
γe(H) = γe(Pn1

) + γe(Pn2
) = dn1+1

4 e+ dn2+1
4 e

= n1+4
4 + n2+1

4 = n+5
4 = dn+1

4 e+ 1

= dn+1
4 e+ 1 = γe(Pn) + 1 > γe(Pn).

By the above both cases, we have γe(H) > γe(Pn). Thus, bexp(Pn) = 1 is obtained.
By Cases 1, 2, 3 and 4, the exponential bondage number of the path graph of order n is bexp(Pn) = 1.
The proof is completed. �
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Theorem 5.2. The exponential bondage number of the cycle graph Cn of order (n ≥ 4) is given by

bexp(Cn) =

{
1 , if n ≡ 0(mod 4);
2 , otherwise.

Proof. We know that γe(Cn) = dn4 e for n 6= 4 by Theorem 2.1. We have four cases depending on n.

Case 1. n ≡ 0(mod 4).
The removal of one edge from the graph Cn leaves a graph H consisting of a path of order n. Thus,

γe(H) = γe(Pn)

= n+4
4 = n

4 + 1 = γe(Cn) + 1 > γe(Cn).

Since γe(H) > γe(Cn) is obtained, we get bexp(Cn) = 1.

Case 2. n ≡ 1(mod 4).
If the graph H is obtained by removing an edge from Cn, then the remaining graph is the path graph

with n vertices. Since γe(H) = γe(Pn) = n+3
4 = γe(Cn) for n > 4, we have bexp(Cn) ≥ 2.

If n ≡ 1(mod 4), the removal of two edges from Cn, leaves a graph H consisting of two paths Pn1
and

Pn2
, where n1 + n2 = n.

By using the Case 2 of the proof of Theorem 5.1, we obtain n1 ≡ 1(mod 4) and n2 ≡ 0(mod 4). Thus,

γe(H) = γe(Pn1
) + γe(Pn2

) = n1+3
4 + n2+4

4

= n+7
4 = n+3

4 + 1 = γe(Cn) + 1 > γe(Cn).

Since γe(H) > γe(Cn), we have bexp(Cn) = 2.

Case 3. n ≡ 2(mod 4).
This case is very similar to the Case 2. By using the Case 3 of the proof of Theorem 5.1, we obtain

directly either n1 ≡ n2 ≡ 1(mod 4) or, n1 ≡ 2(mod 4) and n2 ≡ 0(mod 4).
In the former case,

γe(H) = γe(Pn1) + γe(Pn2) = n1+3
4 + n2+3

4

= n+6
4 = n+2

4 + 1 = γe(Cn) + 1 > γe(Cn).

In the latter case,
γe(H) = γe(Pn1

) + γe(Pn2
) = n1+2

4 + n2+4
4

= n+6
4 = n+2

4 + 1 = γe(Cn) + 1 > γe(Cn).

Since γe(H) > γe(Cn), we have bexp(Cn) = 2.

Case 4. n ≡ 3(mod 4).
This case is also very similar to the Case 2. By using the Case 4 of the proof of Theorem 5.1, it is easy

to see that we have either n1 ≡ 1(mod 4) and n2 ≡ 2(mod 4) or, n1 ≡ 0(mod 4) and n2 ≡ 3(mod 4).
In the former case,
γe(H) = γe(Pn1

) + γe(Pn2
) = n1+3

4 + n2+2
4

= n+5
4 = n+1

4 + 1 = γe(Cn) + 1 > γe(Cn).
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In the latter case,
γe(H) = γe(Pn1) + γe(Pn2) = n1+4

4 + n2+1
4

= n+5
4 = n+1

4 + 1 = γe(Cn) + 1 > γe(Cn).

Since γe(H) > γe(Cn), we have bexp(Cn) = 2.

Consequently, By Cases 1, 2, 3 and 4, the proof is completed. �

From Theorem 5.2, we know that the exponential bondage number of n − cycle is bexp(Cn) = 1 if
n ≡ 0(mod4) and bexp(Cn) = 2 otherwise. So, we get following corollaries.

Corollary 5.3. If G is hamiltonian with n > 4 vertices and γe(G) = dn4 e, then bexp(G) ≥ 2 and in
addition bexp(G) ≥ 1 if n ≡ 0(mod4).

Corollary 5.4. If G is semihamiltonian with n > 4 vertices and γe(G) = dn4 e and 0 < n ≡ 0(mod4),
then bexp(G) ≥ 2.

Theorem 5.5. The exponential bondage number of the star graph Sn of order (n ≥ 3) is bexp(Sn) = 1.

Proof. We know that γe(Sn) = 1 by Theorem 2.2. The removal of an edge from the graph Sn, leaves a
graph H consisting of an isolated vertex and star graph order n− 1. Thus,

γe(H) = 1 + γe(Sn−1) = 2 > γe(Sn).

Since γe(H) > γe(Sn) is obtained, the exponential bondage number of the star graph is bexp(Sn) = 1.
The proof is completed. �

Theorem 5.6. The exponential bondage number of the complete graph of order n is bexp(Kn) = dn2 e.

Proof. Clearly, γe(Kn) = 1 by Theorem 2.2. If any Be-set F does not cover some vertex u, then {u} is
a γe-set of Kn − F , so γe(Kn − F ) = γe(Kn), a contradiction. Hence F must cover every vertex, which
implies |F | ≥ dn2 e. Now define a specific F as follows. If n is even, let F be a matching of size n

2 . If

n is odd, let F consists of a matching of size n−1
2 plus one vertex. So |F | = dn2 e. Let H = Kn − F .

Then γe(H) ≥ 2 since F covers every vertex. So, F is a Be-set. Consequently, the exponential bondage
number of complete graph is bexp(Kn) = dn2 e.
The proof is completed. �

As an immediate corollaries to Theorem 5.6, we have the following.

Corollary 5.7. If Kn is a complete graph of order n, then bexp(Kn) = τ ′(Kn).

Corollary 5.8. If G is a connected graph of order n, then bexp(G) ≤ dn2 e.

Theorem 5.9. The exponential bondage number of the wheel graph of order n is bexp(Wn) = 1.

Proof. Let c be the central vertex of Wn. Since deg(c) = n − 1, we have γe(Wn) = 1 by Theorem 2.2.
The removal of any edge which is incident to the vertex c in the graph Wn leaves a graph H. In the
graph H, clearly deg(c) = n− 2. Now we determine the exponential domination number of H. Let D be
a γe-set of the graph H. If D = {c}, then D exponentially dominates n− 1 vertices. Thus, there remains
only one vertex does not exponentially dominated by D. Clearly, this vertex also must be in D. Then,
we get γe(H) = 2.

Since γe(H) > γe(Wn), the exponential bondage number of the wheel graph is bexp(Wn) = 1.
The proof is completed. �
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6. Conclusion

In this study, a new graph theoretical parameter namely the exponential bondage number has been
presented for the network vulnerability. The stability of popular interconnection networks has been
studied and their exponential bondage numbers have been computed. These networks have been modeled
with the complete graphs, the path graphs, the cycle graphs, the star graphs and the wheel graphs. Then
upper bounds, lower bounds and exact formulas of the exponential bondage number have been obtained
for any given graph G. As a further study, exact formulas or bounds may be obtained for graph operations
and trees.
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