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Abstract. The total influence number is a natural extension of the graph parameter
known as the influence number. The total influence number can be viewed as vertex
labeling problem are concerned with the maximizing the sum of the labels. For a vertex
subset S ⊆ V of a graph G = (V,E), the total influence number of a vertex v ∈ S

is, denoted by ηT (v) =
∑
u∈S

1

2d(u,v)
. The total influence number of a vertex subset S

is ηT (S) =
∑
v∈S

ηT (v) =
∑
v∈S

∑
u∈S

1

2d(u,v)
. The total influence number of a graph G is

ηT (G) = max
S⊆V

ηT (S). In this paper, we show how to find a maximum total influence set

on various basic complement graphs.
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1. Introduction

Graph labeling is the most important problem in the field of graph theory. If the vertices of the graph
are assigned values subject to certain conditions then it is known as graph labeling. Most of the graph
labeling problems have the following three common characteristics: a set of numbers for assignment of
vertex labels, a rule that assigns a label to edge and some condition(s) that these labels must satisfy.

The graph labeling problem that appears in graph theory has a fast development recently. This
problem was first introduced by Alex Rosa [1] around 1967 as means of attacking the problem of cyclically
decomposing the complete graph into the tees. Numerous variations of labeling have been investigated in
the literature such as graceful, harmonious, magic, antimagic, bimagic, cordial and prime etc. [3]. Many
graph labeling problems seek to find the smallest integer label required to satisfy certain constraints.
Other problems seek to minimize the sum of all of the labels. One of the most famous of these problems
is the chromatic sum [2]. A useful survey to know about the numerous labeling methods is by J.A.Gallian
[4].

In this paper, we study the total influence number as a graph parameter. The total influence number
can be viewed as vertex labeling problems are concerned with the sum of the labels. It is another type of
the graph parameter known as the influence number. The concept of the influence number is introduced
as a graph parameter in the social networks. This problem can also be considered in transmitters and
receivers. The applications of the influence number can be extended for the total influence number.
For psycology, we consider the situation when a person is influenced by multiple other people. Using
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transmitters and receivers, we allow the receiver to obtain a boosted signal by using the service of each
transmitter instead of only connecting to the closest transmitter.

The total influence number is a new approach to the concept of graph labeling, introduced Daugherty
and et al. [5]. Although many vertex labeling problems are concerned with the sum of all of the labels
study to minimize the sum, the influence and total influence numbers have the aim of maximizing the
sum. This means that these parameters attempt to maximize the profit associated with each vertex.

Throughout this paper, the following notation will be used. Let G = (V,E) be a simple, connected
graph. The vertex set and edge set of a graph is denoted by V (G) and E(G), respectively. It is assumed
that V (G) will be abbreviated V . For a vertex subset S ⊆ V , S = V − S denotes the complement of S
with respect to V .

The shortest distance in G between two vertices u and v will be denoted d(u, v). For any vertex u, let
d(u, S) = min

v∈S
d(u, v). Then d(u, S) = 0 if and only if u ∈ S

The total influence number of a vertex v ∈ S is

ηT (v) =
∑
u∈S

1

2d(u,v)
.

The total influence number of a vertex subset S is

ηT (S) =
∑
v∈S

ηT (v) =
∑
v∈S

∑
u∈S

1

2d(u,v)
.

The total influence number of a graph G is ηT (G) = max
S⊆V

ηT (S). A set S is called ηT -set if ηT (S) = ηT (G)

[5, 6].
The paper proceeds as follows. In section 2, for the total influence number, known results are given.

In section 3, the total influence number of cycle and wheel graph are studied. In section 4, exact values
for the total influence number of some complement graphs are determined.

Definition 1.1. [5] A vertex subset S is called an alternating set if and only if S is either (1) the empty
set or (2) a maximal independent set such that ∃u ∈ S 3 ∀v ∈ S, d(u, v) = 2k for some k ∈ Z.

Theorem 1.2. [7] If f is continious on a closed, bounded set D in R2, then f attains an absolute
maximum value f(x1, y1) and an absolute minimum value f(x2, y2) at some points (x1, y1) and (x2, y2)
in D.

To find the absolute maximum and minimum values of a continious function f on a closed, bounded
set D: 1. Find the values of f at the critical points of f in D. 2. Find the extreme values of f on the
boundary of D. 3. The largest of the values from steps 1 and 2 is the absolute maximum value; the
smallest of these values is the absolute minimum value.

2. Basic Results On The Total Influence Number

Theorem 2.1. [5]The total influence number of
(a) the complete graph Kn is

ηT (Kn) =

{
n2

8 if n is even,
n2−1

8 if n is odd.

(b) the star K1,n is

ηT (K1,n) =

{
(n+2)2

16 if n is even,
(n+1)(n+3)

16 if n is odd.

(c) the double star DSn,m is

ηT (DSn,m) =

{
1
16n

2 + 3
8n+ 1

16m
2 + 3

8m+ 1
16nm+ 3

4 if n,m are even,
1
16n

2 + 3
8n+ 1

16m
2 + 3

8m+ 1
16nm+ 11

16 otherwise.
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(d) the complete bipartite grapf Kn,m is

ηT (Kn,m) =


mn
2 if n ≥ m

2 ,
(2n+m)2

16 if n < m
2 , m is even,

(2n+m+1)(2n+m−1)
16 if n < m

2 , m is odd.

Theorem 2.2. [5] For a path Pn (n > 1), a vertex subset S has maximum total influence if and only if
it is a non-empty alternating set.

Corollary 2.3. The total influence number of path, Pn is

ηT (Pn) =

{
(10)2−n+6n−10

9 if n is even,
(8)2−n+6n−10

9 if n is odd.

Theorem 2.4. [5] For any graph G=(V,E), with vertex partitions V1 and V2 and a set S ⊆ V let
S1 = V1 ∩ S, S2 = V2 ∩ S, S = V − S, S1 = V1 − S1 and S2 = V2 − S2. Then,

ηT (S) = ηT (S1, S1) + ηT (S2, S1) + ηT (S2, S2) + ηT (S1, S2)

3. Total Influence Number of Cycle and Wheel Graphs

Theorem 3.1. For a graph Cn with n ≥ 6, total influence number is

ηT (Cn) =


2n
3 + 2−

n+1
2 ( 1

9 − n)− 2
9 if n is odd,

2n
3 −

2n
3 2−

n
2 if n and n

2 are even,
2n
3 −

5n
6 2−

n
2 if n is even and n

2 is odd.

Proof. Consider a cycle Cn with V (Cn) = {v1, v2, ..., vn}, a total influence set S and vertex partitions
V1 and V2. The vertex set of Cn can be partitioned into two pieces V1 = {v1, v2, ...vdn2 e} and V2 =

{vdn2 e+1, vdn2 e+2, ..., vn}. V1 ∪ V2 = V (Cn). For the vertex subset S, let S1 = S ∩ V1, S2 = S ∩ V2,

S1 = V1 − S1 and S2 = V2 − S2. By Theorem 2.4, we can write the following expression for ηT (S).

ηT (S) = ηT (S1, S1) + ηT (S1, S2) + ηT (S2, S1) + ηT (S2, S2).

By Corollary 2.3, we know ηT (S1, S1) = ηT (Pdn2 e), ηT (S2, S2) = ηT (Pbn2 c) and by Theorem 2.2, we also
know that S1 and S2 are alternating sets. Let v1 be vertex in S1. There are exactly two alternating sets
for S2. For summing unknow terms in the above expression, we have four cases depending on n.

Case 1. Let n is odd and dn2 e is odd.
Case 1.1. Let vdn2 e+1 ∈ S2. Then S1 = {v1, v3, ..., vdn2 e}, S2 = {vdn2 e+1, vdn2 e+3, ..., vn−1}. Thus, we get

ηT (S1, S2) + ηT (S2, S1) =
bn2 c∑
i=1

i
2i .

Case 1.2. Let vdn2 e+1 /∈ S2. Then S1 = {v1, v3, ..., vdn2 e}, S2 = {vdn2 e+2, vdn2 e+4, ..., vn}. Thus, we get

ηT (S1, S2) + ηT (S2, S1) =
bn2 c∑
i=1

i
2i .

It is easy to see that these results are equal.
Case 2. Let n is odd and dn2 e is even.
Case 2.1. Let vdn2 e+1 ∈ S2. Then S1 = {v1, v3, ..., vdn2 e−1}, S2 = {vdn2 e+1, vdn2 e+3, ..., vn}. Thus, we get

ηT (S1, S2) + ηT (S2, S1) =
bn2 c∑
i=1

i
2i .

Case 2.2. Let vdn2 e+1 /∈ S2. Then S1 = {v1, v3, ..., vdn2 e−1}, S2 = {vdn2 e+2, vdn2 e+4, ..., vn−1}. Thus, we get

ηT (S1, S2) + ηT (S2, S1) =
bn2 c∑
i=1

i
2i .

It is easy to see that these results are equal.
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Case 3. Let n is even and n
2 is odd.

Case 3.1. Let vn
2 +1 ∈ S2. Then S1 = {v1, v3, ..., vn

2
}, S2 = {vn

2 +1, vn
2 +3, ..., vn}. Thus, we get ηT (S1, S2)+

ηT (S2, S1) =
bn4 c∑
i=1

4i
22i .

Case 3.2. Let vn
2 +1 /∈ S2. Then S1 = {v1, v3, ..., vn

2
}, S2 = {vn

2 +2, vn
2 +4, ..., vn−1}. Thus, we get

ηT (S1, S2) + ηT (S2, S1) =
bn4 c∑
i=1

4i−2
22i−1 + n

2
n+2
2

.

It is easy to see that second result is smaller than first result.
Case 4. Let n and n

2 are even.
Case 4.1. Let vn

2 +1 ∈ S2. Then S1 = {v1, v3, ..., vn
2−1}, S2 = {vn

2 +1, vn
2 +3, ..., vn−1}. Thus, we get

ηT (S1, S2) + ηT (S2, S1) =
bn4 c∑
i=1

4i−2
22i−1 .

Case 4.2. Let vn
2 +1 /∈ S2. Then S1 = {v1, v3, ..., vn

2−1}, S2 = {vn
2 +2, vn

2 +4, ..., vn}. Thus, we get

ηT (S1, S2) + ηT (S2, S1) =
bn4 c∑
i=1

4i
22i −

n

2
n+2
2

.

It is easy to see that second result is smaller than first result.
By Case 1, 2, 3.1, 4.1, we have

2n
3 + 2−

n+1
2 ( 1

9 − n)− 2
9 if n is odd,

2n
3 −

2n
3 2−

n
2 if n and n

2 are even,
2n
3 −

5n
6 2−

n
2 if n is even and n

2 is odd.

�

Lemma 3.2. Consider a wheel graph W1,n with n ≥ 6. Let S1 and S2 be total influence sets of W1,n.
Assume without loss of generality that the center vertex, labeled c, is in S1 and S2. Let S1 = X1 ∪
X2 ∪ ... ∪ Xt ∪ {c} such that any element of Xi can not be consecutive to any element of Xj, where
i 6= j. Set |X1| = x1, |X2| = x2,..., |Xt| = xt, where t ≥ 2 and x1, x2, ...xt ≥ 2. Additionally, let
each Xi consist of vertices having consecutive indices, where i ∈ {1, 2, ..., t}. Let S2 = X ∪ {c} such that
|X| = x1 + x2 + ...+ xt and X consist of vertices having consecutive indices. Then ηT (S1) > ηT (S2).

Proof. We can write the following equalities for S1 and S2.

ηT (S1) =2
1

2
+ 2

1

4
(n− (x1 + x2 + ...+ xt)− 1) +

1

4
(x1 − 2)(n− (x1 + x2 + ...+ xt))

+ ...+ 2
1

2
+ 2

1

4
(n− (x1 + x2 + ...+ xt)− 1)

+
1

4
(xt − 2)(n− (x1 + x2 + ...+ xt)) +

1

2
(n− (x1 + x2 + ...xt)).

=
t

2
+

1

4
(x1 + x2 + ...+ xt)(n− (x1 + x2 + ...+ xt))

+
1

2
(n− (x1 + x2 + ...+ xt)).(3.1)

ηT (S2) =2
1

2
+ 2

1

4
(n− (x1 + x2 + ...+ xt)− 1)

+
1

4
(x1 + x2 + ...+ xt − 2)(n− (x1 + x2 + ..+ xt))(3.2)

+
1

2
(n− (x1 + x2 + ...+ xt)).

By (3.1), (3.2) and t ≥ 2, ηT (S1) > ηT (S2). �

Lemma 3.3. Consider a wheel graph W1,n with n ≥ 6. Let S1 and S2 be total influence sets of W1,n.
Assume without loss of generality that the center vertex, labeled c, is in S1 and S2. Let X1∪X2∪...∪Xt∪{c}

Galaxy
Text Box
44



be a partition of S1 such that any element of Xi can not be consecutive to any element of Xj, where
i 6= j. Let |X1| = x1, |X2| = x2,..., |Xt| = xt, where t ≥ 2 and x1, x2, ...xt ≥ 2. Additionally, let
each Xi consist of vertices having consecutive indices, where i ∈ {1, ..., t}. Let S2 = Y ∪ {c}, where
Y = {vi : for ∀vi, vj ∈ V (W1,n)− {c}, (vi, vj) /∈ E(W1,n)}. Then ηT (S2) > ηT (S1).

Proof. For S1 by (3.1), and for S2, we have following equalities

ηT (S1) =
t

2
+

1

4
(x1 + x2 + ...+ xt)(n− (x1 + x2 + ...+ xt))

+
1

2
(n− (x1 + x2 + ...xt)).

ηT (S2) =
1

4
(x1 + x2 + ...+ xt)(n− (x1 + x2 + ...+ xt) + 2)

+
1

2
(n− (x1 + x2 + ...xt)).

We prove by induction on the number of sets which have vertices with consecutive indices, t. (t ≥ 2.)
i. for t = 2,

ηT (S1) =1 +
1

4
(x1 + x2)(n− (x1 + x2)) +

1

2
(n− (x1 + x2)).

ηT (S2) =
1

4
(x1 + x2)(n− (x1 + x2)) + 2

1

4
(x1 + x2) +

1

2
(n− (x1 + x2))

Since x1, x2 ≥ 2, it is obvious that ηT (S2) > ηT (S1).
ii. We suppose that the claim holds for t = k.

ηT (S1) =
1

2
k +

1

4
(x1 + x2 + ...+ xk)(n− (x1 + x2 + ...+ xk))

+
1

2
(n− (x1 + x2 + ...xk)).

ηT (S2) =
1

4
(x1 + x2 + ...+ xk)(n− (x1 + x2 + ...+ xk)) + 2

1

4
(x1 + x2 + ...+ xk)

+
1

2
(n− (x1 + x2 + ...xk)).

Since assuming ηT (S2) > ηT (S1), we obtain

x1 + x2 + ...+ xk > k.(3.3)

iii. for t = k + 1,

ηT (S1) =
1

2
(k + 1) +

1

4
(x1 + x2 + ...+ xk + xk+1)(n− (x1 + x2 + ...+ xk + xk+1))

+
1

2
(n− (x1 + x2 + ...x(k + 1))).

ηT (S2) =
1

4
(x1 + x2 + ...+ xk + xk+1)(n− (x1 + x2 + ...+ xk + xk+1))

+ 2
1

4
(x1 + x2 + ...+ xk + xk+1) +

1

2
(n− (x1 + x2 + ...xk+1)).

ηT (S2)−ηT (S1) =
1

2
(x1 + x2 + ...xk + xk+1 − k − 1).(3.4)

By (3.3) and (3.4), it is obvious that ηT (S2) > ηT (S1). Thus, we point out that a result of Lemma is
that choosing S2 instead of S1 . �

Theorem 3.4. The total influence number of W1,n with n ≥ 6 is
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ηT (W1,n) =

{
n2+8n−1

16 if n is odd,
n2+8n

16 if n is even.

Proof. Let S is a total influence set of W1,n. By Lemma 3.2 and Lemma 3.3, we must choose S2 in
Lemma 3.3 as S. Let |S| = x + 1 such that x is the number of vertices on the cycle of W1,n in S. Let
f(x) := ηT (S), thus we have

f(x) = 2
1

2
x+

1

4
x(n− x− 2) +

1

2
(n− x).

Bound is 0 ≤ x ≤ bn2 c. Solving fx(x) = 0 gives x = n
2 . When n is even, we have f(n

2 ) = n2+8n
16 .

When n is odd, x can be bn2 c or dn2 e. Since 0 ≤ x ≤ bn2 c, we ignore x = dn2 e. For x = bn2 c, we have

f(n−1
2 ) = n2+8n−1

16 . After examining at the boundaries of x, we get f(0) = n
2 at x = 0 and also get

f(n
2 ) = n2+8n

16 when n is even, f(n−1
2 ) = n2+8n−1

16 when n is odd at x = bn2 c. Thus, the total influence
number of W1,n is

ηT (W1,n) =

{
n2+8n−1

16 if n is odd,
n2+8n

16 if n is even.

�

4. Total Influence Number of Some Complement Graphs

Theorem 4.1. For a complement of complete graph Kn, the total influence number is ηT (Kn) = 0.

Proof. A complement of complete graph Kn contains isolated n vertices. Since these vertices don’t
influence each other, total influence number of Kn is 0. �

Theorem 4.2. For a graph Kn,m, the total influence number is

ηT (Kn,m) =


n2+m2−2

8 if n,m are odd,
n2+m2

8 if n,m are even,
n2+m2−1

8 if n is even, m is odd or m is even, n is odd.

Proof. A complement of complete bipartite graph Kn,m with n ≤ m contains two complete graphs Kn

and Km which are not connected to each other. By Theorem 2.1, we know total influence number of Kn

and Km. A set S is an ηT -set if and only if it contains exactly bn2 c or dn2 e vertices from Kn and exactly

bm2 c or dm2 e vertices from Km. Thus we get ηT (Kn,m) = ηT (Kn) + ηT (Km). �

Theorem 4.3. For a graph K1,n−1, the total influence number is

ηT (K1,n−1) =

{
(n−1)2

8 if n is odd,
(n−1)2−1

8 if n is even.

Proof. A complement of star graph K1,n−1 contains a complete graph Kn−1 and an isolated vertex.

Let S be a total influence set of K1,n−1. We know total influence number of Kn−1 by Theorem 2.1

and the isolated vertex doesn’t influence any vertices of Kn−1, so it can be in S or S. Thus we get
ηT (K1,n−1) = ηT (Kn−1). �

Theorem 4.4. For the graph tK2 with V (tK2) = {v1, v2, ..., v2t}, let X and Y be vertex sets such that
X = {v1, v3, ..., v2t−1}, Y = {v2, v4, ..., v2t} and |X| = |Y | = t. Consider a total influence sets S, let
x = |X ∩ S| and y1 + y2 = |Y ∩ S| such that y1 and y2 are the number of vertices non-adjacent to one
of x vertices and adjacent to all of x vertices, respectively. Then S is an ηT -set if and only if following
condition or its complement is satisfied:

(x = d t2e, y1 = b t2c, y2 = 0).
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Furthermore,

ηT (tK2) =

{
t2

2 if t is even,
2t2−1

4 if t is odd.

Proof. Using the definitions of x, y1, y2 and f(x, y1, y2) := ηT (S), we have

f(x, y1, y2) =
1

2
x(t− x) +

1

4
(x− y1) +

1

2
(x− 1)(x− y1)

+
1

2
x(t− x− y2) +

1

2
(y1 + y2)(t− (y1 + y2))

+
1

2
y1(t− x) +

1

4
y2 +

1

2
y2(y2 − 1) +

1

2
y2(t− x− y2).

Bounds are 0 ≤ x ≤ t, 0 ≤ y1 ≤ x and 0 ≤ y2 ≤ t − x. Solving the system fx(x, y1, y2) = 0,
fy1(x, y1, y2) = 0, fy2(x, y1, y2) = 0 doesn’t give a solution. So we search to the maximum of f(x, y1, y2)
by looking at the boundaries for x, y1, y2 and we do this search from Theorem 1.2.

Case 1. For x = 0, we maximize f(0, y1, y2) = 1
4y1 −

1
4y2 − y1y2 + y1t + y2t − 1

2y
2
1 − 1

2y
2
2 . Solving the

system fy1
(0, y1, y2) = 0 and fy2

(0, y1, y2) = 0 doesn’t give a solution. So we must seek the maximum of
the function at the boundaries of y1 and y2.

Case 1.1. For y1 = 0 (y1 = x = 0), we have f(0, 0, y2) = 1
4y2 − y2(y2 − t) + 1

2y2(y2 − 1). Solving

fy2(0, 0, y2) = 0 gives y2 = 4t−1
4 and we get f(0, 0, b 4t−14 c) = 2t2−t−1

4 , f(0, 0, d 4t−14 e) = 2t2−t
4 . From

the boundaries of y2, we have f(0, 0, t) = 2t2−t
4 and f(0, 0, 0) = 0. Since 0 < |S| < 2t, we can ignore

f(0, 0, 0) = 0.
Case 1.2. For y2 = 0 and y2 = t − x = t, since 0 ≤ y1 ≤ x and x = 0, y1 just takes the value 0. From
examining the boundaries of y2, we have same results as Case 1.1.

By Case 1, the function is maximized at y1 = 0 and y2 = t.
Case 2. For x = t, we maximize f(t, y1, y2) = − 1

2y
2
1 − y1y2 + 1

4y1 −
1
2y

2
2 − 1

4y2 + 1
2 t

2 − 1
4 t. Solving the

system fy1(t, y1, y2) = 0 and fy2(t, y1, y2) = 0 doesn’t give a solution. So must seek the maximum of the
function at the boundaries of y1 and y2.

Case 2.1. For y1 = 0 and y1 = x = t, since 0 ≤ y2 ≤ t − x and x = t, y2 just takes the value 0. So we

have f(t, 0, 0) = 2t2−t
4 and f(t, t, 0) = 0, from the boundaries of y1. Since 0 < |S| < 2t, we can ignore

f(t, t, 0) = 0.
Case 2.2. For y2 = 0 (y2 = t − x = 0), we have f(t, y1, 0) = 1

4 t −
1
4y1 −

1
2 (t − 1)(y1 − t) − 1

2y1(y1 − t).
Solving fy1(t, y1, 0) = 0, we have y1 = 1

4 . But this value isn’t integer. From examining the boundaries of
y1, we have the same results as Case 2.1.

By Case 2, the function is maximized at y1 = 0 and y2 = 0.
Case 3. For y1 = 0, we maximize f(x, 0, y2) = − 1

4 (y2 + x)(2y2 − 4t + 2x + 1). Solving the system
fx(x, 0, y2) = 0 and fy1

(x, 0, y2) = 0 doen’t give a solution. So we must seek the maximum of the
function at the boundaries of x and y2.

Case 3.1. For x = 0, x = t, these cases are equivalent to Case 1.1, 2.1, respectively.
Case 3.2. For y2 = 0, we maximize f(x, 0, 0) = 1

4x + 1
2x(x − 1) + x(t − x). Solving fx(x, 0, 0) = 0 gives

x = 4t−1
4 and we get f(b 4t−14 c, 0, 0) = 2t2−t−1

4 , f(d 4t−14 e, 0, 0) = 2t2−t
4 . From the boundaries of x, we

have f(t, 0, 0) = 2t2−t
4 and f(0, 0, 0) = 0. Since 0 < |S| < 2t, we can ignore f(0, 0, 0) = 0.

Case 3.3. For y2 = t− x, we maximize f(x, 0, t) = 1
4 t(2t− 1). From solving fx(x, 0, t) = 0, we don’t find

suitable x value. From the boundaries of x, we get f(0, 0, t) = 2t2−t
4 and f(t, 0, t) = 0. Since 0 < |S| < 2t,

we can ignore f(t, 0, t) = 0
By Case 3, the function is maximized at x = t and y2 = 0 or x = 0 and y2 = t.

Case 4. For a = x, we maximize f(x, x, y2) = y2t − 1
4y2 − 2y2x + 2tx − 1

2y
2
2 − 2x2. Solving the system

fx(x, x, y2) = 0 and fy2
(x, x, y2) = 0 doesn’t give a sloution. So we must seek the maximum of the

function at the boundaries of x and y2.
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Case 4.1. For x = 0, x = t, these cases are same as Case 1.1, 2.1, respectively.
Case 4.2. For y2 = 0, we maximize f(x, x, 0) = 2x(t − x). Solving fx(x, 0, 0) = 0 gives x = t

2 . x = t
2 is

only valid when t is even, we need to try both x = b t2c = t−1
2 and x = d t2e = t+1

2 when t is odd.
Consequently, we find the maximum value of this case,{
f( t

2 ,
t
2 , 0) = t2

2 if t is even,

f( t+1
2 , t−12 , 0) = 2t2−1

4 if t is odd.

After examining at the boundaries of x, we don’t obtain a result, since 0 < |S| < 2t.
Case 4.3. For y2 = t−x, we maximize f(x, x, t−x) = 1

4 (t−x)(2t+2x−1). From solving fx(x, x, t−x) = 0,

we have x = 1
4 . But this value isn’t integer. From the boundaries of x, we get f(0, 0, t) = 2t2−t

4 and
f(t, t, 0) = 0 but since 0 < |S| < 2t we can ignore f(t, t, 0) = 0.

By Case 4, the function is maximized at x = d t2e, y1 = b t2c and y2 = 0.

Case 5. For y2 = 0, we maximize f(x, y1, 0) = 1
4y1 −

1
4x + y1t − y1x + tx − 1

2y
2
1 − 1

2x
2. Solving the

system fx(x, y1, 0) = 0 and fy1(x, y1, 0) = 0 doesn’t give a solution. So we must seek the maximum of
the function at the boundaries of x and y1. Examinations at x = 0, x = t, y1 = 0, y1 = x are equivalent
to Case 1.2, 2.2, 3.2, 4.2, respectively.

Case 6. For y2 = t − x, we maximize f(x, y1, t − x) = − 1
4 (y1 − t)(2y1 + 2t − 1). Solving the system of

fx(x, y1, t− x) = 0 and fy1
(x, y1, t− x) = 0 doesn’t give a solution and so we must seek the maximum of

the function at the boundaries of x and y1. Examinations at x = 0, x = t, y1 = 0, y1 = x are equivalent
to Case 1.2, 2.2, 3.3, 4.3, respectively.

From all the cases, total influence number of tK2 is t2

2 when t is even and 2t2−1
4 when t is odd. �

Definition 4.5. [5] A double star DSn,m is a tree with exactly 2 non-leaf vertices u and v such that
deg(u) = n+ 1 and deg(v) = m+ 1.

Theorem 4.6. Consider a complement of double star DSn,m, it contains Kn+m graph and exactly two
vertices u and v such that u is adjacent to m vertices, v is adjacent to n vertices of Kn+m. Let X be
the set of n vertices of Kn+m and Y be the set of m vertices of Kn+m. |X| = n, |Y | = m. Consider a
total influence set S. Let x = |X ∩ S| and y = |Y ∩ S|. Then S is an ηT -set if and only if the following
conditions or their complements are satisfied:

n m u v x y
odd odd ∈ S /∈ S n m−n

2
n ≤ m− 1

2

even even
odd even ∈ S /∈ S n m−n−1

2even odd
odd odd ∈ S /∈ S m+n

2 0
n ≥ m+ 1

2

even even
odd even ∈ S /∈ S m+n+1

2 0
even odd
odd odd ∈ S ∈ S 0 m+n−2

2

n = m
even even m+n−2

2 0
odd even ∈ S ∈ S 0 m+n−1

2
even odd m+n−1

2 0

Furthermore,

ηT (DSn,m) =


m2+2mn+3m+n2+5n+1

8 if n ≤ m− 1
2 ,

m2+2mn+5m+n2+3n+1
8 if n ≥ m+ 1

2 ,
m2+2mn+3m+n2+3n+2

8 if n = m.

Proof. We examine two cases depending on u and v’s membership in S. Two cases are comprehensive
because other cases are complements of these cases.
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Case 1. Let u ∈ S, v /∈ S, x = |X ∩ S|, y = |Y ∩ S| and f(x, y) := ηT (S). In this case, we have

f(x, y) =
1

2
(m− y) +

1

4
(n− x) +

1

8
+

1

2
x(n− x) +

1

2
x

+
1

2
x(m− y) +

1

2
y(m− y) +

1

2
y(n− x) +

1

4
y.

Bounds are 0 ≤ x ≤ n and 0 ≤ y ≤ m. Solving the system fx(x, y) = 0 and fy(x, y) = 0 doesn’t give a
solution and we must seek the maximum of the function at the boundaries of x and y.

Case 1.1. For x = 0, we have f(0, y) = 1
2m+ 1

4n−
1
4y + 1

2ny + 1
2y(m− y) + 1

8 . Solving fy(0, y) = 0 gives

y = 2m+2n−1
4 . If n ≤ m+ 1

2 , 2m+2n−1
4 ∈ [0,m] . We need to try both y = b 2m+2n−1

4 c and y = d 2m+2n−1
4 e

depending on n and m.
i: if n is odd, m is odd or n is even, m is even, we have

f(0, m+n−2
2 ) = m2+2mn+3m+n2+n−1

8 and f(0, m+n
2 ) = m2+2mn+3m+n2+n+1

8 .
ii: if n is odd, m is even or n is even, m is odd, we have

f(0, m+n−1
2 ) = m2+2mn+3m+n2+n+1

8 and f(0, m+n+1
2 ) = m2+2mn+3m+n2+n−1

8 .

From the boundaries of y, we get f(0, 0) = 4m+2n+1
8 and f(0,m) = 2m+2n+4mn+1

8 .

Case 1.2. For x = n, we have f(n, y) = 1
2m+ 1

2n−
1
4y+ 1

2n(m−y)+ 1
2y(m−y)+ 1

8 . Solving fy(n, y) = 0 gives

y = 2m−2n−1
4 . If n ≤ m− 1

2 , 2m−2n−1
4 ∈ [0,m]. We need to try both y = b 2m−2n−14 c and y = d 2m−2n−14 e

depending on n and m.
i: if n is odd, m is odd or n is even, m is even, we have

f(n, m−n−22 ) = m2+2mn+3m+n2+5n−1
8 and f(n, m−n2 ) = m2+2mn+3m+n2+5n+1

8 .
ii: if n is odd, m is even or n is even, m is odd, we have

f(n, m−n−12 ) = m2+2mn+3m+n2+5n+1
8 and f(n, m−n+1

2 ) = m2+2mn+3m+n2+5n−1
8 .

From the boundaries of y, we get f(n, 0) = 4m+4n+4mn+1
8 and f(n,m) = 2m+4n+1

8 .

Case 1.3. For y = 0, we have f(x, 0) = 1
2m+ 1

4n+ 1
4x+ 1

2mx+ 1
2x(n− x) + 1

8 . Solving fx(x, 0) = 0 gives

x = 2m+2n+1
4 . If n ≥ m + 1

2 , 2m+2n+1
4 ∈ [0, n] . We need to try both x = b 2m+2n+1

4 c, x = d 2m+2n+1
4 e

depending on n and m.
i: if n is odd, m is odd or n is even, m is even, we have

f(m+n
2 , 0) = m2+2mn+5m+n2+3n+1

8 and f(m+n+2
2 , 0) = m2+2mn+5m+n2+3n−1

8 .
ii: if n is odd, m is even or n is even, m is odd, we have

f(m+n−1
2 , 0) = m2+2mn+5m+n2+3n−1

8 and f(m+n+1
2 , 0) = m2+2mn+5m+n2+3n+1

8 .

From the boundaries of x, we get f(0, 0) = 4m+2n+1
8 and f(n, 0) = 4m+4n+4mn+1

8 .

Case 1.4. For y = m, we have f(x,m) = 1
4m+ 1

4n+ 1
4x+ 1

2m(n−x)+ 1
2x(n−x)+ 1

8 . Solving fx(x,m) = 0

gives x = 2n−2m+1
4 . If n ≥ m− 1

2 , 2n−2m+1
4 ∈ [0, n]. We need to try both x = b 2n−2m+1

4 c, x = d 2n−2m+1
4 e

depending on n and m.
i: if n is odd, m is odd or n is even, m is even, we have

f(n−m
2 ,m) = m2+2mn+m+n2+3n+1

8 and f(n−m+2
2 ,m) = m2+2mn+m+n2+3n−1

8 .
ii: if n is odd, m is even or n is even, m is odd, we have

f(n−m−1
2 ,m) = m2+2mn+m+n2+3n−1

8 and f(n−m+1
2 ,m) = m2+2mn+m+n2+3n+1

8 .

From the boundaries of x, we get f(0,m) = 2m+2n+4mn+1
8 and f(n,m) = 2m+4n+1

8 .
Case 2. Let u, v ∈ S, x = |X ∩ S|, y = |Y ∩ S| and f(x, y) := ηT (S). In this case, we have

f(x, y) =
1

2
(n− x) +

1

4
(m− y) +

1

2
(m− y) +

1

4
(n− x)

+
1

2
x(n− x) +

1

2
x(m− y) +

1

2
y(n− x) +

1

2
y(m− y).

Bounds are 0 ≤ x ≤ n and 0 ≤ y ≤ m. Solving the system fx(x, y) = 0 and fy(x, y) = 0 doesn’t give a
solution and we must seek the maximum of the function at the boundaries of x and y.
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Case 2.1. For x = 0, we have f(0, y) = 3
4m + 3

4n −
3
4y + 1

2ny + 1
2y(m − y). Solving fy(0, y) = 0 gives

y = 2m+2n−3
4 . If n ≤ m+ 3

2 , 2m+2n−3
4 ∈ [0,m]. We need to try both y = b 2m+2n−3

4 c and y = d 2m+2n−3
4 e

depending on n, m
i: if n is odd, m is odd or n is even, m is even, we have

f(0, m+n−2
2 ) = m2+2mn+3m+n2+3n+2

8 and f(0, m+n
2 ) = m2+2mn+3m+n2+3n

8 .
ii: if n is odd, m is even or n is even, m is odd, we have

f(0, m+n−3
2 ) = m2+2mn+3m+n2+3n

8 and f(0, m+n−1
2 ) = m2+2mn+3m+n2+3n+2

8 .

From the boundaries of y, we get f(0, 0) = 3m+3n
4 and f(0,m) = 3n+2mn

4 .

Case 2.2. For x = n, we have f(n, y) =
3

4
m − 3

4
y +

1

2
n(m − y) +

1

2
y(m − y). Solving fy(n, y) = 0 gives

y = 2m−2n−3
4 . If n ≤ m− 3

2 , 2m−2n−3
4 ∈ [0,m]. We need to try both y = b 2m−2n−34 c and y = d 2m−2n−34 e

depending on n and m.
i: if n is odd, m is odd or n is even, m is even, we have

f(n, m−n−22 ) = m2+2mn+3m+n2+3n+2
8 and f(n, m−n2 ) = m2+2mn+3m+n2+3n

8 .
ii: if n is odd, m is even or n is even, m is odd, we have

f(n, m−n−32 ) = m2+2mn+3m+n2+3n
8 and f(n, m−n−12 ) = m2+2mn+3m+n2+3n+2

8 .

From the boundaries of y, we get f(n, 0) = 3m+2mn
4 and f(n,m) = 0. But since 0 < |S| < n+m+ 2, we

can ignore f(n,m) = 0.
Case 2.3. For y = 0, we have f(x, 0) = 3

4m + 3
4n −

3
4x + 1

2mx + 1
2x(n − x). Solving fx(x, 0) = 0 gives

x = 2m+2n−3
4 . If n ≥ m− 3

2 , 2m+2n−3
4 ∈ [0, n]. We need to try both x = b 2m+2n−3

4 c and x = d 2m+2n−3
4 e

depending on n and m.
i: If n is odd, m is odd or n is even,m is even, we have

f(m+n
2 , 0) = m2+2mn+3m+n2+3n

8 and f(m+n−2
2 , 0) = m2+2mn+3m+n2+3n+2

8 .
ii: If n is odd,m is even or n is even,m is odd, we have

f(m+n−1
2 , 0) = m2+2mn+3m+n2+3n+2

8 and f(m+n−3
2 , 0) = m2+2mn+3m+n2+3n

8 .

From the boundaries of x, we get f(0, 0) = 3m+3n
4 and f(n, 0) = 3m+2mn

4 .

Case 2.4. For y = m, we have f(x,m) = 3
4n −

3
4x + 1

2m(n − x) + 1
2x(n − x). Solving fx(x,m) = 0 gives

x = 2n−2m−3
4 . If n ≥ m+ 3

2 , 2n−2m−3
4 ∈ [0, n]. We need to try both x = b 2n−2m−34 c and x = d 2n−2m−34 e

depending on n and m.
i: if n is odd, m is odd or n is even, m is even, we have

f(n−m
2 ,m) = m2+2mn+3m+n2+3n

8 and f(n−m−2
2 ,m) = m2+2mn+3m+n2+3n+2

8 .
ii: if n is odd, m is even or n is even, m is odd, we have

f(n−m−1
2 ,m) = m2+2mn+3m+n2+3n+2

8 and f(n−m−3
2 ,m) = m2+2mn+3m+n2+3n

8 .

From the boundaries of x, we get f(0,m) = 3n+2mn
4 and f(n,m) = 0. But since 0 < |S| < n+m+ 2, we

can ignore f(n,m) = 0.

By Case 1 and 2, the total influence number of DSn,m is

ηT (DSn,m) =


m2+2mn+3m+n2+5n+1

8 if n ≤ m− 1
2 ,

m2+2mn+5m+n2+3n+1
8 if n ≥ m+ 1

2 ,
m2+2mn+3m+n2+3n+2

8 if n = m.

�

Lemma 4.7. Consider a complement of path Pn. Let S1 and S2 are total influence sets for Pn. Let
X1∪X2∪ ...∪Xt be a partition of S1 such that any element of Xi can not be consecutive to any element of
Xj, where i 6= j. Let |X1| = x1, |X2| = x2, ..., |Xt| = xt, where t ≥ 2 and x1, x2, ...xt ≥ 2. Additionally,
let each Xi consist of vertices having consecutive indices, where i ∈ {1, ..., t}. Let S2 = X such that
|X| = x1 + x2 + ...+ xt and X consist of vertices having consecutive indices. Then ηT (S2) > ηT (S1).

Galaxy
Text Box
50



Proof. For a complement of path graph with V (Pn) = {v1, v2, ..., vn}, let u = v1 and v = vn be end
vertices. Moreover, let |V (Pn)− V (S1)| = |V (Pn)− V (S2)| = z. We consider three cases, depending on
u and v’s membership in S.

Case i Let u, v ∈ S,
since |S1| = |S2| = x1 + x2 + ...+ xt. We can write the following equalities for ηT (S1) and ηT (S2).

ηT (S1) =2
1

4
+ 2

1

2
(z − 1) +

1

2
(x1 − 2)z + 2

1

4
+ 2

1

2
(z − 1) +

1

2
(x2 − 2)z

+ ...+ 2
1

4
+ 2

1

2
(z − 1) +

1

2
(xt − 2)z

=− t

2
+ (x1 + x2 + ...+ xt)z

1

2
.(4.1)

ηT (S2) =2
1

4
+ 2

1

2
(z − 1) +

1

2
(x1 + x2 + ...+ xt − 2)z

=− 1

2
+ (x1 + x2 + ...+ xt)z

1

2
.(4.2)

By (4.1), (4.2) and t ≥ 2, ηT (S1) < ηT (S2).
Case ii Let u, v /∈ S,
by the equivalence of the complementary sets, this case is equivalent to Case i and so ηT (S1) < ηT (S2).

Case iii Let u ∈ S, v /∈ S (or u /∈ S, v ∈ S),
let u (or v)∈ X1, we can write the following equalities for ηT (S1) and ηT (S2).

ηT (S1) =
1

2
+

1

4
+ 2

1

2
(z − 1) +

1

2
(x1 − 2)z + 2

1

4
+ 2

1

2
(z − 1) +

1

2
(x2 − 2)z

+ ...+ 2
1

4
+ 2

1

2
(z − 1) +

1

2
(xt − 2)z.

=− t

2
+

1

4
+

1

2
(x1 + x2 + ...+ xt)z.(4.3)

ηT (S2) =
1

2
+

1

4
+ 2

1

2
(z − 1) +

1

2
(x1 + x2 + ...xt − 2)z.

=− 1

4
+

1

2
(x1 + x2 + ...+ xt)z.(4.4)

By (4.3), (4.4) and t ≥ 2, ηT (S1) < ηT (S2).

We point out that for total influence number of Pn, we must choose S2 instead of S1. �

Theorem 4.8. For a complement of path Pn with n ≥ 7, a set S is an ηT -set if and only if it contains
exactly bn2 c or dn2 e vertices having consecutive indices such that either u or v must be in these vertices.
Furthermore,

ηT (Pn) =

{
n2−2

8 if n is even,
n2−3

8 if n is odd.

Proof. Let X ∪ Y be a partition of V (Pn). By Lemma 4.7, we know X consist of vertices having
consecutive indices. Let x = |X| and y = |Y ∩S|, where Y = V (Pn)−X, Y ∩S = {vi : for ∀{vi, vj} ∈ Y ,

(vi, vj) ∈ E(Pn)} and any element of Y ∩ S can not be consecutive to any element of X. We consider
three cases depending on u and v’s membership in S.

Case 1. Let u, v ∈ S and f(x, y) =: ηT (S).

f(x, y) =2
1

4
+ 2

1

2
(n− x− y − 1) +

1

2
(x− 2)(n− x− y)

+ 2
1

4
y +

1

2
y(n− x− y − 2).
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Bounds are 2 ≤ x ≤ n− 1 and 0 ≤ y ≤ dn−42 e. Solving the system fx(x, y) = 0 and fy(x, y) = 0 doesn’t
give a solution. So we must seek the maximum of the function at the boundaries of x and y.

Case 1.1. For x = 2, we have f(2, y) = n− 1
2y−

1
2y(y− n+ 4)− 5

2 . Solving fy(2, y) = 0 gives y = n−5
2 . If

n ≥ 5, n−5
2 ∈ [0, dn−44 e].

i: if n is odd, we get f(2, n−52 ) = n2−2n+5
2

ii: if n is even, we consider y = bn−52 c and y = dn−52 e but they are complements of each other and thus

have the same value. f(2, n−62 ) = f(2, n−42 ) = n2−2n+4
8 .

Then searching at the boundaries of y, we have f(2, 0) = 2n−5
2 at y = 0 and have f(2, n−32 ) = n2−2n+1

8

when n is odd, f(2, n−42 ) = n2−2n+4
8 when n is even at y = dn−42 e.

Case 1.2. For x = n− 1, y just takes the value 0. For y = 0, we only have f(n− 1, 0) = n−2
2 .

Case 1.3. For y = 0, we have f(x, 0) = n − x + 1
2 (n − x)(x − 2) − 1

2 . Solving fx(x, 0) = 0 gives x = n
2 ,

n
2 ∈ [2, n− 1], if n ≥ 4.

i: if n is odd, we have f(n−1
2 , 0) = f(n+1

2 , 0) = n2−5
8

ii: if n is even, we have f(n
2 , 0) = n2−4

8

Then searching at the boundaries of x, we have f(2, 0) = 2n−5
2 at x = 2, f(n− 1, 0) = n−2

2 at x = n− 1.

Case 1.4. for y = dn−42 e, x just takes the value 0. So we have f(2, n−32 ) = n2−2n+1
8 , when n is odd,

f(2, n−42 ) = n2−2n+4
8 , when n is even.

By these subcases, for Case 1 the function is maximized at x = n−1
2 or x = n+1

2 and y = 0 when n is
odd; x = n

2 and y = 0 when n is even.
Case 2. Let u ∈ S, v /∈ S or u /∈ S, v ∈ S.
For the vertex u or v, we have tree subcases.

Case 2.1. Let u(or v)∈ X and f(x, y) := ηT (S).

f(x, y) =
1

4
+

1

2
+ 2

1

2
(n− x− y − 1) +

1

2
(x− 2)(n− x− y)

+ 2
1

4
y +

1

2
y(n− x− y − 2).

Bounds are 2 ≤ x ≤ n − 1 and 0 ≤ y ≤ dn−42 e. Solving the system of fx(x, y) = 0 and fy(x, y) = 0
doesn’t give a solution and we must seek the maximum of the function at the boundaries of x and y.

Case 2.1.1. For x = 2, we have f(2, y) = n− 1
2y−

1
2y(y−n+4)− 9

4 . Solving the fy(2, y) = 0 gives y = n−5
2

and n−5
2 ∈ [0, dn−42 e], if n ≥ 5.

i: if n is odd, we have f(2, n−52 ) = n2−2n+7
8 .

ii: if n is even, we have f(2, n−62 ) = f(2, n−42 ) = n2−2n+6
8 .

Then searching at the boundaries of y, we have f(2, 0) = 2n−5
2 at y = 0, f(2, n−32 ) = n2−2n+3

8 when n

is odd and f(2, n−42 ) = n2−2n+6
8 when n is even at y = dn−42 e. But this function is maximized at y = n−5

2

when n is odd, at y = n−6
2 or y = n−4

2 when n is even.

Case 2.1.2. For x = n− 1, y just takes the value 0. So we only have f(n− 1, 0) = 2n−3
4 .

Case 2.1.3. For y = 0, we have f(x, 0) = n−x+ ( 1
2x−1)(n−x)− 1

4 . Solving the fx(x, 0) = 0 gives x = n
2 .

n
2 ∈ [2, n− 1], if n ≥ 4.

i: if n is odd, we have f(n−1
2 , 0) = f(n+1

2 , 0) = n2−3
8

ii: if n is even, we have f(n
2 , 0) = n2−2

8

Then searching at the boundaries of x, we have f(2, 0) = 4n−9
4 at x = 2 and f(n − 1, 0) = 2n−3

4 at
x = n− 1.

Case 2.1.4. For y = dn−42 e, x just takes the value 2. So we only have f(2, dn−42 e).
By Case 2.1, the function is maximized at x = n−1

2 or x = n+1
2 and y = 0 when n is odd; at x = n

2
and y = 0 when n is even.
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Case 2.2. Let u(or v)∈ Y , x ≥ 2 and f(x, y) := ηT (S). We have

f(x, y) =2
1

4
+ 2

1

2
(n− x− y − 1) +

1

2
(x− 2)(n− x− y)

+ 2
1

4
(y − 1) +

1

2
(y − 1)(n− x− y − 2) +

1

4

+
1

2
(n− x− y − 1).

Boundaries are 2 ≤ x ≤ n − 3 and 1 ≤ y ≤ dn−42 e. Solving the system of fx(x, y) = 0 and fy(x, y) = 0
doesn’t give a result and we must seek the maximum of the function at the boundaries of x and y.

Case 2.2.1. For x = 2, we have f(2, y) = 3
2n − y − ( 1

2y −
1
2 )(y − n + 4) − 17

4 . Solving fy(2, y) = 0 gives

y = n−5
2 . n−5

2 ∈ [1, dn−42 e], if n ≥ 7.

i: if n is odd, we have f(2, n−52 ) = n2−2n+7
8 .

ii: if n is even, we have f(2, n−62 ) = f(2, n−42 ) = n2−2n+6
8 .

Then searching at the boundaries of y, we have f(2, 1) = 6n−21
4 at y = 1, f(2, n−32 ) = n2−2n+3

8 when

n is odd and f(2, n−42 ) = n2−2n+6
8 when n is even at y = dn−42 e.

Case 2.2.2. For x = n− 3, y just takes the value 1. So in this case, we only have f(n− 3, 1) = 4n−11
4 .

Case 2.2.3. For y = 1, we have f(x, 1) = 3
2n−

3
2x− ( 1

2x− 1)(x−n+ 1)− 9
4 . Solving the fx(x, 1) = 0 gives

x = n−2
2 and n−2

2 ∈ [2, n− 1], if n ≥ 6.

i: if n is odd, we have f(n−3
2 , 1) = f(n−1

2 , 1) = n2−7
8

ii: if n is even, we have f(n−2
2 , 1) = n2−6

8

Then searching at the boundaries of x, we have f(2, 1) = 6n−21
4 for x = 2 and f(n − 3, 1) = 4n−1

4 for
x = n− 3.

Case 2.2.4. For y = dn−42 e, x just takes the value 2. Thus we have f(2, n−42 ) = n2−2n+6
8 when n is even

and f(2, n−32 ) = n2−2n+3
8 when n is odd.

By Case 2.2, the function is maximized at x = n−3
2 or x = n−1

2 and y = 1 when n is odd; x = n−2
2

and y = 1 when n is even.
Case 2.3. Let u(or v)∈ Y , x = 0 and f(x, y) := ηT (S).

f(y) =
1

4
+

1

2
(n− y − 1) + 2

1

4
(y − 1) +

1

2
(y − 1)(n− y − 2).

Bound is 1 ≤ y ≤ bn2 c. Solving fy(y) = 0 gives y = n−1
2 and n−1

2 ∈ [1, bn2 c], if n ≥ 3.

i: if n is odd, we have f(n−1
2 ) = n2−2n+3

8 .

ii: if n is even, we have f(n−2
2 ) = f(n

2 ) = n2−2n+2
8 .

Then searching at the boundaries of y, we have f(1) = 2n−3
4 at y = 1 and having f(n−1

2 ) = n2−2n+3
8

when n is odd, f(n
2 ) = n2−2n+2

8 when n is even at y = bn2 c.
By Case 2.3, the function is maximized at y = n−1

2 when n is odd and at y = n−2
2 or y = n

2 when n
is even.

Case 3. Let u, v /∈ S.
Case 3.1. Let x = |X|, y = |Y ∩ S| and x ≥ 2. This condition is equivalent to Case 1.
Case 3.2. Let x = 0, y = |Y ∩ S| and f(y) := ηT (S). We have

f(y) = 2
1

4
y +

1

2
y(n− y − 2)

. Boundary is 1 ≤ y ≤ dn−22 e. Solving fy(y) = 0 gives y = n−1
2 .

i: if n is odd, f(n−1
2 ) = n2−2n+1

8

ii: if n is even, y can be n
2 or n−2

2 . Since n
2 /∈ [1, dn−22 e], we get f(n−2

2 ) = n2−2n
8 .
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Then searching at the boundaries of y, we have f(1) = n−2
2 at y = 1 and having f(n−1

2 = n2−2n+1
8 )

when n is odd and f(n−2
2 ) = n2−2n

8 when n is even at y = dn−22 e.
From all the cases, the total influence number of Pn is n2−2

8 when n is even and n2−3
8 when n is

odd. �

Theorem 4.9. For a complement of cycle graph Cn with n ≥ 6, S is an ηT -set if and only if it contains
exactly bn2 c or dn2 e vertices having consecutive indices. Furthermore,

ηT (Cn) =

{
n2−5

8 if n is odd,
n2−4

8 if n is even.

Proof. Let X ∪ Y be a partition of V (Cn). By Case i in Lemma 4.7, we know X consist of vertices
having consecutive indices. Let x = |X| and y = |Y ∩ S|, where Y = V (Cn) −X and Y ∩ S = {vi : for
∀vi, vj ∈ Y , (vi, vj) ∈ E(Cn)} and any element of Y ∩S can not be consecutive to any element of X. We
consider two cases: first, x ≥ 2 and second, x = 0. These two cases are comprehensive because we ignore
other cases from Case i in Lemma 4.7.

Case 1. Let x = |X|, y = |Y ∩ S|, x ≥ 2 and f(x, y) := ηT (S). This case is equivalent to Case 1 in

the proof of Pn. For this case, the maximum value is f(bn2 c, 0) = f(dn2 e, 0) = n2−5
8 , when n is odd and

f(n
2 , 0) = n2−4

8 , when n is even.
Case 2. Let |X| = x, |Y ∩ S| = y, x = 0 and f(y) := ηT (S). This yields the following equation:

f(y) = 2
1

4
y +

1

2
y(n− y − 2).

Bound is 1 ≤ y ≤ bn2 c. Solving fy(y) = 0 gives y = n−1
2 ∈ [0, bn2 c]. We have f(n−1

2 ) = n2−2n+1
8 when n

is odd, f(n
2 ) = n2−2n

8 when n is even.

After examinations at the boundaries of y, the function is maximized at y = n−1
2 .

By Case 1 and 2, the function is maximized at x = bn2 c or x = dn2 e. Hence, the total influence number

of Cn is

ηT (Cn) =

{
n2−5

8 if n is odd,
n2−4

8 if n is even.

�

Corollary 4.10. For a complement of wheel graph W 1,n, with n ≥ 6, a set S is an ηT -set if and only if
it contains exactly bn2 c or dn2 e vertices having consecutive. Furthermore,

ηT (W 1,n) =

{
n2−5

8 if n is odd,
n2−4

8 if n is even.

Proof. A complement of wheel graph W 1,n contains a complement of cycle graph with n vertices and an

isolated vertex. Since the isolated vertex doesn’t influence any vertices of Cn, the proof is done similar
to Theorem 4.9. �
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