NON-NULL CURVES OF TZITZEICA TYPE IN MINKOWSKI 3-SPACE

Muhittin Evren AYDIN, Mahmut ERGÜT
Department of Mathematics, Firat University Elazig, 23119, Turkey
E-mail addresses: meaydin@firat.edu.tr, mergut@firat.edu.tr

Abstract

In this paper, we study non-null curves of Tzitzeica type in Minkowski 3-space \mathbb{E}_{1}^{3}. We find a simple link between Tzitzeica curves and Rectifying curves in \mathbb{E}_{1}^{3}. Next, we derive certain results for non-null general helices and pseudospherical curves to satisfy Tzitzeica condition in \mathbb{E}_{1}^{3}. Further, we interest Tzitzeica pseudospherical indicatrices of a spacelike curve in \mathbb{E}_{1}^{3}.

Keywords. Tzitzeica curve, Rectifying curve, General helix, Pseudosphere, Minkowski space.

AMS Subject Classification. 53B30, 53C50.

1. Introduction

Gheorghe Tzitzeica who is a Romanian mathematician (1873-1939) introduced a class of curves, nowadays called Tzitzeica curves and a class of surfaces of the Euclidean 3 -space, called Tzitzeica surfaces. A Tzitzeica curve is a curve for which the ratio of its torsion and the square of the distance d_{1} from the origin to the osculating plane at arbitrary point of the curve is constant, i.e.,

$$
\begin{equation*}
\frac{\tau}{d_{1}^{2}}=c_{1}, \tag{1.1}
\end{equation*}
$$

where c_{1} is nonzero constant. In [5], the connections between Tzitzeica curves and surfaces in Minkowski 3 -space and the original ones from the Euclidian 3 -space were given. The author, in [9], determined the elliptic and hyperbolic cylindrical curves satisfying Tzitzeica condition in Euclidian 3 -space. Morever, the elliptic cylindrical curves verifying Tzitzeica condition were adapted to Minkowski 3-space in [14]. A necessary and sufficient condition was also found, in [3], for a space curve to be a Tzitzeica one.

On the other side, a Tzitzeica surface is a spatial surface for which the ratio of its

Gaussian curvature and the distance d_{2} from the origin to the tangent plane at any arbitrary point of the surface is constant, namely; $K / d_{2}^{4}=c_{2}$ for a constant c_{2}. This class of surface is of great interest, having important applications both in mathematics and in physics (see [19]). The relation between Tzitzeica curves and surfaces is the following: For a Tzitzeica surface with negative Gaussian curvature, the asimptotic lines are Tzitzeica curves [9]. It was given that a necessary and sufficient condition, in [19], for Cobb-Douglas production hypersurface to be a Tzitzeica hypersurface. In addition, a new Tzitzeica hypersurface was obtained in parametric, implicit and explicit forms in [8].

In this paper, we are interested in the curves of Tzitzeica type, more precisely we investigate the conditions for non-null general helices, pseudospherical curves and pseudospherical general helices to be of Tzitzeica type in Minkowski space \mathbb{E}_{1}^{3}. Next, we derive some characterizations about Tzitzeica tangent and binormal indicatrices of a spacelike curve in \mathbb{E}_{1}^{3}.

2. Preliminaries

The Minkowski 3 -space \mathbb{E}_{1}^{3} is the real vector space \mathbb{R}^{3} provided with the standard flat metric given by

$$
g=-d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}
$$

where $\left(x_{1}, x_{2}, x_{3}\right)$ is a rectangular coordinate system of \mathbb{E}_{1}^{3}. Recall that an arbitrary vector $v \in \mathbb{E}_{1}^{3}$ can be spacelike if $g(v, v)>0$ or $v=0$, timelike if $g(v, v)<0$ and null (lightlike) if $g(v, v)=0$ and $v \neq 0[15,17]$. The norm of a vector v is given $\|v\|=\sqrt{\mid g(v, v)}$ and two vectors v and w are said to be orthogonal, if $g(v, w)=0$. An arbitrary curve $\alpha(s)$ in \mathbb{E}_{1}^{3}, can locally be spacelike, timelike or null (lightlike), if all its velocity vectors $\alpha^{\prime}(s)$ are spacelike, timelike or null, respectively. A spacelike or timelike curve $\alpha(s)$ has unit speed, if $g\left(\alpha^{\prime}(s), \alpha^{\prime}(s)\right)= \pm 1[10,11,12]$.

Now let $v=\left(v_{1}, v_{2}, v_{3}\right)$ and $w=\left(w_{1}, w_{2}, w_{3}\right)$ be two vectors in \mathbb{E}_{1}^{3}, then the Minkowski cross product $v \times_{1} w$ is defined by the formula ([5])

$$
v \times_{1} w=\left|\begin{array}{ccc}
-\vec{i} & \vec{j} & \vec{k} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right|
$$

Let $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ be the moving Frenet frame along a curve α in \mathbb{E}_{1}^{3}, consisting of the tangent, principal normal and binormal vector field, respectively. If α is a non-null curve in \mathbb{E}_{1}^{3}, the Frenet equations are of the form $([1])$:

$$
\left[\begin{array}{c}
\mathbf{T}^{\prime} \tag{2.1}\\
\mathbf{N}^{\prime} \\
\mathbf{B}^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & \kappa & 0 \\
-\varepsilon_{1} \varepsilon_{2} \kappa & 0 & \tau \\
0 & \varepsilon_{1} \tau & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{T} \\
\mathbf{N} \\
\mathbf{B}
\end{array}\right],
$$

where the derivative with respect to the arc length s is denoted by a prime (') and $\varepsilon_{1}=g(\mathbf{T}, \mathbf{T})= \pm 1, \varepsilon_{2}=g(\mathbf{N}, \mathbf{N})= \pm 1, g(\mathbf{B}, \mathbf{B})=-\varepsilon_{1} \varepsilon_{2}$, respectively. For this moving Frenet frame, we write ([4])

$$
\begin{equation*}
\mathbf{T} \times{ }_{1} \mathbf{N}=\varepsilon_{1} \varepsilon_{2} \mathbf{B}, \quad \mathbf{N} \times{ }_{1} \mathbf{B}=-\varepsilon_{1} \mathbf{T}, \quad \mathbf{B} \times{ }_{1} \mathbf{T}=-\varepsilon_{2} \mathbf{N} \tag{2.2}
\end{equation*}
$$

We also recall from [12] that the pseudosphere of radius 1 and center at the origin is the hyperquadric in \mathbb{E}_{1}^{3} defined by

$$
\begin{equation*}
\mathbb{S}_{1}^{2}(1)=\left\{v \in \mathbb{E}_{1}^{3}: g(v, v)=1\right\} \tag{2.3}
\end{equation*}
$$

the pseudohyperbolic space of radius 1 and center at the origin is the hyperquadric in \mathbb{E}_{1}^{3} defined by

$$
\mathbb{H}_{0}^{2}(1)=\left\{v \in \mathbb{E}_{1}^{3}: g(v, v)=-1\right\}
$$

and the pseudo-Riemannian lightlike cone (quadric cone) defined by

$$
\mathbb{C}=\left\{v \in \mathbb{E}_{1}^{3}: g(v, v)=0\right\}
$$

3. The some curves satisfying Tzitzeica condition

3.1. The rectifying curves satisfying Tzitzeica condition. In three-dimensional Euclidean space \mathbb{E}^{3}, rectifying curves are introduced by B. Y. Chen in [6] as space curves whose position vector always lies in its rectifying plane of the curve. In this sense, the position vector, according to some chosen origin, of a rectifying curve α in \mathbb{E}^{3}
verifies the equation

$$
\begin{equation*}
\alpha(s)=\omega(s) \mathbf{T}(s)+\varpi(s) \mathbf{B}(s) \tag{3.1}
\end{equation*}
$$

where ω and ϖ are some differentiable functions with respect to the arclength parameter s. The rectifying curves in a Euclidean space were studied in [6], [7], [13].

We recall some known results on rectifying curves, in Minkowski 3-space, from [11] for later use.
Theorem A. Let $\alpha=\alpha(s)$ be a unit speed non-null rectifying curve in \mathbb{E}_{1}^{3} with spacelike or timelike rectifying plane, the curvature $\kappa(s)>0$ and $g(\mathbf{T}, \mathbf{T})=\varepsilon_{1}= \pm 1$. Then the following statements hold:
(i) The distance function $\rho=\|\alpha\|$ satisfies $\rho^{2}=\left|\varepsilon_{1} s^{2}+c_{1} s+c_{2}\right|$, for some $c_{1} \in$ $\mathbb{R}, c_{2} \in \mathbb{R}$.
(ii) The tangential component of the position vector of α is given by $g(\alpha, \mathbf{T})=\varepsilon_{1} s+c$, where $c \in \mathbb{R}$.
(iii) The normal component α^{N} of the position vector of the curve has a constant length and the distance function ρ is non-constant.
(iv) The torsion $\tau \neq 0$ and the binormal component of the position vector of the curve is constant, i.e. $g(\alpha, \mathbf{B})$ is constant.

Conversely, if $\alpha(s)$ is a unit speed non-null curve in \mathbb{E}_{1}^{3}, with spacelike or timelike rectifying plane, the curvature $\kappa(s)>0, g(\mathbf{T}, \mathbf{T})=\varepsilon_{1}= \pm 1$ and one of the statements (i), (ii), (iii) and (iv) holds, then α is a rectifying curve.

Theorem B. Let $\alpha=\alpha(s)$ be a unit speed non-null curve in \mathbb{E}_{1}^{3}, with a spacelike or a timelike rectifying plane and with the curvature $\kappa(s)>0$. Then up to isometries of \mathbb{E}_{1}^{3}, the curve α is a rectifying if and only if there holds $\tau(s) / \kappa(s)=c_{1} s+c_{2}$, where $c_{1} \in R_{0}, \quad c_{2} \in R$.

Now we give a very simple link between a rectifying curve and a Tzitzeica curve.
Proposition 1. Let $\alpha: I \rightarrow \mathbb{E}_{1}^{3}$ be a non-null curve having constant torsion. Then the non-null curve α is of Tzitzeica type if and only if it is a rectifying curve.
Proof. Let $\alpha: I \rightarrow \mathbb{E}_{1}^{3}$ be a non-null Tzitzeica curve with constant torsion. Then the distance $d(s)$ between the origin and its osculating plane at arbitrary point of the curve
α is

$$
\begin{equation*}
d(s)=g(\mathbf{B}(s), \alpha(s))=a_{1}, \tag{3.2}
\end{equation*}
$$

for each $s \in I$ and nonzero constant a_{1}. Differentiating of (3.2) with respect to s, we conclude for each $s \in I$

$$
g(\mathbf{N}(s), \alpha(s))=0
$$

which implies the curve α is a rectifying curve.
Conversely, let us assume the curve α satisfies the following

$$
\alpha(s)=\omega(s) \mathbf{T}(s)+\varpi(s) \mathbf{B}(s),
$$

where $\mathbf{T}(s)$ and $\mathbf{B}(s)$ are the tangent and binormal vectors of α, respectively. From the statement (iv) of Theorem A and (3.3), the distance between the origin and the osculating plane at any point of the rectifying curve α is

$$
\begin{equation*}
d(s)=g(\mathbf{B}(s), \alpha(s))=\varpi(s)=a_{2}, \tag{3.4}
\end{equation*}
$$

for nonzero constant a_{2}. It follows from the hypothesis and (3.4) that every rectifying curve having constant torsion is a Tzitzeica curve.
3.2. The general helices satisfying Tzitzeica condition. A general helix in Euclidean space \mathbb{E}^{3} is defined by the property that the tangent makes a constant angle with a constant direction. In \mathbb{E}^{3}, for general helices the Lancret Theorem is as following (see [2] and [16] for details)
Theorem C. (The Lancret theorem in Euclidean space). A curve in \mathbb{E}^{3} is a general helix if and only if there exists a constant b such that $\tau=b \kappa$.

Now we present a condition for a general helix to be a Tzitzeica curve in Minkowski space \mathbb{E}_{1}^{3}.
Theorem 2. Let $\alpha: I \rightarrow \mathbb{E}_{1}^{3}$ be a non-null general helix in \mathbb{E}^{3}. Then α is a Tzitzeica general helix if there exists a vector $\mathbf{X}(s)=2 b_{1} \varepsilon_{1} \mathbf{N}(s)-\left(\frac{\kappa^{\prime}(s)}{\kappa^{2}(s)}\right) \mathbf{B}(s)$ in \mathbb{E}_{1}^{3} such that

$$
g(\alpha(s), \mathbf{X}(s))=0
$$

for each $s \in I$.
Proof. Since $\alpha: I \rightarrow \mathbb{E}_{1}^{3}$ is a general helix, we have $\tau=b_{1} \kappa$ for nonzero constant b_{1}. Now we can take

$$
\begin{equation*}
\frac{\tau(s)}{d^{2}(s)}=f(s), \tag{3.5}
\end{equation*}
$$

where $f(s)$ is a differentiable function with respect to the arclength parameter s. From (3.5), we get

$$
b_{1}=\frac{f(s)}{\kappa} d^{2}(s)
$$

and also, by using Frenet formulas (2.1),

$$
\begin{align*}
0 & =\left(\frac{f(s)}{\kappa}\right)^{\prime} d^{2}(s)+2 b_{1} \varepsilon_{1} f(s) g(\mathbf{B}, \alpha) g(\mathbf{N}, \alpha) \\
& =\left(\frac{d f(s)}{d s}\right. \tag{3.6}\\
\kappa & \left.g(\mathbf{B}, \alpha)+f(s) g\left(2 b_{1} \varepsilon_{1} \mathbf{N}-\left(\frac{\frac{d \kappa}{d s}}{\kappa^{2}}\right) \mathbf{B}, \alpha\right)\right) g(\mathbf{B}, \alpha) .
\end{align*}
$$

By hypothesis and (3.6), we obtain

$$
\frac{d f(s)}{d s}=0
$$

which proves that α is a non-null Tzitzeica general helix.
Arbitrary curve in \mathbb{E}_{1}^{3} is called W-curve, if all its curvature functions are constant [10]. All W-curves in the Minkowski 3 -space \mathbb{E}_{1}^{3} were completely classified and as example, the only planar spacelike W-curves are circles and hyperbolas (see [18]).

Thus we have a result as following.
Corollary 3. There is no a non-null W-curve, in \mathbb{E}_{1}^{3}, satisfying Tzitzeica condition.
Proof. From Theorem B and Proposition 1, the proof is obvious.
3.3. The pseudospherical curves satisfying Tzitzeica condition: Let $\alpha: I \rightarrow \mathbb{S}_{1}^{2}$ be a unit speed pseudospherical curve. In this subsection, we investigate the links between the pseudospherical curves and the Tzitzeica curves.
Theorem 4. Let $\alpha: I \rightarrow \mathbb{E}_{1}^{3}$ be a non-null pseudospherical curve. Then the curve α is of Tzitzeica type provided there exists a nonconstant c_{1} such that

$$
\frac{\tau^{3}}{\left[\left(-\frac{\varepsilon_{1}}{\kappa}\right)\right]^{2}}=c_{1} .
$$

Proof. Let α be a unit speed pseudospherical curve. Without loss of generality, we take the \mathbb{S}_{1}^{2} as a pseudosphere of radius 1 and center at the origin. Then we get

$$
g(\alpha(s), \alpha(s))=1
$$

From this, by using Frenet formulas (2.1), we have

$$
g(\mathbf{N}(s), \alpha(s))=-\frac{\varepsilon_{1}}{\kappa}
$$

and

$$
\begin{equation*}
g(\mathbf{B}(s), \alpha(s))=\left(-\frac{\varepsilon_{1}}{\kappa}\right)^{\prime} \frac{1}{\tau} \tag{3.7}
\end{equation*}
$$

Considering Tzitzeica condition and the hypothesis, we obtain

$$
\begin{aligned}
\frac{\tau}{d^{2}(s)} & =\frac{\tau}{\left[\left(-\frac{\varepsilon_{1}}{\kappa}\right)^{\prime} \frac{1}{\tau}\right]^{2}} \\
& =\frac{\tau^{3}}{\left(\left(-\frac{\varepsilon_{1}}{\kappa}\right)^{\prime}\right]^{2}} \\
& \Rightarrow \frac{\tau}{d^{2}(s)}=c_{1}
\end{aligned}
$$

which implies the curve α is a Tzitzeica pseudospherical one.
Remark 5. According to [16], we adapt spherical general helices to Minkowski 3-space, namely a pseudospherical general helix satisfy the following condition

$$
\frac{\kappa^{\prime}}{\kappa^{2} \sqrt{\kappa^{2}-1}}= \pm c_{2}
$$

for nonconstant c_{2}.
We have immediately the following result from the Theorem 4 and Remark 5,
Corollary 6. Let $\alpha: I \rightarrow \mathbb{E}_{1}^{3}$ be a non-null pseudospherical general helix satisfying

$$
\frac{\kappa^{3}}{\kappa^{2}-1}=c_{3}
$$

where c_{3} is a nonconstant. Then the curve α is a Tzitzeica one.
Next, we give some results for the pseudospherical indicatrices of a spacelike curve to satisfy Tzitzica condition.
Theorem 7. Let $\alpha=\alpha(s)$ be a spacelike curve with timelike principal normal in \mathbb{E}_{1}^{3}. If α has the curvatures in the form

$$
\frac{\kappa(\tau / \kappa)^{\prime}}{\tau^{2}}=\text { const. }
$$

then its tangent indicatrix is a Tzitzeica curve.
Proof. Let $\gamma=\gamma(s)$ be the tangent indicatrix of the spacelike curve α. Then, by Frenet formulas (2.1), we write

$$
\begin{aligned}
\frac{d \gamma}{d s} & =\kappa \mathbf{N}, \\
\frac{d^{2} \gamma}{d s^{2}}= & \left(\kappa^{2}\right) \mathbf{T}+\left(\kappa^{\prime}\right) \mathbf{N}+(\kappa \tau) \mathbf{B}, \\
\frac{d^{3} \gamma}{d s^{3}}= & \left(3 \kappa \kappa^{\prime}\right) \mathbf{T}+\left(\kappa^{\prime \prime}+\kappa^{3}+\kappa \tau^{2}\right) \mathbf{N} \\
& +\left(2 \kappa^{\prime} \tau+\kappa \tau^{\prime}\right) \mathbf{B},
\end{aligned}
$$

also we have

$$
\frac{d \gamma}{d s} \times_{1} \frac{d^{2} \gamma}{d s^{2}}=\left(-\kappa^{2} \tau\right) \mathbf{T}+\left(\kappa^{3}\right) \mathbf{B}
$$

and

$$
g\left(\frac{d \gamma}{d s} \times_{1} \frac{d^{2} \gamma}{d s^{2}}, \frac{d^{3} \gamma}{d s^{3}}\right)=\kappa^{5}\left(\frac{\tau}{\kappa}\right)^{\prime} .
$$

Denote by τ_{γ} and d_{γ} the torsion and distance from the origin to the osculating plane at arbitrary point of the curve γ, respectively. Then we derive

$$
\frac{\tau_{\gamma}}{d_{\gamma}^{2}(s)}=\frac{g\left(\frac{d \gamma}{d s} x_{1} \frac{d^{2} \gamma}{d s^{2}}, \frac{d^{3} \gamma}{d d^{3}}\right)}{g\left(\gamma, \frac{d \gamma}{d s} \times \frac{d^{2} \gamma}{d s^{2}}\right)^{2}}=\frac{\kappa\left(\frac{\tau}{\kappa}\right)^{\prime}}{\tau^{2}},
$$

which completes the proof.
We have the following result similar with previous theorem without proof.

Theorem 8. Let $\alpha=\alpha(s)$ be a spacelike curve with timelike principal normal in \mathbb{E}_{1}^{3}. If its curvatures satisfies following condition

$$
\frac{\tau(\tau / \kappa)^{\prime}}{\kappa^{2}}=\text { const. }
$$

then the binormal indicatrix of α is a Tzitzeica curve.

References

[1] H. Balgetir, M. Bektas and M. Ergut, Bertrand curves for Nonnull curves in 3-dimensional Lorentzian space, Hadronic Journal, 27 (2004), 229-236.
[2] M. Barros, General helices and a theorem of Lancret, Proceedings of the Am. Math.Soc., 125 (1997), 5, 1503-1509.
[3] N. Bila, Symmetry reductions for the Tzitzeica curve equation, Math and Comp. Sci. Working Papers, Paper 16 (2012).
[4] M. Bilici, M. Caliskan, On the Involutes of the spacelike curve with a timelike binormal in Minkowski 3-space, Int. Math. Forum, 4 (2009), 31, 1497-1509.
[5] A. Bobe, W. G. Boskoff and M. G. Ciuca, Tzitzeica-Type centro-affine invariants in Minkowski spaces, An. St. Univ. Ovidius Constanta, 20 (2012), 2, 27-34.
[6] B. Y. Chen, When does the position vector of a space curve always lie in its rectifying plane?, Amer. Math. Monthly, 110 (2003), 2, 147-152.
[7] B. Y. Chen, F. Dillen, Rectifying curves as centrodes and extremal curves, Bull. Inst. Math. Academia Sinica, 33 (2005), 2, 77-90.
[8] O. Constantinescu and M. Crasmareanu, A new Tzitzeica hypersurface and cubic Finslerian metrics of Berwald type, Balkan J. Geom. Appl., 16 (2011), 2, 27-34.
[9] M. Crasmareanu, Cylindrical Tzitzeica curves implies forced harmonic oscillators, Balkan J. Geom. Appl., 7 (2002), 1, 37-42.
[10] M. Grbovic, E. Nesovic, Some relations between rectifying and normal curves in Minkowski 3-space, Math. Commun., 17 (2012), 655-664.
[11] K. Ilarslan, E. Nesovic, M. Petrovic-Torgasev, Some characterizations of rectifying curves in Minkowski 3-space, Novi Sad J Math., 33 (2003), 2, 23-32.
[12] K. Ilarslan, Spacelike Normal Curves in Minkowski Space E ${ }_{1}^{3}$, Turk J Math., 29 (2005), 53-63.
[13] K. Ilarslan, E. Nesovic, Some Characterizations of Rectifying Curves in the Euclidean Space E^{4}, Turk J. Math. 32 (2008), 21-30.
[14] M. K. Karacan, B. Bukcu, On the elliptic cylindrical tzitzeica curves in Minkowski 3-space, Sci. Manga, 5 (2009), 44-48.
[15] W. Kühnel, Differential Geometry Curves-Surfaces-Manifods, American Mathematical Society, 2006.
[16] J. Monterde, Curves with constant curvature ratios, Bulletin of Mexican Mathematic Society, 3a serie, 13 (2007), 177-186.
[17] B. O`Neill, Semi-Riemannian geometry with applications to relativity, Academic Press, New York, 1983.
[18] M. Petrovic-Torgasev, E. Sucurovic, W-curves in Minkowski space-time, Novi Sad J. Math., 32 (2002), 2, 55-65.
[19] G. E. Vilcu, A geometric perspective on the generalized Cobb-Douglas production functions, Appl. Math. Lett., 24 (2011), 777-783.

