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Abstract In this paper we introduce the notion of a δ-zero-divisor of
a commutative semiring and we also study some of it properties. Here δ is
a mapping that assigns to each ideal I an ideal δ(I) of the same semiring.
We analyze possible structures of δ-semidomain and relationships between
semirings that share some properties with δ-semidomains, but whose defini-
tions are less restrictive. We also investigate δ-primary ideals of a commu-
tative semiring R which unify prime ideals and primary ideals of R.
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1 Introduction

As a generalization of rings, the representation theory of semirings has
developed greatly in the recent years. The structure of semirings have proven
to be useful tools in various disciplines. They are used to test conjectures
by searching large lists for counterexamples, but also to find structures with
some specified properties, like e.g. some molecules for a given chemical
formula or networks with certain properties [9].

The study of the set of zero-divisor elements of a commutative ring can
often be a frustrating one. Almost immediately one runs into the ugly issue
of a profound lack of algebraic structure, highlighted by (typically) a lack
of closure under addition. This unfortunate lack of algebraic structure is
most disturbing in such an important subset within a ring. In recent years,
however, the study of zero divisors has been energized by a lovely collab-
oration with the tools and methods of graph theory. We are motivated in
this regard by the recent success of studies of the notion of domainlike com-
mutative rings in papers [2, 3, 7] because they are useful rings for studying
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factorization in commutative rings with zero-divisors. The factorization of
nonunits into atoms is a central theme in algebra. Classically the theory has
concentrated on integral domains. Much of this theory generalizes to the
case of rings with zero-divisors, but important differences remain (see [2, 3]).
Therefore, zero-divisor elements of a commutative ring (resp. a commuta-
tive semiring) are very important. One point of this paper is to introduce
δ-zero-divisor element of a commutative semiring.

δ-primary ideals of a commutative ring were introduced by Dongsheng in
[8], where δ is a mapping with some additional properties. Such δ-primary
ideals unify the prime and primary ideals under one frame. The aim of the
present paper, in Section 2, is to generalize the results in the paper [8], from
commutative ring theory to commutative semiring theory. In Section 3, we
introduce δ-zero-divisor element of a commutative semiring, and we focus on
a class of semirings, representable by the property that every δ-zero-divisor
of the semiring is δ-nilpotent. In fact, we establish a connection between
δ-semidomainlike semiring and δ-semidomain (see Section 2 and Section 3).

For the sake of completeness, we state some definitions and notation used
throughout. By a commutative semiring, we mean a commutative semigroup
(R, ·) and a commutative monoid (R,+, 0) in which 0 is the additive identity
and r · 0 = 0 · r = 0 for all r ∈ R, both are being connected by ring-like
distributivity. In this paper, all semirings considered will be assumed to be
commutative semirings with non-zero identity. A semiring R is said to be a
semidomain if ab = 0 (a, b ∈ R), then either a = 0 or b = 0.

Definition 1.1 Let R be a commutative semiring with non-zero identity.
(1) A subset I of R will be called an ideal if a, b ∈ I and r ∈ R implies

a+ b ∈ I and ra ∈ I.
(2) A subtractive ideal (= k-ideal) I is an ideal such that if x, x+ y ∈ I

then y ∈ I (so {0} is a k-ideal of R).
(3) The k-closure cl(I) of I is defined by cl(I) = {a ∈ R : a + c =

d for some c, d ∈ I} is an ideal of R satisfying I ⊆ cl(I) and cl(cl(I)) =
cl(I).

(4) If I is an ideal of R, then the radical of I, denoted by
√
I, is the set

of all x ∈ R for which xn ∈ I for some positive integer n. This is an ideal
of R contains I.

(5) A prime ideal of R is a proper ideal I of R in which x ∈ I or y ∈ I
whenever xy ∈ I. A proper ideal I of R is called primary if ab ∈ I, then
a ∈ I or b ∈

√
I.
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(6) A proper ideal I of R is said to be maximal (resp k-maximal) if for
any ideal J (resp. k-ideal) in R with I $ J , one has that J = R.

(7) An ideal I of a semiring R is called a partitioning ideal (= Q-ideal) if
there exists a subset Q of R such that R = ∪{q+I : q ∈ Q} and if q1, q2 ∈ Q,
then (q1 + I) ∩ (q2 + I) 6= ∅ if and only if q1 = q2.

Let I be a Q-ideal of R and let R/I = {q+I : q ∈ Q}. Then R/I forms a
semiring under the operations ⊕ and ⊙ defined as follows: (q1+I)⊕(q2+I) =
q3 + I, where q3 ∈ Q is the unique element such that q1 + q2 + I ⊆ q3 + I
and (q1 + I) ⊙ (q2 + I) = q4 + I, where q4 ∈ Q is the unique element such
that q1q2 + I ⊆ q4 + I. This semiring R/I is called the quotient semiring of
R by I [1, 4].

2 Notation and basic structure

Let R be a commutative semiring with Id(R) its set of ideals, Idk(R)
its set of k-ideals, and Idq(R) its set of Q-ideals. Since every Q-ideal is
a k-ideal, Idq(R) ⊆ Idk(R) ⊆ Id(R). Our starting point is the following
definition.

Definition 2.1 (1) An ideal expansion is a function δ which assigns to each
ideal I of a semiring R another ideal δ(I) of the same semiring, such that
I ⊆ δ(I), and J ⊆ L implies δ(J) ⊆ δ(L) for all ideals I, J and L of R [8].

(2) A Q-ideal expansion is a function δ which assigns to each Q-ideal I of
a semiring R another Q-ideal δ(I) of the same semiring, such that I ⊆ δ(I),
and J ⊆ L implies δ(J) ⊆ δ(L) for all Q-ideals I, J and L of R.

Definition 2.2 Given an expansion δ of ideals, a proper ideal I of a semir-
ing R is called δ-primary if ab ∈ I and a /∈ I, then b ∈ δ(I) [8].

It is clear that the definition of δ-primary ideals can be also stated as:
If ab ∈ I and a /∈ δ(I), then b ∈ I.

Remark 2.3 Let R be a commutative semiring.
(1) The identity function δ0, where δ0(I) = I (resp. δq

0
(I) = I) for every

I ∈ Id(R) (resp. for every I ∈ Idq(R)), is an expansion of ideals. So an
ideal I is δ0-primary (resp. δq

0
-primary) if and only if it is a prime ideal

(resp. it is a prime Q-ideal).
(2) For each I ∈ Id(R) (resp. for each I ∈ Idq(R)) define δ1(I) =

√
I

(resp. δq
1
(I) =

√
I). Then δ1 (resp. δ

q
1
) is an expansion of ideals. So an ideal
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I is δ1-primary (resp. δq
1
-primary) if and only if it is a primary ideal (resp.

it is a primary Q-ideal); hence the intersection of two δ-primary ideals is
not δ-primary, in general.

(3) For each I ∈ Id(R) define δ2(I) = cl(I), the k-closure of I. Then δ2
is an expansion of ideals.

(4) The function δ3 that assigns the biggest ideal of R to each ideal is an
expansion of ideals. So every ideal I is δ3-primary.

(5) By [6, Theorem 1], if I is a proper Q-ideal of R , then there exists
a maximal k-ideal M of R such that I ⊆ M . Now for each proper Q-ideal
I, let δq

4
(I) be the intersections of all maximal k-ideals containing I, and

δq
4
(R) = R. Then δq

4
is an expansion of Q-ideals.

(6) Let I be an ideal of R and set

Ī = {x ∈ R : a+ nx = (n+ 1)x for some positive integer n and a ∈ I}.

Let x, y ∈ Ī and r ∈ R; so a + nx = (n + 1)x and b +my = (m + 1)y for
some positive integers m,n and a, b ∈ I. Then a + b + (m + n)(x + y) =
(m + n + 1)(x + y) and ra + n(rx) = (n + 1)rx gives Ī is an ideal of R
with I ⊆ Ī. For each I ∈ Id(R) define δ5(I) = Ī. Then δ5 is an expasion of
ideals.

(7) If δ and γ are two ideal expansions and δ(I) ⊆ γ(I) for each ideal I,
then every δ-primary ideal is also γ-primary. In particular, a prime ideal is
δ-primary for every δ.

(8) An inspection will show that the intersection of any collection of ideal
expansions is an ideal expansion.

(9) Given an expansion δ of ideals. Define Eδ : Id(R) → Id(R) by
Eδ(I) =

⋂{J ∈ Id(R) : I ⊆ J, J is δ-primary }. Then Eδ is an ideal
expansion. Clearly, Eδ0 = δ1, Eδ1 = δ1 and Eδ

q

4

= δq
4
.

The proof of the following proposition is straightforward, but we give
the details for convenience.

Proposition 2.4 Assume that R is a commutative semiring and let δ be an
ideal expansion. Then the following hold:

(1) An ideal I is δ-primary if and only if for any two ideals J and L, if
JL ⊆ I and J * I, then L ⊆ δ(I).

(2) If I is δ-primary and T is a subset of R, then (I : T ) = {r ∈ R :
rT ⊆ I} is δ-primary. Moreover, if T is an ideal of R with T * δ(I), then
(I : T ) = I.

(3) If δ(I) ⊆
√
I for every δ-primary ideal I, then δ(I) =

√
I
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(4) if {Ii : i ∈ Λ} is a directed collection of δ-primary ideals of R, then
I = ∪i∈ΛIi is δ-primary.

Proof. (1) Suppose that I is a δ-primary ideal and let J * I and L * δ(I).
Then we can chose x ∈ J − I and y ∈ L− δ(I). By assumption, xy ∈ I; so
either x ∈ I or y ∈ δ(I) which is a contradiction. The other implication can
similarily be proved.

(2) Let xy ∈ (I : T ) such that x /∈ (I : T ). Then there exists z ∈ T such
that xz /∈ I. As xyz ∈ I and I ⊆ (I : T ), I δ-primary gives y ∈ δ(I) ⊆ δ((I :
T )). Thus (I : T ) is δ-primary. Finally, it suffices to show that (I : T ) ⊆ I.
Since T (I : T ) ⊆ I and T * δ(I), we must have (I : T ) ⊆ I by (1), as
required.

(3) Let x ∈
√
I. Then xn ∈ I for some the least positive integer n. We

may assume that n > 1. Now xn ∈ I with xn−1 /∈ I gives x ∈ δ(I), and so
we have equality.

(4) Let xy ∈ I and x /∈ I. Then there exists a Ii such that xy ∈ Ii with
x /∈ Ii. So y ∈ δ(Ii); hence δ(Ii) ⊆ δ(I) gives y ∈ δ(I), as needed. 2

Let R be a semiring. An ideal expansion δ is said to be intersection
preserving if δ(I ∩ J) = δ(I) ∩ δ(J) for all ideals I and J of R [8]. An
expansion δ is said to be global if for any semiring homomorphism f : R →
R′, δ(f−1(I)) = f−1(δ(I)) for all ideal I of R [8]. It is clear that δ0, δ1 and
δ3 are both intersection preserving and global. By an argument like that in
[8, Lemma 2.2, Lemma 2.4, Lemma 2.6 and Proposition 2.7], we have the
following proposition:

Proposition 2.5 Let R be a semiring. Then the following hold:
(1) The ideal expansion δq

4
is intersection preserving.

(2) Assume that δ is an intersection preserving ideal expansion and let
I1, ..., In be δ-primary ideals of R with δ(Ii) = δ(Ij) for all i, j. Then ∩n

i=1
Ii

is δ-primary.
(3) If δ is global and f : R → S is a surjective semiring homomorphism,

then an ideal I of R that contains ker(f) is δ-primary if and only if f(I) is
a δ-primary ideal of S.

3 Some basic properties of δ-zero-divisors

Let R be a commutative semiring with an ideal expansion δ. An element
x of R is called δ-nilpotent if x ∈ δ({0}) [8]. The set of all δ-nilpotent
elements of R is denoted by nilδ(R).

5

Galaxy
Text Box
75



Theorem 3.1 Let I be a Q-deal of a semiring R with δq a global expansion,
and let q0 be the unique element in Q such that q0 + I is the zero in R/I.
Then the following hold:

(1) δq(I)/I = δq({q0 + I}).
(2) I is δq-primary if and only if every zero-divisor of R/I is δq-nilpotent.

Proof. (1) Let v : R → R/I be the natural homomorphism of R onto R/I.
One can easily show that v−1({q0 + I}) = {q0 + a : a ∈ I} = q0 + I = I. As
δq is global, we have δq(I) = δq(v−1({q0 + I})) = v−1(δq({q0 + I})); hence
δq(I)/I = v(δq(I)) = v(v−1(δq({q0 + I}))) = δq({q0 + I}) since v is onto.

(2) Assume that I is δq-primary and let q1 + I is a zero-divisor of R/I.
Then there exists q0 + I 6= q2 + I (so q2 /∈ I) such that (q1 + I)⊙ (q2 + I) =
q0 + I, where q1q2 + I ⊆ q0 + I = I; hence q1q2 ∈ I since I is a k-ideal. Now
I is a δq-primary gives q1 ∈ δq(I); so q1 + I ∈ δq(I)/I = δq({q0 + I}) by
(1). Thus q1 + I is δq-nilpotent. Conversely, let r = q + a, s = q′ + b ∈ R
(where q, q′ ∈ Q and a, b ∈ I) with rs ∈ I and r /∈ I (so q /∈ I). Then
rs ∈ I gives qq′ ∈ I since I is a k-ideal. There exists t ∈ Q such that
(q + I) ⊙ (q′ + I) = t + I, where qq′ + I ⊆ t + I, thus t ∈ I. Therefore
q0 + I = t+ I by [5, Lemma 2.3 (ii)]. It follows that q′ + I is a zero-divisor
of R/I; so q′ + I ∈ δq({q0 + I}) = δq(I)/I. Then there exists u ∈ δq(I) ∩Q
such that q′ + I = u + I, so q′ = u ∈ δq(I). Thus b = q′ + b ∈ δq(I), as
required. 2

Let I be a proper Q-ideal of a semiring R. We will now provide necessary
and sufficient conditions for ensuring the set of zero-divisors of R/I is an
ideal.

Theorem 3.2 Let I be a proper Q-ideal of a semiring R. Then I is δq-
primary if and only if Z(R/I) ⊆ {q + I : q ∈ Q ∩ δq(I)} = δq(I)/I.

Proof. Let q0 be the unique element in Q such that q0 + I is the zero in
R/I, and let M = {q+I : q ∈ Q∩δq(I)}. Let q+I be a non-zero element of
Z(R/I) (so q /∈ I since every Q-ideal is a k-ideal). Then there exists q′ ∈ Q
with q′ /∈ I such that (q + I) ⊙ (q′ + I) = q0 + I, where qq′ + I ⊆ q0 + I.
Since I is a k-ideal, qq′ ∈ I by [5, Lemma 2.3 (i)]; hence q ∈ δ(I) since I
is δq-primary. Therefore, Z(R/I) ⊆ M . Conversely, let a, b ∈ R such that
ab ∈ I with a /∈ I. Since I is a Q-ideal, there exist q1+I and q2+I such that
a ∈ q1+ I and b ∈ q2+ I; thus a = q1+ c (so q1 /∈ I) and b = q2+d for some
c, d ∈ I. Then I is a k-ideal and ab = cq2 + dq1 + cd + q1q2 gives q1q2 ∈ I.
Let q3 be the unique element in Q such that (q1 + I) ⊙ (q2 + I) = q3 + I,
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where q1q2 + I ⊆ q3 + I; hence q3 ∈ I. Now by [5, Lemma 2.3 (ii)], q3 = q0,
so q2 + I ∈ Z(R/I), and therefore q2 ∈ δq(I). Thus b = q2 + d ∈ δq(I) since
it is a k-ideal. Thus I is δq-primary. 2

Theorem 3.3 Let I be a proper Q-ideal of a semiring R. Then the following
hold:

(1) I is δq
1
-primary if and only if Z(R/I) = {q + I : q ∈ Q ∩ δq

1
(I)} =

δq
1
(I)/I.
(2) If I is a δq

1
-primary ideal of R, then Z(R/I) is an ideal of R/I.

Proof. (1) By Theorem 3.2, it is sufficient to show that M = {q + I : q ∈
Q∩δq

1
(I)} ⊆ Z(R/I). Let s+I ∈ M , where s ∈ Q∩δq

1
(I). Since δq

1
(I) =

√
I,

there exists n which is the least positive integer n with sn ∈ I. If n = 1, then
s + I = q0 + I ∈ Z(R/I) by [5, Lemma 2.3 (ii)]. If n > 1, then ssn−1 ∈ I
with sn−1 /∈ I. As I is a Q-ideal, sn−1 = t+ a for some t ∈ Q− I and a ∈ I,
and so ssn−1 = st+ sa; thus st ∈ I since I is a k-ideal. Let u be the unique
element in Q such that (s + I) ⊙ (t + I) = u + I, where st + I ⊆ u + I; so
u ∈ I. Now by [5, Lemma 2.3 (ii)], u = q0; hence s + I ∈ Z(R/I), we have
equality.

(2) Let q0 be the unique element in Q such that q0+I is the zero in R/I,
and let t1 + I, t2 + I ∈ Z(R/I), z + I ∈ R/I, where t1, t2 ∈ Q ∩ δq

1
(I) and

z ∈ Q. Then there exists u1 ∈ Q− I such that (t1 + I)⊙ (u1 + I) = q0 + I,
where t1u1 + I ⊆ q0 + I; so t1u1 ∈ I with u1 /∈ I. It follows that t1 ∈ δq

1
(I).

Similarly, t2 ∈ δq
1
(I). Thus t1 + t2 ∈ δq

1
(I). There exists n which is the least

positive integer n with (t1+ t2)
n ∈ I. Let q be the unique element in Q such

that (t1 + I) ⊕ (t2 + I) = q + I, where t1 + t2 + I ⊆ q + I. If n = 1, then
t1 + t2 ∈ I; so q ∈ I ⊆ δq

1
(I). If n > 1, then (t1 + t2)(t1 + t2)

n−1 ∈ I with
(t1+t2)

n−1 /∈ I. As I is a Q-ideal, (t1+t2))
n−1 = t+a for some t ∈ Q−I and

a ∈ I, and so (t1+ t2)(t1+ t2)
n−1 = t(t1+ t2)+a(t1+ t2); thus t(t1+ t2) ∈ I

since I is a k-ideal; hence t(t1+ t2)+I ⊆ tq+I gives tq ∈ I with t /∈ I. Thus
q ∈ δq

1
(I) since I is a δq

1
-primary. Therefore, (t1 + I) ⊕ (t2 + I) ∈ Z(R/I).

Similarly, (t1 + I)⊙ (z + I) ∈ Z(R/I), and this completes the proof. 2

Corollary 3.4 Let I be a proper ideal of a ring R. Then the following hold:
(1) If δ is an ideal expansion, then I is δ-primary if and only if Z(R/I) ⊆

{r + I : r ∈ δ(I)} = δ(I)/I.
(2) I is δ1-primary if and only if Z(R/I) = {r+I : r ∈ δ1(I)} = δ1(I)/I.
(3) If I is a δ1-primary ideal of R, then Z(R/I) is an ideal of R/I.

Proof. Apply Theorem 3.3 and Theorem 3.2. 2
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Definition 3.5 (1) Let R be a semiring with an ideal expansion δ. A δ-
zero-divisors in R is an element x ∈ R for which there exists y ∈ R with
y /∈ δ({0}) such that xy ∈ δ({0}).

(2) Let R be a ring with an ideal expansion δ. A δ-zero-divisors in R is
an element x ∈ R for which there exists y ∈ R with y /∈ δ({0}) such that
xy ∈ δ({0}).

Clearly, δ0-zero-divisor elements are exactly the ordinary zero-divisor
elements. The set of δ-zero-divisors in R will be denoted by Zδ(R).

Proposition 3.6 Assume that R is a semiring with non-zero identity, and
let δ be an ideal expansion such that δ({0}) 6= R. Then the following hold:

(1) nilδ(R) is an ideal of R with nilδ(R) ⊆ Zδ(R).
(2) If Zδ(R) is an ideal of R, then Zδ(R) is δ-primary.

Proof. (1) Let x, y ∈ nilδ(R) and r ∈ R. Then x, y ∈ δ({0}), so x+ y, rx ∈
δ({0}) since δ({0}) is an ideal of R; hence x+ y, rx ∈ nilδ(R). Thus nilδ(R)
is an ideal. Finally, let a ∈ nilδ(R). Since a = a1R ∈ δ({0}) and 1 /∈ δ({0}),
we have a ∈ Zδ(R), as needed.

(2) Let x, y ∈ R be such that xy ∈ Zδ(R). Then there exists z ∈ R
such that z /∈ δ({0}) and xyz ∈ δ({0}). Therefore, if yz ∈ δ({0}), then
y ∈ Zδ(R). If yz /∈ δ({0}), then x ∈ Zδ(R). Thus Zδ(R) is a δ-primary ideal
of R. 2

Theorem 3.7 Let I be a Q-ideal of a semiring R with δq a global expansion.
Then δq(I) is δq-primary if and only if Zδ(R/I) ⊆ δq({q0 + I})

Proof. Let q0 be the unique element in Q such that q0 + I is the zero in
R/I, and let q+ I be an element of Zδ(R/I). Then there exists q′ ∈ Q with
q′ + I /∈ δq({q0 + I}) (so q′ /∈ δq(I)) such that (q + I)⊙ (q′ + I) = q1 + I ∈
δq({q0+I}) = δq(I)/I, where qq′+I ⊆ q1+I and q1 ∈ Q∩δq(I). Since δq(I)
is a k-ideal, qq′ ∈ δq(I) ; hence q ∈ δq(I) since δq(I) is δq-primary and δq is
a global expansion. Therefore, Z(R/I) ⊆ δq(I)/I. Conversely, let a, b ∈ R
such that ab ∈ δq(I) with a /∈ δq(I). Since I is a Q-ideal, there exist q1 + I
and q2+ I such that a ∈ q1+ I and b ∈ q2+ I; thus a = q1+ c (so q1 /∈ δq(I);
hence q1+I /∈ δq(I)/I = δq({q0+I})) and b = q2+d for some c, d ∈ I ⊆ δq(I).
Then δq(I) is a k-ideal and ab = cq2+dq1+ cd+ q1q2 gives q1q2 ∈ δq(I). Let
q3 be the unique element in Q such that (q1 + I)⊙ (q2 + I) = q3 + I, where
q1q2 + I ⊆ q3 + I; hence q3 ∈ δq(I). It follows that q3 + I ∈ δq({q0 + I}),
and so q2 + I ∈ Zδ(R/I), and therefore q2 ∈ δq(I). Hence b = q2 + d ∈ δq(I)
since it is a k-ideal. Thus δq(I) is δq-primary. 2

8
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Corollary 3.8 Let I be an ideal of a ring R with δ a global expansion. Then
δ(I) is δ-primary if and only if Zδ(R/I) ⊆ δ({I}).

Proof. Apply Theorem 3.7. 2

Definition 3.9 (1) A semiring R with an ideal expansion δ is called δ-
semidomainlike semiring, if Zδ(R) ⊆ nilδ(R).

(2) A ring R with an ideal expansion δ is called δ-domainlike ring, if
Zδ(R) ⊆ nilδ(R).

Note that some of the expansion ideals satisfy the property δ(δ(I)) =
δ(I) for every ideal I of a semiring R, say δ0, δ1 and δ2.

Theorem 3.10 Let R be a semiring with an ideal expansion δ such that
δ(δ(I)) = δ(I) for every ideal I of R. Then the following hold:

(1) δ({0}) is a δ-primary ideal of R if and only if Zδ(R) = nilδ(R). In
particular, if δ({0}) is δ-primary, then Zδ(R) is a δ-primary ideal of R.

(2) δ({0}) is δ-primary if and only if R is δ-semidomainlike semiring.
(3) If R is δ-semidomainlike semiring, then Zδ(R) is the unique minimal

δ-primary ideal of R.

Proof. (1) Let δ({0}) be a δ-primary ideal of R. By Proposition 3.6, it is
sufficient to show that Zδ(R) ⊆ nilδ(R). Let x ∈ Zδ(R). Then xy ∈ δ({0})
for some y /∈ δ({0}). Since δ({0}) is a δ-primary, y ∈ δ(δ({0})) = δ({0}),
and so we have equality. Conversely, let a, b ∈ R such that ab ∈ δ({0}) but
b /∈ δ({0}). Then a ∈ Zδ(R) = nilδ(R). So δ({0}) must be a δ-primary ideal
of R. (2) follows from (1). To prove (3), as Zδ(R) = nilδ(R) by (1), we have
that Zδ(R) is a δ-primary ideal of R since δ({0}) is δ-primary. Now if J is
a δ-primary ideal, then Zδ(R) = nilδ(R) ⊆ J , as required. 2

Definition 3.11 (1) A commutative semiring R with an ideal expansion δ
is called a δ-semidomain if ab ∈ δ({0}) (a, b ∈ R), then either a ∈ δ({0}) or
b ∈ δ({0}).

(2) A commutative ring R with an ideal expansion δ is called δ-domain
if ab ∈ δ({0}) (a, b ∈ R), then either a ∈ δ({0}) or b ∈ δ({0}).

A classical result of commutative semiring theory is that a Q-ideal I
is prime if and only if R/I is a semidomain (see [5, Theorem 2.6]). The
following theorem is a corresponding result for δq-semidomainlike semirings.
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Theorem 3.12 Let I be a Q-ideal of a semiring R with δq a global ex-
pansion such that δq(δq(I)) = δq(I) for every ideal I of R. If δq(I) is
δq-primary, then R/I is a δq-semidomainlike semiring if and only if R/I is
δq-semidomain.

Proof. Assume that q0 is the unique element in Q such that q0 + I is the
zero in R/I and let R/I be a δq-semidomainlike semiring; we show that R/I
is δ-semidomain. Let (q1+ I)⊙ (q2+ I) = q3+ I ∈ δq({0}) = δq(I)/I, where
q1q2 + I ⊆ q3 + I and q3 ∈ Q∩ δq(I), so q1q2 ∈ δq(I) since δq(I) is a k-ideal.
Now δq(I) is a δq-primary gives either q1 ∈ δq(I) or q2 ∈ δq(δq(I)) = δq(I);
hence q1+I ∈ δq(I)/I or q2+I ∈ δq(I)/I. Conversely, by Proposition 3.5, it
is sufficient to show that Zδ(R/I) ⊆ nilδ(R/I). Let t+ I ∈ Zδ(R/I). Then
there exists u+ I ∈ R/I with u+ I /∈ δq({0}) such that (t+ I)⊙ (u+ I) ∈
δq({0}). Now R/I is a δq-semidomain, one has that t+ I ∈ nilδ(R/I). Thus
R/I is a δq-semidomainlike semiring. 2

Corollary 3.13 Let I be an ideal of a ring R with δ a global expansion such
that δ(δ(I)) = δ(I) for every ideal I of R. If δ(I) is δ-primary, then R/I is
a δ-domainlike ring if and only if R/I is δ-domain.

Proof. Apply Theorem 3.12. 2
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