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Abstract. Here we consider the approximation of functions by sublinear positive op-
erators with applications to a large variety of Max-Product operators under iterated
fractional differentiability. Our approach is based on our general fractional results about
positive sublinear operators. We produce Jackson type inequalities under iterated frac-
tional initial conditions. So our way is quantitative by producing inequalities with their
right hand sides involving the modulus of continuity of iterated fractional derivative of
the function under approximation.
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1. Introduction

The inspiring motivation here is the monograph by B. Bede, L. Coroianu and S. Gal [6], 2016.
Let N ∈ N, the well-known Bernstein polynomials ([9]) are positive linear operators, defined by the

formula

(1) BN (f) (x) =

N∑
k=0

(
N
k

)
xk (1− x)

N−k
f

(
k

N

)
, x ∈ [0, 1] , f ∈ C ([0, 1]) .

T. Popoviciu in [11], 1935, proved for f ∈ C ([0, 1]) that

(2) |BN (f) (x)− f (x)| ≤ 5

4
ω1

(
f,

1√
N

)
, ∀ x ∈ [0, 1] ,

where

(3) ω1 (f, δ) = sup
x,y∈[a,b]:
|x−y|≤δ

|f (x)− f (y)| , δ > 0,

is the first modulus of continuity, here [a, b] = [0, 1].
G.G. Lorentz in [9], 1986, p. 21, proved for f ∈ C1 ([0, 1]) that

(4) |BN (f) (x)− f (x)| ≤ 3

4
√
N
ω1

(
f ′,

1√
N

)
, ∀ x ∈ [0, 1] ,
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In [6], p. 10, the authors introduced the basic Max-product Bernstein operators,

(5) B
(M)
N (f) (x) =

∨N
k=0 pN,k (x) f

(
k
N

)∨N
k=0 pN,k (x)

, N ∈ N,

where
∨

stands for maximum, and pN,k (x) =

(
N
k

)
xk (1− x)

N−k
and f : [0, 1]→ R+ = [0,∞).

These are nonlinear and piecewise rational operators.

The authors in [6] studied similar such nonlinear operators such as: the Max-product Favard-Szász-

Mirakjan operators and their truncated version, the Max-product Baskakov operators and their truncated

version, also many other similar specific operators. The study in [6] is based on presented there general

theory of sublinear operators. These Max-product operators tend to converge faster to the on hand

function.
So we mention from [6], p. 30, that for f : [0, 1]→ R+ continuous, we have the estimate

(6)
∣∣∣B(M)

N (f) (x)− f (x)
∣∣∣ ≤ 12ω1

(
f,

1√
N + 1

)
, for all N ∈ N, x ∈ [0, 1] .

In this paper we expand the study of [6] by considering iterated fractional smoothness of functions.

So our inequalities are with respect to ω1

(
D(n+1)αf, δ

)
, δ > 0, where D(n+1)αf with α > 0, n ∈ N, is the

iterated fractional derivative.

2. Main Results

We make

Remark 2.1. Let f : [a, b] → R such that f ′ ∈ L∞ ([a, b]), x0 ∈ [a, b], 0 < α < 1, the left Caputo
fractional derivative of order α is defined as follows

(7)
(
Dα
∗x0

f
)

(x) =
1

Γ (1− α)

∫ x

x0

(x− t)−α f ′ (t) dt,

where Γ is the gamma function for all x0 ≤ x ≤ b.
We observe that ∣∣(Dα

∗x0
f
)

(x)
∣∣ ≤ 1

Γ (1− α)

∫ x

x0

(x− t)−α |f ′ (t)| dt

(8) ≤
‖f ′‖∞

Γ (1− α)

∫ x

x0

(x− t)−α dt =
‖f ′‖∞

Γ (1− α)

(x− x0)
1−α

(1− α)
=
‖f ′‖∞ (x− x0)

1−α

Γ (2− α)
.

I.e.

(9)
∣∣(Dα

∗x0
f
)

(x)
∣∣ ≤ ‖f ′‖∞ (x− x0)

1−α

Γ (2− α)
≤
‖f ′‖∞ (b− x0)

1−α

Γ (2− α)
< +∞,

∀ x ∈ [x0, b] .
Clearly, then

(10)
(
Dα
∗x0

f
)

(x0) = 0.

We define
(
Dα
∗x0

f
)

(x) = 0, for a ≤ x < x0.

Let n ∈ N, we denote the iterated fractional derivative Dnα
∗x0

= Dα
∗x0

Dα
∗x0

...Dα
∗x0

(n-times).
Let us assume that

Dkα
∗x0

f ∈ C ([x0, b]) , k = 0, 1, ..., n+ 1; n ∈ N, 0 < α < 1.
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By [10], [4], pp. 156-158, we have the following generalized fractional Caputo type Taylor’s formula:

(11) f (x) =

n∑
i=0

(x− x0)
iα

Γ (iα+ 1)

(
Diα
∗x0

f
)

(x0) +

1

Γ ((n+ 1)α)

∫ x

x0

(x− t)(n+1)α−1
(
D

(n+1)α
∗x0 f

)
(t) dt,

∀ x ∈ [x0, b] .
Based on the above (10) and (11), we derive

(12) f (x)− f (x0) =

n∑
i=2

(x− x0)
iα

Γ (iα+ 1)

(
Diα
∗x0

f
)

(x0) +

1

Γ ((n+ 1)α)

∫ x

x0

(x− t)(n+1)α−1
(
D

(n+1)α
∗x0 f

)
(t) dt,

∀ x ∈ [x0, b] , 0 < α < 1.
In case of

(
Diα
∗x0

f
)

(x0) = 0, i = 2, 3, ..., n+ 1, we get

f (x)− f (x0) =

(13)
1

Γ ((n+ 1)α)

∫ x

x0

(x− t)(n+1)α−1
((
D

(n+1)α
∗x0 f

)
(t)−

(
D

(n+1)α
∗x0 f

)
(x0)

)
dt,

∀ x ∈ [x0, b] , 0 < α < 1.

We make

Remark 2.2. Let f : [a, b] → R such that f ′ ∈ L∞ ([a, b]), x0 ∈ [a, b], 0 < α < 1, the right Caputo
fractional derivative of order α is defined as follows

(14)
(
Dα
x0−f

)
(x) =

−1

Γ (1− α)

∫ x0

x

(z − x)
−α

f ′ (z) dz,

∀ x ∈ [a, x0] .
We observe that ∣∣(Dα

x0−f
)

(x)
∣∣ ≤ 1

Γ (1− α)

∫ x0

x

(z − x)
−α |f ′ (z)| dz ≤

(15)
‖f ′‖∞

Γ (1− α)

(∫ x0

x

(z − x)
−α

dz

)
=
‖f ′‖∞

Γ (1− α)

(x0 − x)
1−α

(1− α)
=
‖f ′‖∞

Γ (2− α)
(x0 − x)

1−α
.

That is

(16)
∣∣(Dα

x0−f
)

(x)
∣∣ ≤ ‖f ′‖∞

Γ (2− α)
(x0 − x)

1−α ≤
‖f ′‖∞

Γ (2− α)
(x0 − a)

1−α
<∞,

∀ x ∈ [a, x0] .
In particular we have

(17)
(
Dα
x0−f

)
(x0) = 0.

We define
(
Dα
x0−f

)
(x) = 0, for x0 < x ≤ b.

For n ∈ N, denote the iterated fractional derivative Dnα
x0− = Dα

x0−D
α
x0−...D

α
x0− (n-times).

In [1], we proved the following right generalized fractional Taylor’s formula: Suppose that

Dkα
x0−f ∈ C ([a, x0]) , for k = 0, 1, ..., n+ 1, 0 < α < 1.
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Then

(18) f (x) =

n∑
i=0

(x0 − x)
iα

Γ (iα+ 1)

(
Diα
x0−f

)
(x0) +

1

Γ ((n+ 1)α)

∫ x0

x

(z − x)
(n+1)α−1

(
D

(n+1)α
x0− f

)
(z) dz,

∀ x ∈ [a, x0] .
Based on (17) and (18), we derive

(19) f (x)− f (x0) =

n∑
i=2

(x0 − x)
iα

Γ (iα+ 1)

(
Diα
x0−f

)
(x0) +

1

Γ ((n+ 1)α)

∫ x0

x

(z − x)
(n+1)α−1

(
D

(n+1)α
x0− f

)
(z) dz,

∀ x ∈ [a, x0] , 0 < α < 1.
In case of

(
Diα
x0−f

)
(x0) = 0, for i = 2, 3, ..., n+ 1, we get

f (x)− f (x0) =

(20)
1

Γ ((n+ 1)α)

∫ x0

x

(z − x)
(n+1)α−1

((
D

(n+1)α
x0− f

)
(z)−

(
D

(n+1)α
x0− f

)
(x0)

)
dz,

∀ x ∈ [a, x0] , 0 < α < 1.

We need

Definition 2.3. Let D
(n+1)α
x0 f denote any of D

(n+1)α
∗x0 f , D

(n+1)α
x0− f , and δ > 0. We set

(21) ω1

(
D(n+1)α
x0

f, δ
)

= max

{
ω1

(
D

(n+1)α
∗x0 f, δ

)
[x0,b]

, ω1

(
D

(n+1)α
x0− f, δ

)
[a,x0]

}
,

where x0 ∈ [a, b] . Here the moduli of continuity are considered over [x0, b] and [a, x0], respectively.

We present

Theorem 2.4. Let 0 < α < 1, f : [a, b] → R, f ′ ∈ L∞ ([a, b]), x0 ∈ [a, b] . Assume that Dkα
∗x0

f ∈
C ([x0, b]), k = 0, 1, ..., n + 1; n ∈ N, and

(
Diα
∗x0

f
)

(x0) = 0, i = 2, 3, ..., n + 1. Also, suppose that

Dkα
x0−f ∈ C ([a, x0]), for k = 0, 1, ..., n+ 1, and

(
Diα
x0−f

)
(x0) = 0, for i = 2, 3, ..., n+ 1. Then

(22) |f (x)− f (x0)| ≤
ω1

(
D

(n+1)α
x0 f, δ

)
Γ ((n+ 1)α+ 1)

[
|x− x0|(n+1)α

+
|x− x0|(n+1)α+1

δ ((n+ 1)α+ 1)

]
,

∀ x ∈ [a, b] , δ > 0.

Proof. By (13) we have
|f (x)− f (x0)| ≤

1

Γ ((n+ 1)α)

∫ x

x0

(x− t)(n+1)α−1
∣∣∣(D(n+1)α

∗x0 f
)

(t)−
(
D

(n+1)α
∗x0 f

)
(x0)

∣∣∣ dt
(δ > 0)

≤ 1

Γ ((n+ 1)α)

∫ x

x0

(x− t)(n+1)α−1
ω1

(
D

(n+1)α
∗x0 f,

δ (t− x0)

δ

)
[x0,b]

dt

(23) ≤
ω1

(
D

(n+1)α
∗x0 f, δ

)
[x0,b]

Γ ((n+ 1)α)

∫ x

x0

(x− t)(n+1)α−1
(

1 +
(t− x0)

δ

)
dt =
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ω1

(
D

(n+1)α
∗x0 f, δ

)
[x0,b]

Γ ((n+ 1)α)

[
(x− x0)

(n+1)α

(n+ 1)α
+

1

δ

∫ x

x0

(x− t)(n+1)α−1
(t− x0)

2−1
dt

]
=

ω1

(
D

(n+1)α
∗x0 f, δ

)
[x0,b]

Γ ((n+ 1)α)

[
(x− x0)

(n+1)α

(n+ 1)α
+

1

δ

Γ ((n+ 1)α) Γ (2)

Γ ((n+ 1)α+ 2)
(x− x0)

(n+1)α+1

]
=

(24)

ω1

(
D

(n+1)α
∗x0 f, δ

)
[x0,b]

Γ ((n+ 1)α)

[
(x− x0)

(n+1)α

(n+ 1)α
+

(x− x0)
(n+1)α+1

δ (n+ 1)α ((n+ 1)α+ 1)

]
.

We have proved

(25) |f (x)− f (x0)| ≤
ω1

(
D

(n+1)α
∗x0 f, δ

)
[x0,b]

Γ ((n+ 1)α+ 1)

[
(x− x0)

(n+1)α
+

(x− x0)
(n+1)α+1

δ ((n+ 1)α+ 1)

]
,

∀ x ∈ [x0, b], δ > 0.
By (20) we get

|f (x)− f (x0)| ≤

1

Γ ((n+ 1)α)

∫ x0

x

(z − x)
(n+1)α−1

∣∣∣(D(n+1)α
x0− f

)
(z)−

(
D

(n+1)α
x0− f

)
(x0)

∣∣∣ dz
≤ 1

Γ ((n+ 1)α)

∫ x0

x

(z − x)
(n+1)α−1

ω1

(
D

(n+1)α
x0− f,

δ (x0 − z)
δ

)
[a,x0]

dz

(26) ≤
ω1

(
D

(n+1)α
x0− f, δ

)
[a,x0]

Γ ((n+ 1)α)

[∫ x0

x

(z − x)
(n+1)α−1

(
1 +

x0 − z
δ

)
dz

]
=

ω1

(
D

(n+1)α
x0− f, δ

)
[a,x0]

Γ ((n+ 1)α)

[
(x0 − x)

(n+1)α

(n+ 1)α
+

1

δ

∫ x0

x

(x0 − z)2−1 (z − x)
(n+1)α−1

dz

]
=

ω1

(
D

(n+1)α
x0− f, δ

)
[a,x0]

Γ ((n+ 1)α)

[
(x0 − x)

(n+1)α

(n+ 1)α
+

1

δ

Γ (2) Γ ((n+ 1)α)

Γ ((n+ 1)α+ 2)
(x0 − x)

(n+1)α+1

]
=

(27)

ω1

(
D

(n+1)α
x0− f, δ

)
[a,x0]

Γ ((n+ 1)α)

[
(x0 − x)

(n+1)α

(n+ 1)α
+

(x0 − x)
(n+1)α+1

δ (n+ 1)α ((n+ 1)α+ 1)

]
.

We have proved

(28) |f (x)− f (x0)| ≤
ω1

(
D

(n+1)α
x0− f, δ

)
[a,x0]

Γ ((n+ 1)α+ 1)

[
(x0 − x)

(n+1)α
+

(x0 − x)
(n+1)α+1

δ ((n+ 1)α+ 1)

]
,

∀ x ∈ [a, x0], δ > 0.

By (25) and (28) we derive (22). �

We need
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Definition 2.5. Here C+ ([a, b]) := {f : [a, b]→ R+, continuous functions} . Let LN : C+ ([a, b]) →
C+ ([a, b]), operators, ∀ N ∈ N, such that

(i)

(29) LN (αf) = αLN (f) , ∀α ≥ 0,∀f ∈ C+ ([a, b]) ,

(ii) if f, g ∈ C+ ([a, b]) : f ≤ g, then

(30) LN (f) ≤ LN (g) , ∀N ∈ N,

(iii)

(31) LN (f + g) ≤ LN (f) + LN (g) , ∀ f, g ∈ C+ ([a, b]) .

We call {LN}N∈N positive sublinear operators.

We make

Remark 2.6. By [6], p. 17, we get: let f, g ∈ C+ ([a, b]), then

(32) |LN (f) (x)− LN (g) (x)| ≤ LN (|f − g|) (x) , ∀ x ∈ [a, b] .

Furthermore, we also have that

(33) |LN (f) (x)− f (x)| ≤ LN (|f (·)− f (x)|) (x) + |f (x)| |LN (e0) (x)− 1| ,

∀ x ∈ [a, b]; e0 (t) = 1,∀ t ∈ [a, b] .
From now on we assume that LN (1) = 1. Hence it holds

(34) |LN (f) (x)− f (x)| ≤ LN (|f (·)− f (x)|) (x) , ∀ x ∈ [a, b] .

In the assumption of Theorem 2.4 and by (22) and (34) we obtain

(35) |LN (f) (x0)− f (x0)| ≤
ω1

(
D

(n+1)α
x0 f, δ

)
Γ ((n+ 1)α+ 1)

·LN (|· − x0|(n+1)α
)

(x0) +
LN

(
|· − x0|(n+1)α+1

)
(x0)

((n+ 1)α+ 1) δ

 , δ > 0.

We have proved

Theorem 2.7. Let 1
n+1 < α < 1, n ∈ N, f : [a, b] → R+, f ′ ∈ L∞ ([a, b]), x0 ∈ [a, b] . Assume

that Dkα
∗x0

f ∈ C ([x0, b]), k = 0, 1, ..., n + 1, and
(
Diα
∗x0

f
)

(x0) = 0, i = 2, 3, ..., n + 1. Also, suppose

that Dkα
x0−f ∈ C ([a, x0]), for k = 0, 1, ..., n + 1, and

(
Diα
x0−f

)
(x0) = 0, for i = 2, 3, ..., n + 1. Denote

λ = (n+ 1)α > 1. Let LN : C+ ([a, b]) → C+ ([a, b]), ∀ N ∈ N, be positive sublinear operators, such that
LN (1) = 1, ∀ N ∈ N. Then

|LN (f) (x0)− f (x0)| ≤
ω1

(
D

(n+1)α
x0 f, δ

)
Γ (λ+ 1)

·

(36)

LN (|· − x0|λ) (x0) +
LN

(
|· − x0|λ+1

)
(x0)

(λ+ 1) δ

 ,
δ > 0, ∀ N ∈ N.

Note: Theorem 2.7 is also true when 0 < α ≤ 1
n+1 .
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3. Applications, Part A

Case of (n+ 1)α > 1.

We give

Theorem 3.1. Let 1
n+1 < α < 1, n ∈ N, f : [0, 1] → R+, f ′ ∈ L∞ ([0, 1]), x ∈ [0, 1] . Assume that

Dkα
∗x f ∈ C ([x, 1]), k = 0, 1, ..., n + 1, and

(
Diα
∗xf
)

(x) = 0, i = 2, 3, ..., n + 1. Also, suppose that Dkα
x−f ∈

C ([0, x]), for k = 0, 1, ..., n + 1, and
(
Diα
x−f

)
(x) = 0, for i = 2, 3, ..., n + 1. Denote λ := (n+ 1)α > 1.

Then

∣∣∣B(M)
N (f) (x)− f (x)

∣∣∣ ≤ ω1

(
D

(n+1)α
x f,

(
6√
N+1

) 1
λ+1

)
Γ (λ+ 1)

·

(37)

[
6√
N + 1

+
1

(λ+ 1)

(
6√
N + 1

) λ
λ+1

]
,

∀ N ∈ N.
We get lim

N→+∞
B

(M)
N (f) (x) = f (x).

Proof. By [3] we get that

(38) B
(M)
N

(
|· − x|λ

)
(x) ≤ 6√

N + 1
, ∀ x ∈ [0, 1] ,

∀ N ∈ N, ∀ λ > 1.

Also B
(M)
N maps C+ ([0, 1]) into itself, B

(M)
N (1) = 1, and it is positive sublinear operator.

We apply Theorem 2.7 and (36), we get

(39)
∣∣∣B(M)

N (f) (x)− f (x)
∣∣∣ ≤ ω1

(
D

(n+1)α
x f, δ

)
Γ (λ+ 1)

[
6√
N + 1

+

6√
N+1

(λ+ 1) δ

]
.

Choose δ =
(

6√
N+1

) 1
λ+1

, then δλ+1 = 6√
N+1

, and apply it to (39). Clearly we derive (37). �

We continue with

Remark 3.2. The truncated Favard-Szász-Mirakjan operators are given by

(40) T
(M)
N (f) (x) =

∨N
k=0 sN,k (x) f

(
k
N

)∨N
k=0 sN,k (x)

, x ∈ [0, 1] , N ∈ N, f ∈ C+ ([0, 1]) ,

sN,k (x) = (Nx)k

k! , see also [6], p. 11.
By [6], p. 178-179, we get that

(41) T
(M)
N (|· − x|) (x) ≤ 3√

N
, ∀ x ∈ [0, 1] , ∀ N ∈ N.

Clearly it holds

(42) T
(M)
N

(
|· − x|1+β

)
(x) ≤ 3√

N
, ∀ x ∈ [0, 1] , ∀ N ∈ N, ∀ β > 0.

The operators T
(M)
N are positive sublinear operators mapping C+ ([0, 1]) into itself, with T

(M)
N (1) = 1.

We continue with
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Theorem 3.3. Same assumptions as in Theorem 3.1. Then

∣∣∣T (M)
N (f) (x)− f (x)

∣∣∣ ≤ ω1

(
D

(n+1)α
x f,

(
3√
N

) 1
λ+1

)
Γ (λ+ 1)

·

(43)

[
3√
N

+
1

(λ+ 1)

(
3√
N

) λ
λ+1

]
, ∀ N ∈ N.

We get lim
N→+∞

T
(M)
N (f) (x) = f (x).

Proof. Use of Theorem 2.7, similar to the proof of Theorem 3.1. �

We make

Remark 3.4. Next we study the truncated Max-product Baskakov operators (see [6], p. 11)

(44) U
(M)
N (f) (x) =

∨N
k=0 bN,k (x) f

(
k
N

)∨N
k=0 bN,k (x)

, x ∈ [0, 1] , f ∈ C+ ([0, 1]) , N ∈ N,

where

(45) bN,k (x) =

(
N + k − 1

k

)
xk

(1 + x)
N+k

.

From [6], pp. 217-218, we get (x ∈ [0, 1])

(46)
(
U

(M)
N (|· − x|)

)
(x) ≤

2
√

3
(√

2 + 2
)

√
N + 1

, N ≥ 2, N ∈ N.

Let λ ≥ 1, clearly then it holds

(47)
(
U

(M)
N

(
|· − x|λ

))
(x) ≤

2
√

3
(√

2 + 2
)

√
N + 1

, ∀ N ≥ 2, N ∈ N.

Also it holds U
(M)
N (1) = 1, and U

(M)
N are positive sublinear operators from C+ ([0, 1]) into itself.

We give

Theorem 3.5. Same assumptions as in Theorem 3.1. Then

(48)
∣∣∣U (M)
N (f) (x)− f (x)

∣∣∣ ≤ ω1

(
D

(n+1)α
x f,

(
2
√
3(
√
2+2)√

N+1

) 1
λ+1

)
Γ (λ+ 1)

·

2
√

3
(√

2 + 2
)

√
N + 1

+
1

(λ+ 1)

(
2
√

3
(√

2 + 2
)

√
N + 1

) λ
λ+1

 , ∀ N ≥ 2, N ∈ N.

We get lim
N→+∞

U
(M)
N (f) (x) = f (x) .

Proof. Use of Theorem 2.7, similar to the proof of Theorem 3.1. �

We continue with
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Remark 3.6. Here we study the Max-product Meyer-Köning and Zeller operators (see [6], p. 11)
defined by

(49) Z
(M)
N (f) (x) =

∨∞
k=0 sN,k (x) f

(
k

N+k

)
∨∞
k=0 sN,k (x)

, ∀ N ∈ N, f ∈ C+ ([0, 1]) ,

sN,k (x) =

(
N + k
k

)
xk, x ∈ [0, 1].

By [6], p. 253, we get that

(50) Z
(M)
N (|· − x|) (x) ≤

8
(
1 +
√

5
)

3

√
x (1− x)√

N
, ∀ x ∈ [0, 1] , ∀ N ≥ 4, N ∈ N.

We have that (for λ ≥ 1)

(51) Z
(M)
N

(
|· − x|λ

)
(x) ≤

8
(
1 +
√

5
)

3

√
x (1− x)√

N
:= ρ (x) ,

∀ x ∈ [0, 1], N ≥ 4, N ∈ N.
Also it holds Z

(M)
N (1) = 1, and Z

(M)
N are positive sublinear operators from C+ ([0, 1]) into itself.

We give

Theorem 3.7. Same assumptions as in Theorem 3.1. Then

(52)
∣∣∣Z(M)
N (f) (x)− f (x)

∣∣∣ ≤ ω1

(
D

(n+1)α
x f, (ρ (x))

1
λ+1

)
Γ (λ+ 1)

·[
ρ (x) +

1

(λ+ 1)
(ρ (x))

λ
λ+1

]
, ∀ N ∈ N, N ≥ 4.

We get lim
N→+∞

Z
(M)
N (f) (x) = f (x), where ρ (x) is as in (51).

Proof. Use of Theorem 2.7, similar to the proof of Theorem 3.1. �

We continue with

Remark 3.8. Here we deal with the Max-product truncated sampling operators (see [6], p. 13) defined
by

(53) W
(M)
N (f) (x) =

∨N
k=0

sin(Nx−kπ)
Nx−kπ f

(
kπ
N

)∨N
k=0

sin(Nx−kπ)
Nx−kπ

,

and

(54) K
(M)
N (f) (x) =

∨N
k=0

sin2(Nx−kπ)
(Nx−kπ)2 f

(
kπ
N

)
∨N
k=0

sin2(Nx−kπ)
(Nx−kπ)2

,

∀ x ∈ [0, π], f : [0, π]→ R+ a continuous function.

Following [6], p. 343, and making the convention sin(0)
0 = 1 and denoting sN,k (x) = sin(Nx−kπ)

Nx−kπ ,

we get that sN,k
(
kπ
N

)
= 1, and sN,k

(
jπ
N

)
= 0, if k 6= j, furthermore W

(M)
N (f)

(
jπ
N

)
= f

(
jπ
N

)
, for all

j ∈ {0, ..., N} .
Clearly W

(M)
N (f) is a well-defined function for all x ∈ [0, π], and it is continuous on [0, π], also

W
(M)
N (1) = 1.

By [6], p. 344, W
(M)
N are positive sublinear operators.
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Call I+N (x) = {k ∈ {0, 1, ..., N} ; sN,k (x) > 0}, and set xN,k := kπ
N , k ∈ {0, 1, ..., N}.

We see that

(55) W
(M)
N (f) (x) =

∨
k∈I+N (x) sN,k (x) f (xN,k)∨

k∈I+N (x) sN,k (x)
.

By [6], p. 346, we have

(56) W
(M)
N (|· − x|) (x) ≤ π

2N
, ∀ N ∈ N, ∀ x ∈ [0, π] .

Notice also |xN,k − x| ≤ π, ∀ x ∈ [0, π] .
Therefore (λ ≥ 1) it holds

(57) W
(M)
N

(
|· − x|λ

)
(x) ≤ πλ−1π

2N
=

πλ

2N
, ∀ x ∈ [0, π] , ∀ N ∈ N.

We continue with

Theorem 3.9. Let 1
n+1 < α < 1, n ∈ N, f : [0, π] → R+, f ′ ∈ L∞ ([0, π]), x ∈ [0, π] . Assume

that Dkα
∗x f ∈ C ([x, π]), k = 0, 1, ..., n + 1, and

(
Diα
∗xf
)

(x) = 0, i = 2, 3, ..., n + 1. Also, suppose

that Dkα
x−f ∈ C ([0, x]), for k = 0, 1, ..., n + 1, and

(
Diα
x−f

)
(x) = 0, for i = 2, 3, ..., n + 1. Denote

λ = (n+ 1)α > 1. Then

∣∣∣W (M)
N (f) (x)− f (x)

∣∣∣ ≤ ω1

(
D

(n+1)α
x f,

(
πλ+1

2N

) 1
λ+1

)
Γ (λ+ 1)

·

(58)

[
πλ

2N
+

1

(λ+ 1)

(
πλ+1

2N

) λ
λ+1

]
, ∀ N ∈ N.

It holds lim
N→+∞

W
(M)
N (f) (x) = f (x).

Proof. Applying (36) for W
(M)
N and using (57), we get

(59)
∣∣∣W (M)

N (f) (x)− f (x)
∣∣∣ ≤ ω1

(
D

(n+1)α
x f, δ

)
Γ (λ+ 1)

[
πλ

2N
+

πλ+1

2N

(λ+ 1) δ

]
.

Choose δ =
(
πλ+1

2N

) 1
λ+1

, then δλ+1 = πλ+1

2N , and δλ =
(
πλ+1

2N

) λ
λ+1

. We use the last into (59) and we obtain

(58). �

We make

Remark 3.10. Here we continue with the Max-product truncated sampling operators (see [6], p. 13)
defined by

(60) K
(M)
N (f) (x) =

∨N
k=0

sin2(Nx−kπ)
(Nx−kπ)2 f

(
kπ
N

)
∨N
k=0

sin2(Nx−kπ)
(Nx−kπ)2

,

∀ x ∈ [0, π], f : [0, π]→ R+ a continuous function.

Following [6], p. 350, and making the convention sin(0)
0 = 1 and denoting sN,k (x) = sin2(Nx−kπ)

(Nx−kπ)2 ,

we get that sN,k
(
kπ
N

)
= 1, and sN,k

(
jπ
N

)
= 0, if k 6= j, furthermore K

(M)
N (f)

(
jπ
N

)
= f

(
jπ
N

)
, for all

j ∈ {0, ..., N} .
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Since sN,j
(
jπ
N

)
= 1 it follows that

∨N
k=0 sN,k

(
jπ
N

)
≥ 1 > 0, for all j ∈ {0, 1, ..., N}. Hence K

(M)
N (f) is

well-defined function for all x ∈ [0, π], and it is continuous on [0, π], also K
(M)
N (1) = 1. By [6], p. 350,

K
(M)
N are positive sublinear operators.

Denote xN,k := kπ
N , k ∈ {0, 1, ..., N}.

By [6], p. 352, we have

(61) K
(M)
N (|· − x|) (x) ≤ π

2N
, ∀ N ∈ N, ∀ x ∈ [0, π] .

Notice also |xN,k − x| ≤ π, ∀ x ∈ [0, π] .
Therefore (λ ≥ 1) it holds

(62) K
(M)
N

(
|· − x|λ

)
(x) ≤ πλ−1π

2N
=

πλ

2N
, ∀ x ∈ [0, π] , ∀ N ∈ N.

We give

Theorem 3.11. All as in Theorem 3.9. Then

∣∣∣K(M)
N (f) (x)− f (x)

∣∣∣ ≤ ω1

(
D

(n+1)α
x f,

(
πλ+1

2N

) 1
λ+1

)
Γ (λ+ 1)

·

(63)

[
πλ

2N
+

1

(λ+ 1)

(
πλ+1

2N

) λ
λ+1

]
, ∀ N ∈ N.

We have that lim
N→+∞

K
(M)
N (f) (x) = f (x).

Proof. As in Theorem 3.9. �

We make

Remark 3.12. We mention the interpolation Hermite-Fejer polynomials on Chebyshev knots of the

first kind (see [6], p. 4): Let f : [−1, 1]→ R and based on the knots xN,k = cos
(

(2(N−k)+1)
2(N+1) π

)
∈ (−1, 1),

k ∈ {0, ..., N}, −1 < xN,0 < xN,1 < ... < xN,N < 1, which are the roots of the first kind Chebyshev
polynomial TN+1 (x) = cos ((N + 1) arccosx), we define (see Fejér [8])

(64) H2N+1 (f) (x) =

N∑
k=0

hN,k (x) f (xN,k) ,

where

(65) hN,k (x) = (1− x · xN,k)

(
TN+1 (x)

(N + 1) (x− xN,k)

)2

,

the fundamental interpolation polynomials.
The Max-product interpolation Hermite-Fejér operators on Chebyshev knots of the first kind (see p. 12

of [6]) are defined by

(66) H
(M)
2N+1 (f) (x) =

∨N
k=0 hN,k (x) f (xN,k)∨N

k=0 hN,k (x)
, ∀ N ∈ N,

where f : [−1, 1]→ R+ is continuous.
Call

(67) EN (x) := H
(M)
2N+1 (|· − x|) (x) =

∨N
k=0 hN,k (x) |xN,k − x|∨N

k=0 hN,k (x)
, x ∈ [−1, 1] .
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Then by [6], p. 287 we obtain that

(68) EN (x) ≤ 2π

N + 1
, ∀ x ∈ [−1, 1] , N ∈ N.

For m > 1, we get

H
(M)
2N+1 (|· − x|m) (x) =

∨N
k=0 hN,k (x) |xN,k − x|m∨N

k=0 hN,k (x)
=

(69)

∨N
k=0 hN,k (x) |xN,k − x| |xN,k − x|m−1∨N

k=0 hN,k (x)
≤ 2m−1

∨N
k=0 hN,k (x) |xN,k − x|∨N

k=0 hN,k (x)

≤ 2mπ

N + 1
, ∀ x ∈ [−1, 1] , N ∈ N.

Hence it holds

(70) H
(M)
2N+1 (|· − x|m) (x) ≤ 2mπ

N + 1
, ∀ x ∈ [−1, 1] , m > 1, ∀ N ∈ N.

Furthermore we have

(71) H
(M)
2N+1 (1) (x) = 1, ∀ x ∈ [−1, 1] ,

and H
(M)
2N+1 maps continuous functions to continuous functions over [−1, 1] and for any x ∈ R we have∨N

k=0 hN,k (x) > 0.

We also have hN,k (xN,k) = 1, and hN,k (xN,j) = 0, if k 6= j, furthermore it holds H
(M)
2N+1 (f) (xN,j) =

f (xN,j), for all j ∈ {0, ..., N}, see [6], p. 282.

H
(M)
2N+1 are positive sublinear operators, [6], p. 282.

We give

Theorem 3.13. Let 1
n+1 < α < 1, n ∈ N, f : [−1, 1] → R+, f ′ ∈ L∞ ([−1, 1]), x ∈ [−1, 1] .

Assume that Dkα
∗x f ∈ C ([x, 1]), k = 0, 1, ..., n + 1, and

(
Diα
∗xf
)

(x) = 0, i = 2, 3, ..., n + 1. Also, suppose

that Dkα
x−f ∈ C ([−1, x]), for k = 0, 1, ..., n + 1, and

(
Diα
x−f

)
(x) = 0, for i = 2, 3, ..., n + 1. Denote

λ = (n+ 1)α > 1. Then

(72)
∣∣∣H(M)

2N+1 (f) (x)− f (x)
∣∣∣ ≤ ω1

(
D

(n+1)α
x f,

(
2λ+1π
N+1

) 1
λ+1

)
Γ (λ+ 1)

·

[
2λπ

N + 1
+

1

(λ+ 1)

(
2λ+1π

N + 1

) λ
λ+1

]
, ∀ N ∈ N.

Furthermore it holds lim
N→+∞

H
(M)
2N+1 (f) (x) = f (x) .

Proof. Use of Theorem 2.7, (36) and (70). Choose δ :=
(

2λ+1π
N+1

) 1
λ+1

, etc. �

We continue with

Remark 3.14. Here we deal with Lagrange interpolation polynomials on Chebyshev knots of second
kind plus the endpoints ±1 (see [6], p. 5). These polynomials are linear operators attached to f :

[−1, 1] → R and to the knots xN,k = cos
((

N−k
N−1

)
π
)
∈ [−1, 1], k = 1, ..., N, N ∈ N, which are the roots
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of ωN (x) = sin (N − 1) t sin t, x = cos t. Notice that xN,1 = −1 and xN,N = 1. Their formula is given by
([6], p. 377)

(73) LN (f) (x) =

N∑
k=1

lN,k (x) f (xN,k) ,

where

(74) lN,k (x) =
(−1)

k−1
ωN (x)

(1 + δk,1 + δk,N ) (N − 1) (x− xN,k)
,

N ≥ 2, k = 1, ..., N , and ωN (x) =
∏N
k=1 (x− xN,k) and δi,j denotes the Kronecher’s symbol, that is

δi,j = 1, if i = j, and δi,j = 0, if i 6= j.
The Max-product Lagrange interpolation operators on Chebyshev knots of second kind, plus the end-

points ±1, are defined by ([6], p. 12)

(75) L
(M)
N (f) (x) =

∨N
k=1 lN,k (x) f (xN,k)∨N

k=1 lN,k (x)
, x ∈ [−1, 1] ,

where f : [−1, 1]→ R+ continuous.

First we see that L
(M)
N (f) (x) is well defined and continuous for any x ∈ [−1, 1]. Following [6], p.

289, because
∑N
k=1 lN,k (x) = 1, ∀ x ∈ R, for any x there exists k ∈ {1, ..., N} : lN,k (x) > 0, hence∨N

k=1 lN,k (x) > 0. We have that lN,k (xN,k) = 1, and lN,k (xN,j) = 0, if k 6= j. Furthermore it holds

L
(M)
N (f) (xN,j) = f (xN,j), all j ∈ {1, ..., N} , and L

(M)
N (1) = 1.

Call I+N (x) = {k ∈ {1, ..., N} ; lN,k (x) > 0}, then I+N (x) 6= ∅.
So for f ∈ C+ ([−1, 1]) we get

(76) L
(M)
N (f) (x) =

∨
k∈I+N (x) lN,k (x) f (xN,k)∨

k∈I+N (x) lN,k (x)
≥ 0.

Notice here that |xN,k − x| ≤ 2, ∀ x ∈ [−1, 1] .
By [6], p. 297, we get that

L
(M)
N (|· − x|) (x) =

∨N
k=1 lN,k (x) |xN,k − x|∨N

k=1 lN,k (x)
=

(77)

∨
k∈I+N (x) lN,k (x) |xN,k − x|∨

k∈I+N (x) lN,k (x)
≤ π2

6 (N − 1)
,

N ≥ 3, ∀ x ∈ (−1, 1), N is odd.
We get that (m > 1)

(78) L
(M)
N (|· − x|m) (x) =

∨
k∈I+N (x) lN,k (x) |xN,k − x|m∨

k∈I+N (x) lN,k (x)
≤ 2m−1π2

6 (N − 1)
,

N ≥ 3 odd, ∀ x ∈ (−1, 1) .

L
(M)
N are positive sublinear operators, [6], p. 290.

We give

Theorem 3.15. Same assumptions as in Theorem 3.13. Then

(79)
∣∣∣L(M)
N (f) (x)− f (x)

∣∣∣ ≤ ω1

(
D

(n+1)α
x f,

(
2λπ2

6(N−1)

) 1
λ+1

)
Γ (λ+ 1)

·
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[
2λ−1π2

6 (N − 1)
+

1

(λ+ 1)

(
2λπ2

6 (N − 1)

) λ
λ+1

]
, ∀ N ∈ N : N ≥ 3, odd.

It holds lim
N→+∞

L
(M)
N (f) (x) = f (x) .

Proof. By Theorem 2.7, choose δ :=
(

2λπ2

6(N−1)

) 1
λ+1

, use of (36) and (78). At ±1 the left hand side of

(79) is zero, thus (79) is trivially true. �

We make

Remark 3.16. Let f ∈ C+ ([−1, 1]), N ≥ 4, N ∈ N, N even.
By [6], p. 298, we get

(80) L
(M)
N (|· − x|) (x) ≤ 4π2

3 (N − 1)
=

22π2

3 (N − 1)
, ∀x ∈ (−1, 1) .

Hence (m > 1)

(81) L
(M)
N (|· − x|m) (x) ≤ 2m+1π2

3 (N − 1)
, ∀ x ∈ (−1, 1) .

We present

Theorem 3.17. Same assumptions as in Theorem 3.13. Then

(82)
∣∣∣L(M)
N (f) (x)− f (x)

∣∣∣ ≤ ω1

(
D

(n+1)α
x f,

(
2λ+2π2

3(N−1)

) 1
λ+1

)
Γ (λ+ 1)

·[
2λ+1π2

3 (N − 1)
+

1

(λ+ 1)

(
2λ+2π2

3 (N − 1)

) λ
λ+1

]
, ∀ N ∈ N, N ≥ 4, N is even.

It holds lim
N→+∞

L
(M)
N (f) (x) = f (x) .

Proof. By Theorem 2.7, use of (36) and (81). Choose δ =
(

2λ+2π2

3(N−1)

) 1
λ+1

, etc. �

We make

Remark 3.18. Let f : R→ R such that f ′ ∈ L∞ (R), x0 ∈ R, 0 < α < 1. The left Caputo fractional

derivative
(
Dα
∗x0

f
)

(x) is given by (7) for x ≥ x0. Clearly it holds
(
Dα
∗x0

f
)

(x0) = 0, and we define(
Dα
∗x0

f
)

(x) = 0, for x < x0.

Let us assume that Dkα
∗x0

f ∈ C ([x0,+∞)), k = 0, 1, ..., n+ 1; n ∈ N.

Still (11)-(13) are valid ∀ x ∈ [x0,+∞).

The right Caputo fractional derivative
(
Dα
x0−f

)
(x) is given by (14) for x ≤ x0. Clearly it holds(

Dα
x0−f

)
(x0) = 0, and define

(
Dα
x0−f

)
(x) = 0, for x > x0.

Let us assume that Dkα
x0−f ∈ C ((−∞, x0]), k = 0, 1, ..., n+ 1.

Still (18)-(20) are valid ∀ x ∈ (−∞, x0].

Here we restrict again ourselves to 1
n+1 < α < 1, that is λ := (n+ 1)α > 1. We denote Dλ

∗x0
f :=

D
(n+1)α
∗x0 f , and Dλ

x0−f := D
(n+1)α
x0− f.

We need
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Definition 3.19. ([7], p. 41) Let I ⊂ R be an interval of finite or infinite length, and f : I → R a
bounded or uniformly continuous function. We define the first modulus of continuity

(83) ω1 (f, δ)I = sup
x,y∈I
|x−y|≤δ

|f (x)− f (y)| , δ > 0.

Clearly, it holds ω1 (f, δ)I < +∞.
We also have

(84) ω1 (f, rδ)I ≤ (r + 1)ω1 (f, δ)I , any r ≥ 0.

Convention 3.20. We assume that Dλ
x0−f is either bounded or uniformly continuous function

on (−∞, x0], similarly we assume that Dλ
∗x0

f is either bounded or uniformly continuous function on

[x0,+∞).

We need

Definition 3.21. Let Dλ
x0
f denote any of Dλ

x0−f , Dλ
∗x0

f and δ > 0. We set

(85) ω1

(
Dλ
x0
f, δ
)
R := max

{
ω1

(
Dλ
x0−f, δ

)
(−∞,x0]

, ω1

(
Dλ
∗x0

f, δ
)
[x0,+∞)

}
,

where x0 ∈ R. Notice that ω1

(
Dλ
x0
f, δ
)
R < +∞.

We give

Theorem 3.22. Let 1
n+1 < α < 1, n ∈ N, λ := (n+ 1)α > 1, f : R → R, f ′ ∈ L∞ (R), x0 ∈ R.

Assume that Dkα
∗x0

f ∈ C ([x0,+∞)), k = 0, 1, ..., n+ 1, and
(
Diα
∗x0

f
)

(x0) = 0, i = 2, 3, ..., n+ 1. Suppose

that Dkα
x0−f ∈ C ((−∞, x0]), for k = 0, 1, ..., n+ 1, and

(
Diα
x0−f

)
(x0) = 0, for i = 2, 3, ..., n+ 1. Then

(86) |f (x)− f (x0)| ≤
ω1

(
Dλ
x0
f, δ
)
R

Γ (λ+ 1)

[
|x− x0|λ +

|x− x0|λ+1

(λ+ 1) δ

]
,

∀ x ∈ R, δ > 0.

Proof. Similar to Theorem 2.4. �

Remark 3.23. Let b : R → R+ be a centered (it takes a global maximum at 0) bell-shaped function,

with compact support [−T, T ], T > 0 (that is b (x) > 0 for all x ∈ (−T, T )) and I =
∫ T
−T b (x) dx > 0.

The Cardaliaguet-Euvrard neural network operators are defined by (see [5])

(87) CN,α (f) (x) =

N2∑
k=−N2

f
(
k
n

)
IN1−α b

(
N1−α

(
x− k

N

))
,

0 < α < 1, N ∈ N and typically here f : R → R is continuous and bounded or uniformly continuous on

R.
CB (R) denotes the continuous and bounded function on R, and

CB+ (R) = {f : R→ [0,∞); f ∈ CB (R)} .
The corresponding max-product Cardaliaguet-Euvrard neural network operators will be given by

(88) C
(M)
N,α (f) (x) =

∨N2

k=−N2 b
(
N1−α (x− k

N

))
f
(
k
N

)∨N2

k=−N2 b
(
N1−α

(
x− k

N

)) ,

x ∈ R, typically here f ∈ CB+ (R), see also [5].

Next we follow [5].
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For any x ∈ R, denoting

JT,N (x) =

{
k ∈ Z; −N2 ≤ k ≤ N2, N1−α

(
x− k

N

)
∈ (−T, T )

}
,

we can write

(89) C
(M)
N,α (f) (x) =

∨
k∈JT,N (x) b

(
N1−α (x− k

N

))
f
(
k
N

)∨
k∈JT,N (x) b

(
N1−α

(
x− k

N

)) ,

x ∈ R, N > max
{
T + |x| , T− 1

α

}
, where JT,N (x) 6= ∅. Indeed, we have

∨
k∈JT,N (x) b

(
N1−α (x− k

N

))
>

0, ∀ x ∈ R and N > max
{
T + |x| , T− 1

α

}
.

We have that C
(M)
N,α (1) (x) = 1, ∀ x ∈ R and N > max

{
T + |x| , T− 1

α

}
.

See in [5] there: Lemma 2.1, Corollary 2.2 and Remarks.

We need

Theorem 3.24. ([5]) Let b (x) be a centered bell-shaped function, continuous and with compact support

[−T, T ], T > 0, 0 < α < 1 and C
(M)
N,α be defined as in (88).

(i) If |f (x)| ≤ c for all x ∈ R then
∣∣∣C(M)
N,α (f) (x)

∣∣∣ ≤ c, for all x ∈ R and N > max
{
T + |x| , T− 1

α

}
and C

(M)
N,α (f) (x) is continuous at any point x ∈ R, for all N > max

{
T + |x| , T− 1

α

}
;

(ii) If f, g ∈ CB+ (R) satisfy f (x) ≤ g (x) for all x ∈ R, then C
(M)
N,α (f) (x) ≤ C

(M)
N,α (g) (x) for all

x ∈ R and N > max
{
T + |x| , T− 1

α

}
;

(iii) C
(M)
N,α (f + g) (x) ≤ C

(M)
N,α (f) (x) + C

(M)
N,α (g) (x) for all f, g ∈ CB+ (R), x ∈ R and N >

max
{
T + |x| , T− 1

α

}
;

(iv) For all f, g ∈ CB+ (R), x ∈ R and N > max
{
T + |x| , T− 1

α

}
, we have∣∣∣C(M)

N,α (f) (x)− C(M)
N,α (g) (x)

∣∣∣ ≤ C(M)
N,α (|f − g|) (x) ;

(v) C
(M)
N,α is positive homogeneous, that is C

(M)
N,α (λf) (x) = λC

(M)
N,α (f) (x) for all λ ≥ 0, x ∈ R,

N > max
{
T + |x| , T− 1

α

}
and f ∈ CB+ (R) .

We make

Remark 3.25. We have that

(90) EN,α (x) := C
(M)
N,α (|· − x|) (x) =

∨
k∈JT,N (x) b

(
N1−α (x− k

N

)) ∣∣x− k
N

∣∣∨
k∈JT,N (x) b

(
N1−α

(
x− k

N

)) ,

∀ x ∈ R, and N > max
{
T + |x| , T− 1

α

}
.

We mention from [5] the following:

Theorem 3.26. ([5]) Let b (x) be a centered bell-shaped function, continuous and with compact support

[−T, T ], T > 0 and 0 < α < 1. In addition, suppose that the following requirements are fulfilled:

(i) There exist 0 < m1 ≤M1 <∞ such that m1 (T − x) ≤ b (x) ≤M1 (T − x), ∀ x ∈ [0, T ] ;

(ii) There exist 0 < m2 ≤M2 <∞ such that m2 (x+ T ) ≤ b (x) ≤M2 (x+ T ), ∀ x ∈ [−T, 0].
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Then for all f ∈ CB+ (R), x ∈ R and for all N ∈ N satisying N > max
{
T + |x| ,

(
2
T

) 1
α

}
, we have the

estimate

(91)
∣∣∣C(M)
N,α (f) (x)− f (x)

∣∣∣ ≤ cω1

(
f,Nα−1)

R ,

where

c := 2

(
max

{
TM2

2m2
,
TM1

2m1

}
+ 1

)
,

and

(92) ω1 (f, δ)R := sup
x,y∈R:
|x−y|≤δ

|f (x)− f (y)| .

We make

Remark 3.27. In [5], was proved that

(93) EN,α (x) ≤ max

{
TM2

2m2
,
TM1

2m1

}
Nα−1, ∀ N > max

{
T + |x| ,

(
2

T

) 1
α

}
.

That is

(94) C
(M)
N,α (|· − x|) (x) ≤ max

{
TM2

2m2
,
TM1

2m1

}
Nα−1, ∀ N > max

{
T + |x| ,

(
2

T

) 1
α

}
.

From (90) we have that
∣∣x− k

N

∣∣ ≤ T
N1−α .

Hence (λ > 1) (∀ x ∈ R and N > max
{
T + |x| ,

(
2
T

) 1
α

}
)

(95) C
(M)
N,α

(
|· − x|λ

)
(x) =

∨
k∈JT,N (x) b

(
N1−α (x− k

N

)) ∣∣x− k
N

∣∣λ∨
k∈JT,N (x) b

(
N1−α

(
x− k

N

)) ≤

(
T

N1−α

)λ−1
max

{
TM2

2m2
,
TM1

2m1

}
Nα−1, ∀ N > max

{
T + |x| ,

(
2

T

) 1
α

}
.

Then (λ > 1) it holds

C
(M)
N,α

(
|· − x|λ

)
(x) ≤

(96) Tλ−1 max

{
TM2

2m2
,
TM1

2m1

}
1

Nλ(1−α) , ∀ N > max

{
T + |x| ,

(
2

T

) 1
α

}
.

Call

(97) θ := max

{
TM2

2m2
,
TM1

2m1

}
> 0.

Consequently (λ > 1) we derive

(98) C
(M)
N,α

(
|· − x|λ

)
(x) ≤ θTλ−1

Nλ(1−α) , ∀ N > max

{
T + |x| ,

(
2

T

) 1
α

}
.

We need
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Theorem 3.28. All here as in Theorem 3.22, where x = x0 ∈ R is fixed. Let b be a centered bell-

shaped function, continuous and with compact support [−T, T ], T > 0, 0 < α < 1 and C
(M)
N,α be defined as

in (88). Then ∣∣∣C(M)
N,α (f) (x)− f (x)

∣∣∣ ≤
(99)

ω1

(
Dλ
xf, δ

)
R

Γ (λ+ 1)

C(M)
N,α

(
|· − x|λ

)
(x) +

C
(M)
N,α

(
|· − x|λ+1

)
(x)

(λ+ 1) δ

 ,
∀ N ∈ N : N > max

{
T + |x| , T− 1

α

}
.

Proof. By Theorem 3.22 and (86) we get

(100) |f (·)− f (x)| ≤
ω1

(
Dλ
xf, δ

)
R

Γ (λ+ 1)

[
|· − x|λ +

|· − x|λ+1

(λ+ 1) δ

]
, δ > 0,

true over R.
As in Theorem 3.24 and using similar reasoning and C

(M)
N,α (1) = 1, we get∣∣∣C(M)

N,α (f) (x)− f (x)
∣∣∣ ≤ C(M)

N,α (|f (·)− f (x)|) (x)
(100)

≤

(101)
ω1

(
Dλ
xf, δ

)
R

Γ (λ+ 1)

C(M)
N,α

(
|· − x|λ

)
(x) +

C
(M)
N,α

(
|· − x|λ+1

)
(x)

(λ+ 1) δ

 ,
∀ N ∈ N : N > max

{
T + |x| , T− 1

α

}
. �

We continue with

Theorem 3.29. Here all as in Theorem 3.22, where x = x0 ∈ R is fixed. Also the same assumptions
as in Theorem 3.26. Then∣∣∣C(M)

N,α (f) (x)− f (x)
∣∣∣ ≤ 1

Γ (λ+ 1)
ω1

(
Dλ
xf,

(
θTλ

N (λ+1)(1−α)

) 1
λ+1

)
R

·

(102)

[
θTλ−1

Nλ(1−α) +
1

(λ+ 1)

(
θTλ

N (λ+1)(1−α)

) λ
λ+1

]
,

∀ N ∈ N : N > max
{
T + |x| ,

(
2
T

) 1
α

}
.

We have that lim
N→+∞

C
(M)
N,α (f) (x) = f (x) .

Proof. We apply Theorem 3.28. In (99) we choose

δ :=

(
θTλ

N (λ+1)(1−α)

) 1
λ+1

,

thus δλ+1 = θTλ

N(λ+1)(1−α) , and

(103) δλ =

(
θTλ

N (λ+1)(1−α)

) λ
λ+1

.
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Therefore we have

(104)
∣∣∣C(M)
N,α (f) (x)− f (x)

∣∣∣ (98)≤ 1

Γ (λ+ 1)
ω1

(
Dλ
xf,

(
θTλ

N (λ+1)(1−α)

) 1
λ+1

)
R

·

[
θTλ−1

Nλ(1−α) +
1

(λ+ 1) δ

θTλ

N (λ+1)(1−α)

]
=

1

Γ (λ+ 1)
ω1

(
Dλ
xf,

(
θTλ

N (λ+1)(1−α)

) 1
λ+1

)[
θTλ−1

Nλ(1−α) +
1

(λ+ 1) δ
δλ+1

]
(103)
=

1

Γ (λ+ 1)
ω1

(
Dλ
xf,

(
θTλ

N (λ+1)(1−α)

) 1
λ+1

)
R

·

(105)

[
θTλ−1

Nλ(1−α) +
1

(λ+ 1)

(
θTλ

N (λ+1)(1−α)

) λ
λ+1

]
,

∀ N ∈ N : N > max
{
T + |x| ,

(
2
T

) 1
α

}
, proving the inequality (102). �

It follows an interesting application to Theorem 3.1 when α = 1
2 , n = 2.

Corollary 3.30. Let f : [0, 1] → R+, f ′ ∈ L∞ ([0, 1]), x ∈ [0, 1] . Assume that D
k 1

2
∗x f ∈ C ([x, 1]),

k = 0, 1, 2, 3, and
(
D
i 12
∗xf
)

(x) = 0, i = 2, 3. Suppose that D
k 1

2
x−f ∈ C ([0, x]), for k = 0, 1, 2, 3, and(

D
i 12
x−f

)
(x) = 0, for i = 2, 3. Then

∣∣∣B(M)
N (f) (x)− f (x)

∣∣∣ ≤ 4ω1

(
D

3· 12
x f,

(
6√
N+1

) 2
5

)
3
√
π

(106)

[
6√
N + 1

+
2

5

(
6√
N + 1

) 3
5

]
, ∀ N ∈ N.

We get lim
N→+∞

B
(M)
N (f) (x) = f (x) .

4. Applications, Part B

Case of (n+ 1)α ≤ 1.

We need

Theorem 4.1. ([2]) Let L : C+ ([a, b]) → C+ ([a, b]), be a positive sublinear operator and f, g ∈
C+ ([a, b]), furthermore let p, q > 1 : 1

p + 1
q = 1. Assume that L ((f (·))p) (s∗) , L ((g (·))q) (s∗) > 0 for

some s∗ ∈ [a, b]. Then

(107) L (f (·) g (·)) (s∗) ≤ (L ((f (·))p) (s∗))
1
p (L ((g (·))q) (s∗))

1
q .

We give
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Theorem 4.2. Let 0 < α ≤ 1
n+1 , n ∈ N, f : [a, b] → R+, f ′ ∈ L∞ ([a, b]), x0 ∈ [a, b] . Assume

that Dkα
∗x0

f ∈ C ([x0, b]), k = 0, 1, ..., n + 1, and
(
Diα
∗x0

f
)

(x0) = 0, i = 2, 3, ..., n + 1. Also, suppose

that Dkα
x0−f ∈ C ([a, x0]), for k = 0, 1, ..., n + 1, and

(
Diα
x0−f

)
(x0) = 0, for i = 2, 3, ..., n + 1. Denote

λ := (n+ 1)α ≤ 1. Let LN : C+ ([a, b])→ C+ ([a, b]), ∀ N ∈ N, be positive sublinear operators, such that

LN

(
|· − x0|λ+1

)
(x0) > 0 and LN (1) = 1, ∀ N ∈ N. Then

(108) |LN (f) (x0)− f (x0)| ≤
ω1

(
D

(n+1)α
x0 f, δ

)
Γ (λ+ 1)

·

(LN (|· − x0|λ+1
)

(x0)
) λ
λ+1

+
LN

(
|· − x0|λ+1

)
(x0)

(λ+ 1) δ

 ,
δ > 0, ∀ N ∈ N.

Proof. By Theorems 2.7, 4.1. �

We give

Theorem 4.3. Let 0 < α ≤ 1
n+1 , n ∈ N, f : [a, b] → R+, f ′ ∈ L∞ ([a, b]), x0 ∈ [a, b] . Assume

that Dkα
∗x0

f ∈ C ([x0, b]), k = 0, 1, ..., n + 1, and
(
Diα
∗x0

f
)

(x0) = 0, i = 2, 3, ..., n + 1. Also, suppose

that Dkα
x0−f ∈ C ([a, x0]), for k = 0, 1, ..., n + 1, and

(
Diα
x0−f

)
(x0) = 0, for i = 2, 3, ..., n + 1. Denote

λ := (n+ 1)α ≤ 1. Let LN : C+ ([a, b])→ C+ ([a, b]), ∀ N ∈ N, be positive sublinear operators, such that

LN

(
|· − x0|λ+1

)
(x0) > 0 and LN (1) = 1, ∀ N ∈ N. Then

(109) |LN (f) (x0)− f (x0)| ≤
(λ+ 2)ω1

(
D

(n+1)α
x0 f,

(
LN

(
|· − x0|λ+1

)
(x0)

) 1
λ+1

)
Γ (λ+ 2)

·

(
LN

(
|· − x0|λ+1

)
(x0)

) λ
λ+1

, ∀ N ∈ N.

Proof. In (108) choose δ :=
(
LN

(
|· − x0|λ+1

)
(x0)

) 1
λ+1

. �

Note: From (109) we get that: if LN

(
|· − x0|λ+1

)
(x0)→ 0, as N → +∞, then LN (f) (x0)→ f (x0),

as N → +∞.
We present

Theorem 4.4. Let 0 < α ≤ 1
n+1 , n ∈ N, f : [0, 1] → R+, f ′ ∈ L∞ ([0, 1]), x ∈ (0, 1) . Assume that

Dkα
∗x f ∈ C ([x, 1]), k = 0, 1, ..., n + 1, and

(
Diα
∗xf
)

(x) = 0, i = 2, 3, ..., n + 1. Also, suppose that Dkα
x−f ∈

C ([0, x]), for k = 0, 1, ..., n + 1, and
(
Diα
x−f

)
(x) = 0, for i = 2, 3, ..., n + 1. Denote λ := (n+ 1)α ≤ 1.

Then

(110)
∣∣∣B(M)

N (f) (x)− f (x)
∣∣∣ ≤ (λ+ 2)ω1

(
Dλ
xf,
(

6√
N+1

) 1
λ+1

)
Γ (λ+ 2)

(
6√
N + 1

) λ
λ+1

,

∀ N ∈ N.
See that lim

N→+∞
B

(M)
N (f) (x) = f (x).
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Proof. The Max-product Bernstein operators B
(M)
N (f) (x) are defined by (5), see also [6], p. 10; here

f : [0, 1]→ R+ is a continuous function.

We have B
(M)
N (1) = 1, and

(111) B
(M)
N (|· − x|) (x) ≤ 6√

N + 1
, ∀ x ∈ [0, 1] , ∀ N ∈ N,

see [6], p. 31.

B
(M)
N are positive sublinear operators and thus they possess the monotonicity property, also since

|· − x| ≤ 1, then |· − x|β ≤ 1, ∀ x ∈ [0, 1], ∀ β > 0.
Therefore it holds

(112) B
(M)
N

(
|· − x|1+β

)
(x) ≤ 6√

N + 1
, ∀ x ∈ [0, 1] , ∀ N ∈ N, ∀ β > 0.

Furthermore, clearly it holds that

(113) B
(M)
N

(
|· − x|1+β

)
(x) > 0, ∀ N ∈ N, ∀ β ≥ 0 and any x ∈ (0, 1) .

The operator B
(M)
N maps C+ ([0, 1]) into itself. We apply (109). �

We continue with

Remark 4.5. The truncated Favard-Szász-Mirakjan operators are given by

(114) T
(M)
N (f) (x) =

∨N
k=0 sN,k (x) f

(
k
N

)∨N
k=0 sN,k (x)

, x ∈ [0, 1] , N ∈ N, f ∈ C+ ([0, 1]) ,

sN,k (x) = (Nx)k

k! , see also [6], p. 11.
By [6], p. 178-179, we get that

(115) T
(M)
N (|· − x|) (x) ≤ 3√

N
, ∀ x ∈ [0, 1] , ∀ N ∈ N.

Clearly it holds

(116) T
(M)
N

(
|· − x|1+β

)
(x) ≤ 3√

N
, ∀ x ∈ [0, 1] , ∀ N ∈ N, ∀ β > 0.

The operators T
(M)
N are positive sublinear operators mapping C+ ([0, 1]) into itself, with T

(M)
N (1) = 1.

Furthermore it holds

(117) T
(M)
N

(
|· − x|λ

)
(x) =

∨N
k=0

(Nx)k

k!

∣∣ k
N − x

∣∣λ∨N
k=0

(Nx)k

k!

> 0, ∀ x ∈ (0, 1], ∀ λ ≥ 1, ∀ N ∈ N.

We give

Theorem 4.6. All as in Theorem 4.4, with x ∈ (0, 1]. Then

(118)
∣∣∣T (M)
N (f) (x)− f (x)

∣∣∣ ≤ (λ+ 2)ω1

(
Dλ
xf,
(

3√
N

) 1
λ+1

)
Γ (λ+ 2)

(
3√
N

) λ
λ+1

, ∀ N ∈ N.

As N → +∞, we get T
(M)
N (f) (x)→ f (x) .

Proof. We apply (109). �

We make
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Remark 4.7. Next we study the truncated Max-product Baskakov operators (see [6], p. 11)

(119) U
(M)
N (f) (x) =

∨N
k=0 bN,k (x) f

(
k
N

)∨N
k=0 bN,k (x)

, x ∈ [0, 1] , f ∈ C+ ([0, 1]) , N ∈ N,

where

(120) bN,k (x) =

(
N + k − 1

k

)
xk

(1 + x)
N+k

.

From [6], pp. 217-218, we get (x ∈ [0, 1])

(121)
(
U

(M)
N (|· − x|)

)
(x) ≤

2
√

3
(√

2 + 2
)

√
N + 1

, N ≥ 2, N ∈ N.

Let β ≥ 1, clearly then it holds

(122)
(
U

(M)
N

(
|· − x|β

))
(x) ≤

2
√

3
(√

2 + 2
)

√
N + 1

, ∀ N ≥ 2, N ∈ N.

Also it holds U
(M)
N (1) = 1, and U

(M)
N are positive sublinear operators from C+ ([0, 1]) into itself. Fur-

thermore it holds

(123) U
(M)
N

(
|· − x|β

)
(x) > 0, ∀ x ∈ (0, 1], ∀ β ≥ 1, ∀ N ∈ N.

We give

Theorem 4.8. All as in Theorem 4.4, with x ∈ (0, 1]. Then

∣∣∣U (M)
N (f) (x)− f (x)

∣∣∣ ≤ (λ+ 2)ω1

(
Dλ
xf,

(
2
√
3(
√
2+2)√

N+1

) 1
λ+1

)
Γ (λ+ 2)

·

(124)

(
2
√

3
(√

2 + 2
)

√
N + 1

) λ
λ+1

, ∀ N ≥ 2, N ∈ N.

As N → +∞, we get U
(M)
N (f) (x)→ f (x) .

Proof. By Theorem 4.3. �

We continue with

Remark 4.9. Here we study the Max-product Meyer-Köning and Zeller operators (see [6], p. 11)
defined by

(125) Z
(M)
N (f) (x) =

∨∞
k=0 sN,k (x) f

(
k

N+k

)
∨∞
k=0 sN,k (x)

, ∀ N ∈ N, f ∈ C+ ([0, 1]) ,

sN,k (x) =

(
N + k
k

)
xk, x ∈ [0, 1].

By [6], p. 253, we get that

(126) Z
(M)
N (|· − x|) (x) ≤

8
(
1 +
√

5
)

3

√
x (1− x)√

N
, ∀ x ∈ [0, 1] , ∀ N ≥ 4, N ∈ N.

We have that (for β ≥ 1)

(127) Z
(M)
N

(
|· − x|β

)
(x) ≤

8
(
1 +
√

5
)

3

√
x (1− x)√

N
:= ρ (x) ,
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∀ x ∈ [0, 1], N ≥ 4, N ∈ N.
Also it holds Z

(M)
N (1) = 1, and Z

(M)
N are positive sublinear operators from C+ ([0, 1]) into itself. lso it

holds

(128) Z
(M)
N

(
|· − x|β

)
(x) > 0, ∀ x ∈ (0, 1), ∀ β ≥ 1, ∀ N ∈ N.

We give

Theorem 4.10. All as in Theorem 4.4. Then

(129)
∣∣∣Z(M)
N (f) (x)− f (x)

∣∣∣ ≤ (λ+ 2)ω1

(
Dλ
xf, (ρ (x))

1
λ+1

)
Γ (λ+ 2)

(ρ (x))
λ
λ+1

∀ N ≥ 4, N ∈ N.
As N → +∞, we get Z

(M)
N (f) (x)→ f (x) .

Proof. By Theorem 4.3. �

We continue with

Remark 4.11. Here we deal with the Max-product truncated sampling operators (see [6], p. 13) defined
by

(130) W
(M)
N (f) (x) =

∨N
k=0

sin(Nx−kπ)
Nx−kπ f

(
kπ
N

)∨N
k=0

sin(Nx−kπ)
Nx−kπ

,

∀ x ∈ [0, π], f : [0, π]→ R+ a continuous function. See also Remark 3.8.
By [6], p. 346, we have

(131) W
(M)
N (|· − x|) (x) ≤ π

2N
, ∀ N ∈ N, ∀ x ∈ [0, π] .

Furthermore it holds (β ≥ 1)

(132) W
(M)
N

(
|· − x|β

)
(x) ≤ πβ

2N
, ∀ N ∈ N, ∀ x ∈ [0, π] .

Also it holds (β ≥ 1)

(133) W
(M)
N

(
|· − x|β

)
(x) > 0, ∀ x ∈ [0, π] ,

such that x 6= kπ
N , for any k ∈ {0, 1, ..., N} , see [3].

We present

Theorem 4.12. Let 0 < α ≤ 1
n+1 , n ∈ N, x ∈ [0, π] be such that x 6= kπ

N , k ∈ {0, 1, ..., N}, ∀ N ∈ N;

f : [0, π]→ R+, f ′ ∈ L∞ ([0, π]). Assume that Dkα
∗x f ∈ C ([x, π]), k = 0, 1, ..., n+ 1, and

(
Diα
∗xf
)

(x) = 0,

i = 2, 3, ..., n + 1. Also, suppose that Dkα
x−f ∈ C ([0, x]), for k = 0, 1, ..., n + 1, and

(
Diα
x−f

)
(x) = 0, for

i = 2, 3, ..., n+ 1. Denote λ := (n+ 1)α ≤ 1. Then

(134)
∣∣∣W (M)

N (f) (x)− f (x)
∣∣∣ ≤ (λ+ 2)ω1

(
Dλ
xf,
(
πλ+1

2N

) 1
λ+1

)
Γ (λ+ 2)

(
πλ+1

2N

) λ
λ+1

, ∀ N ∈ N.

As N → +∞, we get W
(M)
N (f) (x)→ f (x) .

Proof. By (132), (133) and Theorem 4.3. �

We make
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Remark 4.13. Here we continue with the Max-product truncated sampling operators (see [6], p. 13)
defined by

(135) K
(M)
N (f) (x) =

∨N
k=0

sin2(Nx−kπ)
(Nx−kπ)2 f

(
kπ
N

)
∨N
k=0

sin2(Nx−kπ)
(Nx−kπ)2

,

∀ x ∈ [0, π], f : [0, π]→ R+ a continuous function.

See also Remark 3.10.
It holds (β ≥ 1)

(136) K
(M)
N

(
|· − x|β

)
(x) ≤ πβ

2N
, ∀ N ∈ N, ∀ x ∈ [0, π] .

By [3], we get that (β ≥ 1)

(137) K
(M)
N

(
|· − x|β

)
(x) > 0, ∀ x ∈ [0, π] ,

such that x 6= kπ
N , for any k ∈ {0, 1, ..., N}.

We continue with

Theorem 4.14. All as in Theorem 4.12. Then

(138)
∣∣∣K(M)

N (f) (x)− f (x)
∣∣∣ ≤ (λ+ 2)ω1

(
Dλ
xf,
(
πλ+1

2N

) 1
λ+1

)
Γ (λ+ 1)

(
πλ+1

2N

) λ
λ+1

, ∀ N ∈ N.

As N → +∞, we get K
(M)
N (f) (x)→ f (x) .

Proof. By (136), (137) and Theorem 4.3. �

We finish with

Corollary 4.15. (to Theorem 4.4, α = 1
4 , n = 2, λ = 3

4) Let f : [0, 1] → R+, f ′ ∈ L∞ ([0, 1]),

x ∈ (0, 1) . Assume that D
k 1

4
∗x f ∈ C ([x, 1]), k = 0, 1, 2, 3, and

(
D
i 14
∗xf
)

(x) = 0, i = 2, 3. Suppose that

D
k 1

4
x−f ∈ C ([0, x]), for k = 0, 1, 2, 3, and

(
D
i 14
x−f

)
(x) = 0, for i = 2, 3. Then

(139)
∣∣∣B(M)

N (f) (x)− f (x)
∣∣∣ ≤

(1.709)ω1

(
D

3· 14
x f,

(
6√
N + 1

) 4
7

)(
6√
N + 1

) 3
7

, ∀ N ∈ N.

And lim
N→+∞

B
(M)
N (f) (x) = f (x) .

Proof. Use of (110). �
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[8] L. Fejér, Über Interpolation, Göttingen Nachrichten, (1916), 66-91.
[9] G.G. Lorentz, Bernstein Polynomials, Chelsea Publishing Company, New ork, NY, 1986, 2nd edition.

[10] Z.M. Odibat, N.J. Shawagleh, Generalized Taylor’s formula, Appl. Math. Comput. 186, (2007),
286-293.

[11] T. Popoviciu, Sur l’approximation de fonctions convexes d’order superieur, Mathematica (Cluj), 10
(1935), 49-54.

Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152,
U.S.A.

Email address: ganastss@memphis.edu

Galaxy
Text Box
82


	Text2: ROMANIAN JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2018, VOLUME 8, ISSUE 2, p.58-82


