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ITERATED FRACTIONAL APPROXIMATION BY MAX-PRODUCT
OPERATORS
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ABSTRACT. Here we consider the approximation of functions by sublinear positive op-
erators with applications to a large variety of Max-Product operators under iterated
fractional differentiability. Our approach is based on our general fractional results about
positive sublinear operators. We produce Jackson type inequalities under iterated frac-
tional initial conditions. So our way is quantitative by producing inequalities with their
right hand sides involving the modulus of continuity of iterated fractional derivative of
the function under approximation.
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1. INTRODUCTION

The inspiring motivation here is the monograph by B. Bede, L. Coroianu and S. Gal [6], 2016.
Let N € N, the well-known Bernstein polynomials ([9]) are positive linear operators, defined by the
formula

N
1) By (@ =3 (§ )era-0 s (5). e, recqu.

k=0

T. Popoviciu in [11], 1935, proved for f € C (][0, 1]) that

5) 1
@) By (1) @)~ f @) < Jon (£.72) . Ve a1,
where
(3) wi (f,0) = sup [f(z)=Ff(yl, 6>0,
z,y€la,bl:
le—y|<é
is the first modulus of continuity, here [a,b] = [0, 1].

G.G. Lorentz in [9], 1986, p. 21, proved for f € C! ([0, 1]) that

(4) By () (2) — f (2)] < 3ua(c:1),Vxemuv
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In [6], p. 10, the authors introduced the basic Max-product Bernstein operators,

N k
(5) B (1) (@) = Vio Pt I R) -y oy
Vie=o PNk (%)
where \/ stands for maximum, and py i (z) = ZZ " (1—2)N " and f:[0,1] > Ry = [0,00).

These are nonlinear and piecewise rational operators.

The authors in [6] studied similar such nonlinear operators such as: the Max-product Favard-Szasz-
Mirakjan operators and their truncated version, the Max-product Baskakov operators and their truncated
version, also many other similar specific operators. The study in [6] is based on presented there general
theory of sublinear operators. These Max-product operators tend to converge faster to the on hand

function.
So we mention from [6], p. 30, that for f :[0,1] — R, continuous, we have the estimate
1

In this paper we expand the study of [6] by considering iterated fractional smoothness of functions.
So our inequalities are with respect to wy (D™D f,§), § > 0, where D"V f with a > 0, n € N, is the
iterated fractional derivative.

2. MAIN RESULTS
‘We make

Remark 2.1. Let f : [a,b] — R such that f' € Lo ([a,b]), o € [a,b], 0 < a < 1, the left Caputo
fractional derivative of order « is defined as follows

x

7) (D2, ) @) = =y | =07 F 0t

0

where T is the gamma function for all xog < x < b.
We observe that

(02,0) @) < =y [ =071 Ot

1—a) /s,

e [* o e @ =20)"" [1f o (& = w0)
© el R e Tyt
Le.

! T — )t / b— o)t
o) (02 ) < Wl G WOl
YV x € [xo,b].
Clearly, then
(10) (D2, f) (w0) = 0.
We define (D2, f) (x) =0, for a < x < .

Let n € N, we denote the iterated fractional derivative D}g = D$, D¢, ..Dg, — (n-times).
Let us assume that

D fe C([zo,b)), k=0,1,...,n+1; neN, 0<a<1.

*To
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By [10], [4], pp. 156-158, we have the following generalized fractional Caputo type Taylor’s formula:

_ - (x_x())ia 1o
(11) f(x) - ; F(ia + 1) (D*zo ) (‘T(J)—’_
1 * _ p\(n+l)a—1 (n+1)a
W/xo (@ —6)"" (D*xo f) (t) dt,
Ve [(E(], b] .
Based on the above (10) and (11), we derive
(12) £@) = £ o) = 3 Tt (D35,1) o) +

L [T el (pnta
F((n—l—l)a)/xo( ?) (D575 ().

Ve rgb,0<a<l.
In case of (Dm f) (9)=0,i=2,3,...,n+ 1, we get

f(x) = f(zo) =

(13) o ) (=) (DEr) () = (DS F) (o) ) .

Ve zob],0<a<]l.
‘We make

Remark 2.2. Let f : [a,b] = R such that f' € Lo ([a,b]), 2o € [a,b], 0 < a < 1, the right Caputo
fractional derivative of order « is defined as follows

(14) (Dgo_f) (z) = F(l—ia)/zo (2 —2)"" f' (2) dz,
V x € [a, o] .

We observe that

@ 1 o —a | gt
[(Dg,—f) (@)] < m/f (z =) " [f' (2)[dz <
11/l o o N L Wl @o—2)"" 1l —a

(15) T(l-a) (/x (z-2) dz) TT(1-a) [El—a) TT2-a) (w0 — )"
That is
(1) 05, @) = e g -yt < eyt <o
V x € [a,z0] .

In particular we have
(17) (D2, _f) (z0) = 0.

We define (Dg‘o_f) (£) =0, forzg <z <b.
For n € N, denote the iterated fractional derivative D} = Dg Dy ...Dg _ (n-times).

In [1], we proved the following right generalized fractional Taylor’s formula: Suppose that
k —
D;e f e C(la,x0]), fork=0,1,...,n+1,0<a<l.
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Then

58
(18) fla)= ;0 P ia g 1) PRe) )+
1 To (n+1)a—1 (n+1)a
T(n+Da) / (z—2) (D) (=) d,
YV x € [a, 0] .
Based on (17) and (18), we derive
(19) f(x) = f(zo) = Z (o - + (Die_f) (xo) +
1 e (n+)a—1 ( H(n+l)a
WL (z —z) (Daco— f) (2)dz,

Vaelam), 0<a<l.
In case of (D;‘z_f) (x9) =0, fori=2,3,....,n+ 1, we get

7 (@)~ f (wo) =
(20) rotra [ G (05 ) (- (D40 (e

Vaelam), 0<a<l.
We need
Definition 2.3. Let DQ(CZH f denote any of D*Zjl)af, nﬂ)af, and 6 > 0. We set

(21) w1 (Dg(cﬁJrl)o‘f, 5) = max{ (Dﬁ’;il)“f, 5) o0 , W1 ( xztl)af 5) [a,zo]} )

where xg € [a,b]. Here the moduli of continuity are considered over [xo,b] and [a, o], respectively.

We present
Theorem 2.4. Let 0 < a < 1, f : [a,b] = R, f' € Lo ([a,b]), 7o € [a,b]. Assume that DK f €

*TQ

C ([xo,b]), K = 0,1,...n+1; n € N, and (Dm f) (xg) = 0, ¢ = 2,3,...,n+ 1. Also, suppose that

*To

Dk f € C([a, o)), for k=0,1,...,n+1, and (Di*_f) (xo) =0, for i =2,3,....,n+ 1. Then

e ()

(22) |f(x) —f(xo)\ > F((n-i—l)()é‘f‘ 1)

vV €lab], d>0.

|:,C — |(n+1 O(+1

d(n+1)a+1)

|z — x|(n+1 +

Proof. By (13) we have

] 17 (@)~  (wo)| <
e J, 0 (PR ) 0= () ol
(6 > 0) ’
1 ’ n+l)a— n+1l)a t—x
S T L, 00" (P )
V(DT re :
(23) < (F 7D a))[z(”b] /GE0 (z — t)(nHDe-1 (1 + W) dt —
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o (9571)

n+1l)a
[z0,b] |\($(—$ )( ) 6/ (n+1)a 1 (t T )2*1 dt‘| —

I'((n+1)a) n+1)a
(nt+1)a
(D*x" o 6) wost] | (@ — ) "THe 1T ((n+1) )T (2) (@ — m) D+ =
I'((n+1) ) (n+1)« ST ((n+1)a+2)
(n+1)a
(24) o (D 1.9) 0.0 [(x —ag) " (e
F'((n+1)a) n+1)a dn+1l)a((n+1l)a+1)

We have proved

(Diﬁjl £, 5) (n+1)a+1
[IOyb]

(25) f () = f(z0)] < T((n+1)a+1)

(n+1)a ($—$0)
[(x_m) A S s Dat D

V x € [x0,0], 6 > 0.
By (20) we get

|f (@) = f(@o)| <
1 o (n+1)a—1 (n+1)a (n+1)a
r<<n+1>a>/ (z=2) (D557°0) ) = (D277 ) (o) s
1 o (n+1)a—1 (n+1)a (1‘0 - Z)
<t o e (P >[a,zo]dz
wi (DSEVf, 6 %0
(20 < (r<<n+1>a)>[a’x°] [ (12 ] -
(D(ni-l)a _ (nt Do -
o [a,z0] (l’o — l‘) 1 o )21 . (n+1)a—1 _
T (n+ 1)) _ CEN +5/m (xg—2)" (z—x) dz| =

n+1 _ -
1 (P0) 4y [ra =)0 IL@T((n+Da) o eriats
I'((n+1)«) n+1)a ST ((n+1)a+2) 0

(fo;fl)af, 5) [a,z0]

T((n+1)a)

)(7L+1)a )(n+1)a+1

(xo—x n (xo —x
n+1)a d(n+a((n+1l)a+1)

(27)

We have proved

(28) |f (x) = [ (x0)] <

(n+1)a
w1 ( To— f) )[u7$0] (x B x)(n+1)a (xO o x)(n+1)a+1
I'((n+1l)a+1) d((n+1)a+1)

V x € [a,zg], 6 > 0.
By (25) and (28) we derive (22).

We need
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Definition 2.5. Here Cy ([a,b]) := {f : [a,b] = Ry, continuous functions}. Let Ly : Cy ([a,b]) —
Cy ([a,b]), operators, ¥V N € N, such that

(i)
(29) Ly (af) =aly (f), Yo =0,Yf € Cy ([a,b]),

(ii) if f,9 € Cy([a,b]) : f < g, then

(iii)
(31) Ly (f+g9)<Ln(f)+Ln(g9), V f,geCy([a,b]).

We call {Ly} ey positive sublinear operators.

We make
Remark 2.6. By [6], p. 17, we get: let f,g € Cy ([a,b]), then
(32) |ILn (f) () = Ly (9) (@) < Ln (If —gl) (2), Vz€la,b].
Furthermore, we also have that
(33) ILn (f) (@) = f (@) < Ly (If () = f (@)]) (&) + [ (2)] |l (eo) (x) — 1],

Va€labl;en(t) =1,V telab].

From now on we assume that Ly (1) = 1. Hence it holds
(34) Ly (f) (@) = F (@) < Ly (If () = f (@)]) (z), ¥z €a,b].
In the assumption of Theorem 2.4 and by (22) and (34) we obtain

w1 (D;’g“)"‘ 1 5)

(35) ILn (f) (o) — f (wo)| < T((n+Da+l)

Ly (|- = 2o ") (o)
(n+1)a+1)6 ’

6> 0.

LN <| _ .730|(n+1)a) (.1:0) _|_

We have proved

Theorem 2.7. Let 25 < a <1, neN, f:lab = Ry, f' € Ly ([a,b]), xo € [a,b]. Assume
that D f € C([xo,b]), k = 0,1,...,n+ 1, and (Dfﬁof) (xg) =0, 1 = 2,3,...,n+ 1. Also, suppose
that Dk f € C ([a,x0]), for k = 0,1,...,n 4+ 1, and (DX_f) (z¢) = 0, for i = 2,3,...,n+ 1. Denote
A=(n+1)a>1. Let Ly : Cy ([a,b]) = C4 ([a,b]), V N € N, be positive sublinear operators, such that

Ly(1)=1,Y N €N. Then

wi (Déﬁ*”“ f, 5)
|Ln (f) (zo) — f (20)| < .

T(A+1)

Ly (|- = ao") (o)
(36) L (|- = xol) (a0) + N<(A:U5) :
6>0,v NeN.

1

Note: Theorem 2.7 is also true when 0 < o < P

63


Galaxy
Text Box
63


ROMANIAN JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2018, VOLUME 8, ISSUE 2, p.58-82

3. APPLICATIONS, PART A

Case of (n+1)a > 1.

We give
Theorem 3.1. Let =5 <a<1,neN, f:[0,1] =Ry, f' € Lo ([0,1]), = € [0,1]. Assume that
DiefeC([x,1]), k=0,1,...,n+1, and (D2f) (x) =0, i = 2,3,...,n + 1. Also, suppose that DE* f €
C ([0,z]), for k=0,1,....,n+ 1, and (fo‘_f) (£) =0, fori=2,3,...,n+ 1. Denote A\ := (n+1)a > 1.

Then
w1 Da(cn+1)af, ]\? T x
B (1) @) £ ()] < ( mff) )
6 1 6\ %
0 A o () ]
VN eN.
We get lim B](VM) (f)(z) = f(x).

N—+oco

Proof. By [3] we get that
6
VN +1

(38) BYY (|- = al*) (@) < , Vaelo],

VNeN VA>T
Also B](VM) maps C4 ([0, 1]) into itself, BI(VM) (1) =1, and it is positive sublinear operator.
We apply Theorem 2.7 and (36), we get

(n+1)a
w (DS ﬁ@ 6 6
(M) -~ ‘ < ( VN1
(39) B (1) @) - 1 @) < T (A +1) NTi1 (10
1
Choose § = (%ﬂ) Hl, then 6! = \/1\?7“, and apply it to (39). Clearly we derive (37). O

We continue with
Remark 3.2. The truncated Favard-Szdsz-Mirakjan operators are given by

_ \/llcvzo snk () f (%

(40) T](VM) (f) (l’) N )7 MS [071]3 NEN) f€C+ ([071})7
Vi=o sn.k (2)
snk (x) = (ng?)k! see also [6], p. 11.
By [6], p. 178-179, we get that
(41) T](\,M)(|-—m|)(x)§\/%, Vzel01], v NeN.

Clearly it holds

M) (1. _ o8 () < 5
(42) T (| z| )(x) T Yeel), Y NEN VS0

The operators TJ(VM) are positive sublinear operators mapping C, ([0,1]) into itself, with T](VM) (1) =1.

We continue with
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Theorem 3.3. Same assumptions as in Theorem 3.1. Then

w1 <D:(¢n+l)afa (iN) Al“)
) )

T(A+1

00 () @)~ f @) <

(43)

=R

()(W)] Wy

We get lim TU () (z) = f (z).

N —4o00

Proof. Use of Theorem 2.7, similar to the proof of Theorem 3.1.

We make

Remark 3.4. Nexst we study the truncated Maz-product Baskakov operators (see [6], p. 11)
N
_ Vimo b (2) £ ()

(44) Uy (f) (@) VANARRIEL 0,1], f€C([0,1]), N€N,
k=0 ONk (T
where
N+k—-1 xk
(45) by () = ( k ) At

From [6], pp. 217-218, we get (x € [0,1])

2v3 (V2 +2)
(M) () _ cvolvare) oo
(46) (U8 (=) (2) < = et N22 NEN,
Let X > 1, clearly then it holds
2v3 (V2 +2)
(M) (1. _ A < ZY7AYE 7T >
(47) @m 0 m)ym_ T VN2 NeN

Also it holds UI(VM) (1) =1, and U](VM) are positive sublinear operators from C4 ([0, 1]) into itself.

We give
Theorem 3.5. Same assumptions as in Theorem 3.1. Then

(n+1)a 2\/3(\/§+2) %H
o.)1 <Da: f; <1\7+1
T(A+1) ’

(48) U () (@) = £ @)] <

2V3 (V2 +2) 1 <2ﬁﬂ¢§+®

=1
, VN>2 NeN.
N+1 (A+1) VN +1 > -

. (M) _
We get tim UQP (1) (@) = f (&)
Proof. Use of Theorem 2.7, similar to the proof of Theorem 3.1.

We continue with
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Remark 3.6. Here we study the Max-product Meyer-Kéning and Zeller operators (see [6], p. 11)
defined by

Vioswn () f (s
(19) 200 (1) (2) = — v:JZ_N (gj““), VN EN, fec (0,1),

s (@) = < N;’“ )xk,xe[(),l].

By [6], p. 253, we get that

8 (1 5)Vz(l—=
(50) ZM (|- = 2]) (2) < ( gf)f\(/lﬁ ) Vzel0,1],VN>4 NeN.

We have that (for A > 1)
8(1+V5) yz (1 —x)

(51) Zq (|- - 2P) (@) < = N =e),

Vzel0,1], N>4, NeN.
Also it holds ZI(VM) (1)=1, and Z](\fw) are positive sublinear operators from C4 ([0, 1]) into itself.
We give

Theorem 3.7. Same assumptions as in Theorem 3.1. Then

w1 (DD, (p ()7 )
T(A+1) '

(52) 207 (5) @) - £ (@)] <
1 2
[p(x)—&-w(p(x))k“] ,VNeN, N>4.

We get NLHE Z](VM) (f) () = f(x), where p(x) is as in (51).

Proof. Use of Theorem 2.7, similar to the proof of Theorem 3.1. O
We continue with

Remark 3.8. Here we deal with the Max-product truncated sampling operators (see [6], p. 13) defined

by
sin(Nx—km) km
(M) Vk =0 Nz—k=m f(W)
(53) WN (f) (Z‘) \/ sin(Nx— kTr) ’
k=0 Nz—k~
and
2
VA W km
(54) KD () () = —— Ak 0

V sin?(Nz— kﬂ') ’
k=0 (Na: km)?

Vxel0,n], f:[0,7] = Ry a continuous function.

sin(O) sin(Nz—k)

Nzx—km 7
we get that sy (5X) = 1, and st( ) =0, ifk #j, fun‘hermore W(M) (f) (%) = f(%), for all
j€{0,...,N}.

C’learly W(M) (f) is a well-defined function for all x € [0,7], and it is continuous on [0,7], also
w (1) =1

N =1.

By [6], p. 344, W](VM) are positive sublinear operators.

Following [6], p. 848, and making the convention = 1 and denoting sy (z) =
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Call If; (z) = {k € {0,1,..., N};sn (z) > 0}, and set xn = EX, k€ {0,1,...,N}.
We see that

Vkelg(x) sk (7)

By [6], p. 846, we have

(56) WM (| = z)) () < VNEN, Vael0n].

7r
N
Notice also |y — x| <m, ¥V x €[0,n].

Therefore (A > 1) it holds

A-1 A
(57) W <\~fx|)‘) (x)g”m”:%, Vaelon],VNeN.
We continue with
Theorem 3.9. Let 25 <a <1, neN, f:[0,71 = Ry, f/ € Lo ([0,7]), z € [0,7]. Assume

that Do f € C([z,7]), k = 0,1,...,n+ 1, and (Di%f)(z) = 0, i = 2,3,...,n+ 1. Also, suppose
that D** f € C([0,z]), for k = 0,1,....,n + 1, and (D;a_f) (z) =0, for i = 2,3,....n + 1. Denote

A=(n+1)a>1. Then
<D(n-|-1)ozf7 ( *+1)>\‘1H)

WP () (@)~ 1 @)] <

(A+1)
A 1 A1\ X3
0 m !
It holds lim W( ) (f) (z) = f(x).
N —+o00
Proof. Applying (36) for WN ) and using (57), we get
(n+1)a A1
w, (DD g 5) NS
(59) W (1) (@)~ 1 ()] < ForD vy T ol
- 2
Choose § = (”;;,1> " then M1 = %, and 6 = (”;;1) ™ We use the last into (59) and we obtain
(58). U
We make

Remark 3.10. Here we continue with the Maz-product truncated sampling operators (see [6], p. 13)
defined by

2(Nz—km) ¢ (k
\/k o s1an :vkﬂ- T ( 7'(')

M
(60) KJ(V : (f) (.’L‘) sin?(Nz— kﬂ') ’
Vk 0 (Na: k)2
Vaxel0,n], f:]0,7] > Ry a continuous function.
sin(O) sin? (Nz—k)

Following [6], p. 850, and making the convention = 1 and denoting sy (x) =

(Nz—km)2 7
we get that sy k (%) =1, and sy (%) =0, if k # 7, furthermore K(M) (f) (%) =f (%), for all

j€{0,...,N}.
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Since sy j (%) =1 it follows that \/kN=0 SNk (%) >1>0, forallj €{0,1,...., N}. Hence KJ(\,M) (f) is
well-defined function for all x € [0, 7], and it is continuous on [0, 7], also KJ(\,M) (1) = 1. By [6], p. 350,
KI(VM) are positive sublinear operators.

Denote xn j :== %’T, ke{0,1,..,N}.

By [6], p. 852, we have

(61) Ky (- —al) (@) < 5, VNEN, Ve o],
Notice also |zn g — x| <m, ¥V x €[0,7].
Therefore (A > 1) it holds
A1 A
(M) (1. _ A < ™ T_ T
(62) K¢ (| 2| )(w)f =gy YeEllm Y NEN.

We give
Theorem 3.11. All as in Theorem 3.9. Then

_1
o (D2 (50) ™)

[EQD () @)~ 1 (@) <

rA+1)
7IEA 1 g+l e
(63) M+M<2N) ] VNeN.
We have that NE)IEOOKJ(VM) () (z) = f(x).
Proof. As in Theorem 3.9. 0
We make

Remark 3.12. We mention the interpolation Hermite-Fejer polynomials on Chebyshev knots of the

first kind (see [6], p. 4): Let f : [—1,1] — R and based on the knots x 1 = cos (%ﬂ') € (—-1,1),

ke {0,.,N}, -1 <zno <zan1 < ..<ann <1, which are the roots of the first kind Chebyshev
polynomial T1 (x) = cos ((N + 1) arccosx), we define (see Fejér [8])

N
(64) Honga (f) (2) = Z hni (@) f (2N
k=0
where
.

the fundamental interpolation polynomials.
The Maz-product interpolation Hermite-Fejér operators on Chebyshev knots of the first kind (see p. 12
of [6]) are defined by

_ Vieo hv (2) f (@nn)

(66) HizL (f) (@) , VNeN,
2N+1 VY e (1)
where f:[—1,1] = Ry is continuous.
Call
N
(67) B (2) i= B, (|- — af) (n) = Voo tn @ ek =2l - g

Vilo havi ()
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Then by [6], p. 287 we obtain that

2

Vaxel[-1,1], N eN.

Form > 1, we get
Vieo hvi (@) e e — 2™

H(M) =™ (z) =
an1 ([ —=27) (@) VY v (2)

Vo hove (2) [en e — ol Jong — 2™ <om- WViso v (2) |z g — 2

VARYIED) Vieco b (@)
2M

< — .

SNiU Vezel[-1,1, NeN
Hence it holds

(M) m 2MT

(70) Hyniq (| —2™) () < Nil Vzel[-1,1], m>1,V N eN.
Furthermore we have
(71) BN, () (@) =1, Voe[-1,1],

and Hz(?\ﬁl maps continuous functions to continuous functions over [—1,1] and for any © € R we have

VkN:O hN,k (1‘) > 0.

We also have hn i (xn k) =1, and hn g (xn ;) = 0, if k # j, furthermore it holds Hg(%j_l (f)(znj) =
f(zn, ), forall j € {0,...,N}, see [6], p. 282.

Héﬁﬁl are positive sublinear operators, [6], p. 282.

We give
Theorem 3.13. Let =5 < a <1, neN, f:[-11] = Ry, f/ € Lo ([-1,1]), z € [-1,1].
Assume that D¥ f € C ([z,1]), k=0,1,...,n+1, and (DI%f) (z) =0, i = 2,3,...,n + 1. Also, suppose
that Dk~ f € C([-1,2]), for k = 0,1,...,n+ 1, and (DI f) (z) = 0, for i = 2,3,...,n + 1. Denote
A=(n+1)a>1. Then
1
o (ot (358) ™)

(72) ML () () = £ (@) < FO ~

A AL

N1t )\+1 N+1) ] VN eEN

. . (M)
Furthermore it holds NETWH2N+1 () (x)=f(x).
1

Proof. Use of Theorem 2.7, (36) and (70). Choose § := (2;:1”) M ete. U

We continue with

Remark 3.14. Here we deal with Lagrange interpolation polynomials on Chebyshev knots of second
kind plus the endpoints +1 (see [6], p. &5). These polynomials are linear operators attached to f :

[-1,1] = R and to the knots zn 1 = cos ((%) 71') e[-1,1], k=1,..,N, N € N, which are the roots
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of wy (z) =sin (N — 1) tsint, x = cost. Notice that xn1 = —1 and xy, n = 1. Their formula is given by
(16], p. 377)

N
(73) Ly (f)(z) = ZZN,k () f (@NK)
k=1

where
()" wy (@)
L+ 0k1 +0kn)(N=1)(z —2znp)
N >2 k=1,.,N, and wy () = ngl (x —xng) and §;; denotes the Kronecher’s symbol, that is
5i,j = 1, ZfZ :j, and 51‘,]' = O, Zfl #]
The Mazx-product Lagrange interpolation operators on Chebyshev knots of second kind, plus the end-
points +1, are defined by (6], p. 12)

(74) lN,k (l’) = (

_ Vi v (@) f ()
Vil vk (@)

(75) LYY (f) () , zel-1,1],

where f:[—1,1] = Ry continuous.

First we see that Lg\],w) (f) (z) is well defined and continuous for any x € [—1,1]. Following [6], p.
289, because fo:lle (x) =1,V x € R, for any = there exists k € {1,...,N} : Iy (z) > 0, hence
\/i\;l Ing (x) > 0. We have that In i (xng) = 1, and In g (xn,;) = 0, if k # j. Furthermore it holds
LYY (f) (@ny) = f (), all j € {1,..,N}, and L3P (1) = 1.

Call I (z) = {k € {1,.... N};Inx (z) > 0}, then I}, () # 0.

So for f € Cy ([-1,1]) we get

 Vierg e (@) f(2ng)

Notice here that |ty — x| <2,V z € [-1,1].
By [6], p. 297, we get that
_ Vszl Ing (T) TN g — 2] _

LYY (- = 2) (x) VY v (2)
k=1'Nk (T

(77) Vkezjgm Ing (@) 2N, — 2| < 2
Vke];;(m) Nk () T 6(N-1)
N >3,Vxe(-1,1), N is odd.
We get that (m > 1)
\/kGIJr(a:) lN,k (l‘) ‘xN.k — x|m om—1.2
(78) L (|- = 2]™) (2) = —* ' < ,
v \/keI;(x) Ing (2) 6(N—1)

N >3 odd, Ve (-1,1).
LS\],W) are positive sublinear operators, [6], p. 290.
We give
Theorem 3.15. Same assumptions as in Theorem 3.13. Then

w DgnJrl)ozﬁ 2>\.,i2 i
(79) 190 () (2) ~ £ ()] < ( mg‘sg 7) )
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A
2)\717‘.2 1 2)\71.2 1
N N > .
lG(N—1)+()\+1)<6(N—1)> ],v EN:N23, odd

It holds NLiIEOOL%M) (f) (z) = f(z).

1

Proof. By Theorem 2.7, choose § := (%)m, use of (36) and (78). At %1 the left hand side of

(79) is zero, thus (79) is trivially true. 0
We make
Remark 3.16. Let f € C, ([-1,1]), N >4, N €N, N even.
By [6], p. 298, we get
472 2272

(80) Lgy)(l'—xl)(x)ﬁ?’m_l)=3(N_1), va e (—1,1).

Hence (m > 1)
(81) LRV (= al™) (@) € s, Yz e(-1,1).

We present

Theorem 3.17. Same assumptions as in Theorem 3.13. Then

1
(n+1)ox A252 | 3FT
w1 (Dac I/ (g(N,l)) )
T(A+1) '

A
2)\+1ﬂ_2 1 2>\+27T2 3T
VNeN N>4, Ni .
[3(N1)+()\+1) (3(_]\71)) ) eEN, N >4, N s even

(52) 25" () (@)~ £ (@) <

It holds lim LY (f) (z) = f (x).

N—+oo
A+2,_2 ﬁ
Proof. By Theorem 2.7, use of (36) and (81). Choose § = (ﬁ) T ete. U
We make

Remark 3.18. Let f: R — R such that f' € Lo (R), 19 € R, 0 < a < 1. The left Caputo fractional
derivative (D, f) (z) is given by (7) for x > wo. Clearly it holds (D2, f) (zo) = 0, and we define
(D2, f) (@) =0, for & < xo.

Let us assume that DES f € C ([xg,4+00)), k=0,1,..,n+1; n € N.

Still (11)-(18) are valid ¥ z € [xg, +00).

The right Caputo fractional derwative (D2 _f) () is given by (14) for x < xo. Clearly it holds
(D%, _f) (z0) =0, and define (D2, _f) (z) =0, for x> xo.

Let us assume that DX°_f € C ((—o0, o)), k=0,1,...,n+ 1.

Still (18)-(20) are valid ¥ © € (—o0, zg)].

Here we restrict again ourselves to n%_l <a <1, thatis A := (n+1)a > 1. We denote D), f =

*XT(Q
D»(];;O"‘l)af, and D;‘O_f .— D(n'H)O‘f_

ro—

‘We need
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Definition 3.19. ([7], p. 41) Let I C R be an interval of finite or infinite length, and f : I — R a
bounded or uniformly continuous function. We define the first modulus of continuity

(83) wi (f,6)p = sup [f(z)—f(y)], 6>0.

z,yel
lz—y|<o

Clearly, it holds wy (f,0); < +oc.

We also have

(84) wi (f,rd), < (r+ 1w (f,0),, anyr>0.

Convention 3.20. We assume that D} _f is either bounded or uniformly continuous function
A

2xo S 18 either bounded or uniformly continuous function on

on (—oo,xg), similarly we assume that D
[0, +00).

We need
Definition 3.21. Let D} f denote any of D), _f, D3, f and § > 0. We set

*TQ

(85) wi (D3, f, 0)g = max {‘*’1 (D3,- 1, 6)(—oo,z0] ,wi (D2, f9) [:co,-‘roo)}’
where xg € R. Notice that wq (Déoﬁ 5)R < 400.
We give

Theorem 3.22. Let =5 <a<1l,neN A= n+1)a>1 f:R—=>R, f €Ly (R), 79 € R.
Assume that ngof € C ([xo,+)), k=0,1,....,n+ 1, and (Dﬁof) (£9) =0,1=2,3,...,n+ 1. Suppose

that D> _f € C ((—00,x¢]), for k=0,1,..,n+1, and (Di*_f) (x0) =0, for i =2,3,...,n+ 1. Then

wi (D, f,0)z A =™
_ < _
(36) £@) = £ (wo)| < TR (e = ol + F |
VezeR,§>0.
Proof. Similar to Theorem 2.4. ]

Remark 3.23. Let b: R — R, be a centered (it takes a global mazimum at 0) bell-shaped function,
with compact support [=T,T), T > 0 (that is b(x) >0 for allz € (-T,T)) and I = fTT b(zx)dx > 0.
The Cardaliaguet-Euvrard neural network operators are defined by (see [5])
N? k
f(ﬁ) -« k
(87) Crva (f) (@) = k;w et (Ve -5 ) )

0<a<1, N€eN and typically here f : R — R is continuous and bounded or uniformly continuous on

R.
CB (R) denotes the continuous and bounded function on R, and

CBy(R)={f:R—[0,00); feCB(R)}.
The corresponding maz-product Cardaliaguet-Euvrard neural network operators will be given by
Vb (N @ =) £ (B)
Vi (Ve )
x € R, typically here f € CBy (R), see also [5].
Next we follow [5].

(88) CV(f) (2)
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For any x € R, denoting
k
Jrx () = {k €Z; N’ <k<N? N'° <x ) e (T,T>},

we can write

(89) OO (f) (x) =

re€R, N> max{T—i— || ,T‘é}, where Jr n (z) # 0. Indeed, we have VkeJTN(m) b (Nl_“ (:E - %)) >
0,vzeR andN>maX{T+|x\,T_é}.
We have that C’](VMa) (1)(z) =1,V 2z €R and N > max {T—i— || ,T‘é}.

See in [5] there: Lemma 2.1, Corollary 2.2 and Remarks.
We need

Theorem 3.24. ([5]) Let b(x) be a centered bell-shaped function, continuous and with compact support
[-T,T), T>0,0<a<1 and C’J(VA/Q be defined as in (88).

(i) If |f (x)| < ¢ for all x € R then ‘C’](\,Ma) (f) (@) <¢c, forallz € R and N > maX{T—i— || ,T‘i}
and C](VAQ (f) (z) is continuous at any point x € R, for all N > max {T + |z] ,T‘%} :

(i) If f,g € CB4 (R) satisfy f(x) < g(z) for all z € R, then C'](VAQ (f) (z) < C’J(VAQ (9) (z) for all
z€R and N > max{T + |x|,T’é};

(iii) Civq (f+9) (@) < CRd () (@) + CFe (9) (@) for all f.g € CBL(R), z € R and N >
max {T+ || ,T*i} ;

(iv) For all f,g € CB4 (R), x € R and N > max {T + |z ,T*%}, we have

€00 () (@) - 80 (9) (@) < CQR (1F o) (@)

(v) C'J(VAQ is positive homogeneous, that is CI(VA,Q Af) (z) = )\C](VAQ (f) (@) for all X > 0, z € R,
N>max{T+|x|,T’§} and f € CB4 (R).

We make

Remark 3.25. We have that
R

90 Enao (T ::C’(M) -—z|)(x | ,
(90) N (T) N (| ) () VkeJT7N(z)b(N1_a (m—%))

VzelR, and N > max{T+ |x|,T*§}.
We mention from [5] the following:

Theorem 3.26. ([5]) Let b(x) be a centered bell-shaped function, continuous and with compact support
[-T,T], T >0 and 0 < a < 1. In addition, suppose that the following requirements are fulfilled:

(i) There exist 0 < my < My < oo such that my (T —x) <b(x) < My (T —z),V 2 €[0,T];

(11) There exist 0 < mg < My < 00 such that me (z+T) <b(z) < My (x+T),V x € [-T,0].
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Then for all f € CB4 (R), € R and for all N € N satisying N > max {T + |z|, (%)é}, we have the
estimate

(91) Q0 () (@) = @)] < ewn (N2,
where
c:=2 (maX{TMQ, TM1}+1) ,
2m2 2m1
and
(92) wi (f,0)g == sup [f(z)—f(y)].
z,ycR:
|lz—y|<o
We make

Remark 3.27. In [5], was proved that

1
TMy TM; 1 2\ «
93 Ena () < ) N ¥ N T A = .
(93) N, (z)_max{2m2 le} >max{ + |z] <T) }
That is
1
TMy TM 2\
(94) CJ(V”QQ._;C)(I)gmaX{m;, zmll}N“, VN>max{T+|z|,<T) }

From (90) we have that |x — %| < N;":a.

Hence (A > 1) Nme]RandN>maX{T+|x|’(%)i})

(95)

b(N' (z— &) |z — £
CJ(VJ\Q (‘ —x|)‘) () = VkeJT,N(x) ( (z N)) |$ N

A—1 1
T TMs TM; 1 2\«
—_— — N N T = .
(Nl(") max{ oy’ 2 } , VN> max{ + ||, (T) }

Then (A > 1) it holds

o (1 =a") @) <

(96) T2~ max { 72?5;’ Znﬂfll } N}\(llia), vV N > max {T + |z, (;) i } .
Call
TMy TM
(97) 0= max{ 2m22’ 2m11 } > 0.
Consequently (A > 1) we derive
(98) o) (|._x\*) (z) < % VN>max{T+|x,(:2F>a}.

We need
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Theorem 3.28. All here as in Theorem 3.22, where x = xy € R is fized. Let b be a centered bell-
shaped function, continuous and with compact support [-T,T], T > 0,0 < a <1 and C](\,AQ be defined as
in (88). Then

w1 (Di‘f, 5)R oD ( . A) o)+ CJ(\%X) (| — J:|/\+1) (x)

(99) TA+1) Noa (A+1)o ’

VNGN:N>max{T+|x\,T*§}.

Proof. By Theorem 3.22 and (86) we get

w1 (D;‘f,é)R [l B a?|>‘ N |- — x|>‘+1

(100) FO = F @< SF00

true over R.
As in Theorem 3.24 and using similar reasoning and C’J(VNQ (1) =1, we get

(100)

080 (1) (@)~ £ ()| < CLD 17 ()~ F @) (@) <

wr (D20, [ o . el (1= 2 @)
1o1) Torn | e (o) @+ =553 ’
VNEN:N>maX{T+|x\,T_é}. ]

We continue with

Theorem 3.29. Here all as in Theorem 3.22, where © = o € R is fized. Also the same assumptions
as in Theorem 3.26. Then

1 0T M
o83 (@) = £ @) < Frgyen (Dgf’ (o) ) |
R

o1 1 o>\
N X(1—a) + ()\+ 1) (N(AJrl)(la)) ’

VNeN;N>maX{T+|x\,(%)%‘}.
. (M) _
We have that NETOOCN@ (f) (z) = f ().

(102)

Proof. We apply Theorem 3.28. In (99) we choose

QT/\ 1
0= (N(A+1)(1—a)> ;

A1 oT>
thus 6 +1 = NOFOA=) ) and

eTA 1
A
(103) # = (o)
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Therefore we have

09 1 o>\
(M) A
(104) ‘CN@ (f) ()= f(z)] < mwl (D:cfa (]\]’()\Jrl)(la)> ) :
R
o171 1 01 _
NA(1—a) + ()\+ 1)5N()\+1)(17a) -

1
1 ™ ST [T 1
S Y L o + g1 | ()
T(A+1) NGO+ (A ~a) NA1=a) © (A 4+1)6

1 \ oTr O\
TO+1) <D1f, (N(A+1)<1a)> )R'

A
o171 1 o7 A
(105) xi—a) M) (I—a ’
N X1=a) © (X 4+ 1) \ NO+D(A~a)
V' N € N: N > max {T + |z|, (%)é} , proving the inequality (102). ]

It follows an interesting application to Theorem 3.1 when a = %, n=2.

Corollary 3.30. Let f : [0,1] — Ry, /' € Lo ([0,1]), @ € [0,1]. Assume that D*2 f € C ([, 1]),
k=0,1,2,3, and <Di§f> () =0, i = 2,3. Suppose that D’;Ef e C([0,z]), for k = 0,1,2,3, and

)

(Di%_f) () =0, fori=2,3. Then

SN}

o (D241 ()
G

B () (@) = f @) <

(106)

2 6 5
+ = , VN eN.
N+1 5(\/N+1> ]

We get lim BY" (f)(2) = f ().

4. APPLICATIONS, PART B

Caseof (n+1)a < 1.
We need

Theorem 4.1. ([2]) Let L : C4 (

a,b)) — C4 ([a,b]), be a positive sublinear operator and f,g €

Cy ([a,b]), furthermore let p,q > 1 : % + % 1. Assume that L((f(-))")(s«), L((g(-))?) (s+) > 0 for
some s, € [a,b]. Then
(107) L(f()g()) (5) < (L)) (527 (L((g()) (5))7 -

We give
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Theorem 4.2. Let 0 < a < ﬁ, n €N, f:ab = Ry, f/ € Lo ([a,b]), o € [a,b]. Assume

that fov"of € C([zo,b]), k =0,1,....n+ 1, and (Diiof) (xg) =0, i = 2,3,...,n+ 1. Also, suppose

that D’“" f € C([a,xo]), for k =0,1,....n+ 1, and (Dmo_f) (xg) = 0, fori = 2,3,...,n+ 1. Denote
A= (n + 1)a <1. Let Ly : Cy ([a,b]) = C4 ([a,b]), V N € N, be positive sublinear operators, such that

Ly (| - ac0|/\+1) (x9) >0 and Ly (1) =1,V N € N. Then

w1 (Déﬁ*”" 7 5)

(108) |Ln (f) (z0) = f (w0)] <

rA+1)
A+l
(LN <| - xo\AH) (flﬂo))%rl + o (|(;ZO|1)5) o )
0>0,¥ NeN.
Proof. By Theorems 2.7, 4.1. [
We give

Theorem 4.3. Let 0 < o < A5, n €N, f : [a,b] = Ry, f' € Lo ([a,b]), zo € [a,b]. Assume
that Dfﬁof € C([zg,b]), £k =0,1,....n+ 1, and (Di%of) (zg) =0, 1 = 2,3,...,n+ 1. Also, suppose

that Dkg‘ff € C([a,z0]), for k =0,1,....n+ 1, and (D“sz) (xg) = 0, fori = 2,3,...,n+ 1. Denote
Ai=(n+1)a<1. Let Ly : Ci ([a,b]) = C+ ([a,b]), V N € N, be positive sublinear operators, such that

Ly (|- - m”l) (z¢) >0 and Ly (1) =1,V N € N. Then

(A+2)w ( pithey, (LN (\ $0|/\+1) (CCO))AL)

(109) 1Ly (f) (w0) = f (w0)] < T(A+2)

(LN (|. _ $0|>\+1> (:z:o))%ﬂ , VNeN.
Proof. In (108) choose 6 := (LN (\ - a:o\’\H) (xo))ﬁ1 : 0

Note: From (109) we get that: if Ly <| — x0|)‘+1) (x0) = 0, a8 N — +oo, then Ly (f) (zo) = f (o),
as N — 4-o0.
We present

Theorem 4.4. Let 0 < a < n+1’ neN, f:[0,1] - Ry, f/ € Lo ([0,1]), x € (0,1). Assume that
Dkaf e O([x,1)), k=0,1,....,n+ 1, and (Dm ) (r) =0,i=2,3,...,n+ 1. Also, suppose that Dk f €
C([0,xz]), for k=0,1,...,n+1, and (D;"‘_f) (£) =0, fori=2,3,...,n+ 1. Denote A\ := (n+1)a < 1.

Then
(A 2w D;}f,(\/L)%“ 2
(110 B (1) @)~ 1 (@) < <m+2> )" ()
VvV NeN.
See that lim B(M) (f) (x) = f(x).

N —+o0

77


Galaxy
Text Box
77


ROMANIAN JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2018, VOLUME 8, ISSUE 2, p.58-82

Proof. The Max-product Bernstein operators BJ(VM) (f) (z) are defined by (5), see also [6], p. 10; here
f:[0,1] = Ry is a continuous function.
We have BJ(VM) (1) =1, and

(111) BY (- —al) (@) <  Vzel01],VNEeN,

6
VN +1
see [6], p. 31.

BI(VM) are positive sublinear operators and thus they possess the monotonicity property, also since
|- —z| <1, then |- —z|’ <1,Vze[0,1],V 8> 0.

Therefore it holds

(M) (|, _ (148 <_ 6
(112) B{ (\ 7| )(m)_m,Vxe[O,l],VNeN,VB>O.

Furthermore, clearly it holds that
(113) B§VM) <| - x\H_B) (r) >0,V NeN, V3 >0andany z € (0,1).
The operator BgVM) maps C4 ([0, 1]) into itself. We apply (109). U

We continue with

Remark 4.5. The truncated Favard-Szdsz-Mirakjan operators are given by

_ Vicosne (@) f (%)

(114) V" (f) (=) ~ . 2€[0,1], NeN, feC,(0,1]),
\/k:0 SN,k (33)
snk () = (N;!)k, see also [6], p. 11.

By [6], p. 178-179, we get that

(115) TM (|- —2)) (z) < Vzel0,1],VNeN.

Al

Clearly it holds

M 3
(116) T )(|~—z|1+ﬁ> (1)< = Va0, VN EN V>0

The operators TI(\,M) are positive sublinear operators mapping C4 ([0,1]) into itself, with TJ(VM) (1)=1.
Furthermore it holds

u \ VN (Nxz)* |£ _z‘,\
(117) T >(\._:g| )(a;): b0 Nl >0, Vae (0,1, ¥AZ LY NEN.
\/k:OTm!

We give
Theorem 4.6. All as in Theorem 4.4, with x € (0,1]. Then

(A+2) Siiz()m) )(;ﬁ) VYNEN.

wms) I (@ -f@)|<
As N — 400, we get TI(VM) () (z) = f(2).
Proof. We apply (109). 0

We make
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Remark 4.7. Nexst we study the truncated Maz-product Baskakov operators (see [6], p. 11)
N
_ Vk:o b,k (z) f (%)

(119) Uy (f) (x) VA , z€0,1], feCi([0,1]), NeN,
k=0 ONk X
where
N+Ek—-1 ak
(120) by (z) = ( k ) Tra™

From [6], pp. 217-218, we get (x € [0,1])

() 2v3 (V2 +2)
(121) (UN (- - x|)) (1)< =g N22 NeN
Let 8 > 1, clearly then it holds
(M) 8 2v3(vV2+2)
(122) (UN (|-—x| ))(x)gﬁ, VN>2 NeN.

Also it holds UJ(VM) (1) =1, and UJ(VM) are positive sublinear operators from Cy ([0,1]) into itself. Fur-
thermore it holds

(123) U (|'fx|5) (£) >0, Yze (0,1, ¥3>1,¥NeN.
We give
Theorem 4.8. All as in Theorem 4.4, with x € (0,1]. Then

(A +2)e (sz, (W{ff”) )

T(A+2)

U0 () (@) = £ (@) <

(124 <2x/§ (V2+2

) X
, VN>2, NeN
N+1
As N — 400, we get UI(VM) (f)(z) = f(x).
Proof. By Theorem 4.3. U
We continue with

Remark 4.9. Here we study the Max-product Meyer-Kéning and Zeller operators (see [6], p. 11)
defined by

Vs (@) f (i

Voomn@ 0 " NEN e [0.1D,

(125) zZ30 (1) (x)

SNk (7) = ( N]:—k )xk, x € [0,1].

By [6], p. 253, we get that
8(1+v5) z(l—a)

(M)
(126) Zy (] =) (2) < 3 TN

, Yzel0,1], VN >4, NeN.
We have that (for 5> 1)

(127) 200 (1 - o) 0y <« SFELEL D ),
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Vael0,1], N>4, NeN.

Also it holds Z(M) (1)=1, and ZJ(VM) are positive sublinear operators from Cy ([0, 1]) into itself. lso it
holds

(128) Z(30) (|-—x|’6) (z) >0, Vaoe(0,1), V3>1,¥NeN.
We give
Theorem 4.10. All as in Theorem 4.4. Then
s ., _ 04D (D)™)o
(129) 280 () @) - (@) < rOTD) p(@))
VN>4 NeN.
As N — 400, we get Z](VM) () (z) = f(2).
Proof. By Theorem 4.3. U

We continue with

Remark 4.11. Here we deal with the Max-product truncated sampling operators (see [6], p. 13) defined
by

sin(Nz—km T
\/k 0 Na—kn e f (%)

\/ sin(Nz—km) ’
k=0 Nz—k~

Vo el0,n], f:[0,7] = Ry a continuous function. See also Remark 3.8.
By [6], p. 846, we have

(130) W (f) (x) =

(131) WJ(VM)(‘.7;C|)(x)§%, VNEeEN, Vazel0n].
Furthermore it holds (8 > 1)
B
(M) (1. _ 8 <
(132) W Q x|y@_2N,VNeviemmy
Also it holds (8> 1)
(133) M@W(L—ﬂﬂ(m>o,VxemmL

such that x # XX for any k € {0,1,..., N}, see [3].
We present

Theorem 4.12. Let 0 < a < =5, n €N, z € [0,7] be such that x # 5F, k € {0,1,..,N},V N € N;
f:00,7] =Ry, f' € Lo ([0,7]). Assume that DF&f € C ([x,7]), k=0, 1,...,n—|— 1, and (fo; ) (z) =0,
i =2,3,...,n+1. Also, suppose that D¥* f € C ([0,z]), for k = 0,1,...,n+ 1, and (D f) (z) = 0, for
i=2,3,..,n+1. Denote A\:=(n+1)a < 1. Then

O+ 2 (D27, (5) ) (=

I'(A+2) 2N

(134) ’Wﬁﬂﬁﬂw—fm)é )+ﬂ V N eN.

As N — 400, we get W](VM) (f)(z) = f(x).
Proof. By (132), (133) and Theorem 4.3. U
We make
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Remark 4.13. Here we continue with the Maa-product truncated sampling operators (see [6], p. 13)
defined by

N sin?(Nz—km) km
B Vi=o “ et/ (%)
- N  sin?2(Nz—km ’
Vi=o W

(135) EQY(f) (@)

Vael0,n], f:[0,7] = Ry a continuous function.
See also Remark 3.10.
It holds (5 >1)

B
(M) (1. _ B T
(136) K (| z] )(J;)§2N, VNEN,Yzel0n].
By [3], we get that (f>1)
(137) K0 (\- - x|ﬁ) () >0, Vel

such that x %r, for any k € {0,1,..., N}.
We continue with

Theorem 4.14. All as in Theorem 4.12. Then

(A+2)wn (Dgf, (”Q;l)m> -
T(A+1) ( 5N

as8) KL ()@ - s @) < )7 vwen

As N — 400, we get K](VM) (f)(z) = f(x).

Proof. By (136), (137) and Theorem 4.3. U
We finish with

Corollary 4.15. (to Theorem 4.4, a = %, n =2, A= 3) Let f : [0,1] = Ry, f' € Lo ([0,1]),
€ (0,1). Assume that Dféf € C([z,1]), k =0,1,2,3, and (Dié ) (x) =0, i = 2,3. Suppose that

D:%f e C([0,x]), for k=0,1,2,3, and (D;%f) () =0, fori=2,3. Then

(139) B (1) (@) - f @) <

3.4 6 7 6 ?
(1.709) wq (Dm 1 (\/N7+1> ) (\/m) , VN eN.

And. lim B (f) (@) = f (2).

Proof. Use of (110). ]
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